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Abstract

Feed-forward Artificial Neural Networks (ANNs) have
become popular among researchers and practitioners for
modelling complex real–world problems. One of the lat-
est research areas in this field is evolving ANNs. In this
paper, we investigate the simultaneous evolution of ar-
chitectures and connection weights in ANNs. In simulta-
neous evolution, we use the concept of multiobjective op-
timization and subsequently evolutionary multiobjective
algorithms to evolve ANNs. The results are promising
when compared with the traditional Backpropagation al-
gorithm.
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1.Introduction

Feed-forward Artificial Neural Networks (ANNs) have
found extensive acceptance in many disciplines for mod-
elling complex real–world problems. An ANN is formed
from a group of units, called neurons or processing el-
ements, connected with arcs, called synapses or links,
where each arc is associated with a weight representing
the strength of the connection, and usually the nodes are
organized in layers. Each neuron has an input equals
to the weighted some of the outputs of those neurons
connected to it. The weighted sum of the inputs repre-
sents the activation of the neuron. The activation signal
is passed through a transfer function to produce a single
neuron’s output. The transfer function introduces non–
linearity to the network. The behavior of a neural net-
work is determined by the transfer functions, the learning
rule by which arcs update their weights, and the archi-
tecture itself in terms of the number of connections and
layers. Training is the process of adjusting the networks’
weights to minimize the difference between the network
output and the desired output on a suitable metric space.
Once the network is trained, it can be tested by a new
dataset.

As previously mentioned, the performance of a neu-
ral network for a given problem, depends on the trans-
fer function, network architecture, connection weights,
inputs, and learning rule. The architecture of an ANN

includes its topological structure, i.e., connectivity and
number of nodes in the network. The architecture design
is crucial for successful application of ANNs because the
architecture has a significant impact on the overall pro-
cessing capabilities of the network. In most function ap-
proximation problems, one hidden layer is sufficient to
approximate continuous functions (Basheer 2000; Hecht-
Nielsen 1990). Generally, two hidden layers may be nec-
essary for learning functions with discontinuities (Hecht-
Nielsen 1990). The determination of the appropriate num-
ber of hidden layers and number of hidden nodes in each
layer is one of the important tasks in ANN design. A net-
work with too few hidden nodes would be incapable of
differentiating between complex patterns leading to only
a lower estimate of the actual trend. In contrast, if the
network has too many hidden nodes it will follow the
noise in the data due to over-parameterization leading to
poor generalization for test data (Basheer and Hajmeer
2000). With increasing number of hidden nodes, training
becomes excessively time-consuming.

The most popular approach to finding the optimal num-
ber of hidden nodes is by trial and error. Methods for net-
work growing (such as cascade correlation (Fahlman and
Lebiere 1990)) and for network pruning (such as Optimal
brain damage (LeCun, Denker, and Solla 1990)) have
been used to overcome the unstructured and somehow
unmethodical process for determining a good network ar-
chitecture. However, all these methods still suffer from
their slow convergence and long training time. Nowa-
days, many researchers use evolutionary algorithms to
find the appropriate network architecture by minimizing
the output error (Kim and Han 2000; Yao and Liu 1998).

Weight training in ANNs is usually formulated as min-
imization of an error function, such as the mean square
error between target and actual outputs averaged over all
examples (training data), by iteratively adjusting connec-
tion weights. Most training algorithms, such asBack-
propagation(BP) and conjugate gradient are based on
gradient descent (Basheer and Hajmeer 2000; Hertz, Krogh,
and Palmer 1991). Although BP has some successful
applications, the algorithm often gets trapped in a local
minimum of the error function and is incapable of find-
ing a global minimum if the error function is multimodal
and/or non–differentiable (Yao 1999). To overcome this



problem, one can use evolutionary algorithms for weight
training. The application of evolutionary algorithms for
weight training can be found in (Kim and Han 2000; Yao
and Liu 1998).

As discussed above, it is necessary to determine the
appropriate architecture of the network and appropriate
connection weights to ensure the best performance out of
ANNs. Most researchers treat them as two independent
optimization problems. As Yao (1999) indicated, con-
nection weights have to be learned after a near-optimal
architecture is found. This is especially true if one uses
the indirect encoding scheme, such as the developmental
rule method. One major problem with the determination
of architectures is noisy fitness evaluation (Yao and Liu
1997). In order to reduce such noise, an architecture usu-
ally has to be trained many times from different random
initial weights. This method increases the computational
time for fitness evaluation dramatically. If we look at
the theoretical side of such optimization problems, this
sequential optimization procedure (first architecture op-
timization followed by weight optimization) will usually
provide a suboptimal solution for the overall problem.

To overcome this problem, the natural choice is to de-
termine the architecture and connection weights simul-
taneously by solving a single optimization problem with
two objectives. Many researchers attempted to ignore the
architecture and minimize only the mean sum square er-
ror function (Kim and Han 2000; Yao and Liu 1998). A
comprehensive list of papers on this topic can be found
in (Yao 1999). However, if the contribution – to the
objective function – of a sub-problem is very low com-
pared to the other, the effect of the first sub-problem will
not be reflected properly in the overall optimal solution.
In such situations, simultaneous multiobjective optimiza-
tion would be a better choice.

The purpose of this research is to determine the archi-
tecture and connection weights of ANNs simultaneously
by treating the problem as a multiobjective optimization
problem. We believe the simultaneous Evolution of Ar-
chitectures and Connection Weights in ANNs using the
concept of multiobjective optimization would add a new
direction of research in ANNs. In addition, we will show
experimentally that this approach performs better than
BP with much lower computational cost (usually propor-
tion to the maximum number of hidden units needed to
be tested.

The paper is organized as follows. After introducing
the research context, multiobjective optimization and the
proposed algorithm are introduced in Section 2 followed
by a case study on simultaneous evolution in Section 3.
Experiments are then presented in Section 4 and conclu-
sions are drawn in Section 5.

2.Multiobjective Optimization

In multiobjective optimization, all the objectives must
be optimized concurrently to get the real trade-off for de-
cision making. In this case, there is no single optimal
solution, but rather a set of alternative solutions. These
solutions are optimal in the wider sense that no other so-
lutions in the search space are superior to them when all
objectives are considered. They are known as pareto-
optimal solutions.

There are several conventional optimization based al-
gorithms for solving multiobjective optimization prob-
lems (Coello, 1999). These methods are not discussed
here since none of them perform simultaneous optimiza-
tion. Evolutionary algorithms (EAs) seem to be particu-
larly suited for multiobjective optimization problems be-
cause they process a set of solutions in parallel, possi-
bly exploiting similarities of solutions by recombination.
Some researchers suggest that multiobjective search and
optimization might be a problem area where EAs do bet-
ter than other blind search strategies (Fonseca and Flem-
ing, 1995 and Valenzuela-Rendon and Uresti-Charre, 1997).
There are several EAs available in the literature that are
capable of searching for multiple pareto-optimal solu-
tions concurrently in a single run. Some of the popu-
lar algorithms are: the Vector Evaluated Genetic Algo-
rithm (VEGA) (Schaffer 1985), Hajela’s and Lin’s ge-
netic algorithm (HLGA) (Hajela and Lin 1992), Non-
dominated Sorting Genetic Algorithms (NSGA) (Srini-
vas and Dev 1994), Fonseca and Fleming’s evolutionary
algorithm (FFES) (Fonseca and Fleming 1993), Niched
Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis, and
Goldberg 1994), the Strength Pareto Evolutionary Algo-
rithm (SPEA) (Zitzler and Thiele 1999), and the Pareto
Archived Evolution Strategy (PAES) (Knowles and Corne
1999; Knowles and Corne 2000). However, none of these
algorithms performs consistently for all types of prob-
lems. Recently, we developed thePareto-based Differen-
tial Evolution (PDE) approach, which outperforms most
existing evolutionary multi-objective algorithms over con-
tinuous domains (Abbass, Sarker, and Newton 2001).

2.1.Differential Evolution

Evolutionary algorithms (Fogel 1995) is a kind of global
optimization techniques that use selection and recombi-
nation as their primary operators to tackle optimization
problems. DE is a branch of evolutionary algorithms de-
veloped by Rainer Storn and Kenneth Price (Storn and
Price 1995) for optimization problems over continuous
domains. In DE, each variable is represented in the chro-
mosome by a real number. The approach works as follows:-

1. Create an initial population of potential solutions
at random, where it is guaranteed, by some repair
rules, that variables’ values are within their bound-



aries.

2. Until termination conditions are satisfied

(a) Select at random a trail individual for replace-
ment, an individual as the main parent, and
two individuals as supporting parents.

(b) With some probability, each variable in the
main parent is perturbed by adding to it a ra-
tio, F , of the difference between the two val-
ues of this variable in the other two support-
ing parents. At least one variable must be
changed. This process represents the crossover
operator in DE.

(c) If the resultant vector is better than the trial
solution, it replaces it; otherwise the trial so-
lution is retained in the population.

(d) go to 2 above.

From the previous discussion, DE differs fromgenetic
algorithms(GA) in a number of points:

1. DE uses real number representation while conven-
tional GA uses binary, although GA sometimes
uses integer or real number representation as well.

2. In GA, two parents are selected for crossover and
the child is a recombination of the parents. In
DE, three parents are selected for crossover and
the child is a perturbation of one of them.

3. The new child in DE replaces a randomly selected
vector from the population only if it is better than
it. In conventional GA, children replace the par-
ents with some probability regardless of their fit-
ness.

2.2.A Differential Evolution algorithm for MOPs

A generic version of the adopted algorithm can be
found in (Abbass, Sarker, and Newton 2001). The PDE
algorithm is similar to the DE algorithm with the follow-
ing modifications:-

1. The initial population is initialized according to a
Gaussian distributionN(0.5, 0.15).

2. The step-length parameter is generated from a Gaus-
sian distributionN(0, 1).

3. Reproduction is undertaken only among non-dominated
solutions in each generation.

4. The boundary constraints are preserved either by
reversing the sign if the variable is less than 0 or
keeping subtracting 1 if it is greater than 1 until
the variable is within its boundaries.

5. Offspring are placed into the population if they
dominate the main parent.

The algorithm works as follows. An initial popula-
tion is generated at random from a Gaussian distribution
with mean 0.5 and standard deviation 0.15. All domi-
nated solutions are removed from the population. The
remaining non-dominated solutions are retained for re-
production. A child is generated from a selected three
parents and is placed into the population if it dominates
the first selected parent; otherwise a new selection pro-
cess takes place. This process continues until the popu-
lation is completed.

3.Proposed Algorithm

3.1.Nomenclatures

From herein, the following notations will be used for
a single hidden layer MLP:

• I andH are the number of input and hidden units
respectively.

• Xp ∈ X = (xp
1, x

p
2, . . . , x

p
I), p = 1, . . . P , is the

pth pattern in the input feature spaceX of dimen-
sionI, andP is the total number of patterns.

• Without any loss of generality,Yp
o ∈ Yo is the

corresponding scalar of patternXp in the hypoth-
esis spaceYo.

• wih andwho, are the weights connecting input unit
i, i = 1 . . . I, to hidden unith, h = 1 . . . H,
and hidden unith to the output unito (whereo is
assumed to be 1 in this paper) respectively.

• Θh(Xp) = σ(ah); ah =
∑I

i=0 wihxp
i , h = 1 . . . H,

is thehth hidden unit’s output corresponding to the
input patternXp, whereah is the activation of hid-
den unith, andσ(.) is the activation function that
is taken in this paper to be the logistic function
σ(z) = 1

1+e−Dz , with D the function’s sharpness
or steepness and is taken to be 1 unless it is men-
tioned otherwise.

• Ŷ p
o = σ(ao); ao =

∑H
h=0 whoΘh(Xp) is the net-

work output andao is the activation of output unit
o corresponding to the input patternXp.

3.2.Representation

In deciding on an appropriate representation, we tried
to choose a representation that can be used for other ar-
chitectures without further modifications. Our chromo-
some is a class that contains one matrixΩ and one vec-
tor ρ. The matrixΩ is of dimension(I + O) × (H +
O). Each elementωij ∈ Ω, is the weight connecting
unit i with unit j, wherei = 0, . . . , (I − 1) is the in-
put unit i, i = I, . . . , (I + O − 1) is the output unit



i − I, j = 0, . . . , (H − 1) is the hidden unitj, and
j = H, . . . , (H + O − 1) is the output unitj −H. This
representation has the following two characteristics that
we are not using in the current version but can easily be
incorporated in the algorithm for future work:-

1. It allows direct connection from each input to each
output units (we allow more than a single output
unit in our representation).

2. It allows recurrent connections between the output
units and themselves.

The vectorρ is of dimensionH, whereρh ∈ ρ is a
binary value used to indicate if hidden unith exists in
the network or not; that is, it works as a switch to turn
a hidden unit on or off. The sum,

∑H
h=0 ρh, represents

the actual number of hidden units in a network, whereH
is the maximum number of hidden units. This represen-
tation allows both training the weights in the network as
well as selecting a subset of hidden units.

3.3.Methods

We have a function approximation problem which may
arise in many situations including data mining, forecast-
ing and estimation. We have no prior knowledge about
the nature of the function. Based on the discussions in
the first section, we have decided to use one input layer,
one hidden layer and one output layer in the network.
Our main objective is to estimate the connection weights
by minimizing the total error, and select the appropriate
number of hidden nodes. In this paper, we need to de-
termine the connection weights which are real variables
and select the hidden nodes in the network which are as-
sociated each with a binary variable (1 if the hidden unit
exists and 0 for not). We set two objectives in this prob-
lem as follows:

1. Minimization of error

2. Minimization of number of hidden units in ANN

The problem can be handled as a multiobjective Op-
timization Problem. The steps to solve this problem are
given below.

1. Create a random initial population of potential so-
lutions.

2. Until termination conditions are satisfied, repeat

(a) Evaluate the individuals in the population and
label those who are non-dominated.

(b) Delete all dominated solutions from the pop-
ulation.

(c) Repeat

i. Select at random an individual as the main
parent and two individuals as supporting
parents.

ii. With some probabilityUniform(0, 1),
crossover the parents to generate a child
where each weight in the main parent is
perturbed by adding to it a ratio,F ∈
Gaussian(0, 1), of the difference between
the two values of this variable in the two
supporting parents. At least one variable
must be changed.

iii. If the child dominates the main parent,
place it into the population.

(d) Until the maximum population size is reached

4.Experiments

4.1.Experimental Setup

To test the performance of our proposed method, we
experimented with a known polynomial function in two
variables and of the third degree with noise. Noise was
added to each input with a probability 0.2 from a Gaus-
sian distributionN(0, 0.2). The function took the form

x3
1 + x3

2

We generated 2000 instances as a training set and an-
other 2000 as a test set. Both training and test sets were
generated independently. Variables were generated from
a uniform distribution between 0 and 1. After computing
the output of the function, noise were added to the inputs
only.

For the evolutionary approach, an initial population
size of 50 was used and the maximum number of objec-
tive evaluations was set to 20,000. The number of inputs
and the maximum number of hidden nodes were chosen
as 2 and 10 respectively. The PDE algorithm was run
with five different crossover rates (0, 0.05, 0.1, 0.5 and
0.9) and five different mutation rates (0, 0.05, 0.1, 0.5
and 0.9). For each combination of crossover and muta-
tion rates, results were collected and analyzed over 10
runs with different seed initializations. The initial popu-
lation is initialized according to a Gaussian distribution
N(0, 1). The step-length parameterF is generated for
each variable from a Gaussian distributionN(0, 1). The
algorithm is written in standardC++ and ran on a Sun
Sparc 4.

The Backpropagation algorithm was tested for ten dif-
ferent architectures created varying the hidden nodes from
1 to 10. For each architecture, the Backpropagation algo-
rithm was run 10 times with ten different random seeds.
The same ten seeds were used in all BP runs as well as
the evolutionary approach.



4.2.Experimental Results and Discussions

For each architecture, the results from each of the
10 runs of the Backpropagation algorithm were recorded
and analyzed. The performance of the evolutionary ap-
proach is measured by the average performance of the
pareto set, which is selected on the training set, on the
test set. The average error rate from these 100 runs (10
architectures, each with 10 runs) is found to be 0.095
with a range of architecture-wise average 0.094 to 0.096.
The average error rates with different crossover and mu-
tation rates for the PDE approach are plotted in Figures
1 and 2. Each average error rate is a mean of ten runs
for a given crossover and mutation. In the x-axis of both
figures, the numbers 1 to 5 represent the crossover or mu-
tation rates from 0.0 to 0.9 as discussed earlier.
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Figure 1: Error rate vs. crossover rate
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Figure 2: Error rate vs. mutation rate

As we see in Figure 1, the error rate is minimum
when the mutation rate is 0.1. At this mutation rate, the
error rate varies within a narrow zone of 0.055 to 0.056.
As shown in Figure 2, for all crossover rates, the er-
ror rate versus mutation rate follows a convex-like curve.

Here the error rate decreases up to the minimum, where
mutation rate is 0.10, and then increases. This nice pat-
tern helps in choosing the optimum crossover and mu-
tation rates. In our case, a mutation rate of 0.10 and a
crossover rate of 0.05 achieved the best performance with
an Error rate of 0.055. With this best crossover and muta-
tion rates, the best error rate in a single run is 0.054 with
three hidden nodes (a solution from the Pareto front).

Taking the average figures in both Backpropagation
and PDE approaches, we can see that the PDE approach
reduces the error rate from 0.095 to 0.055 which is around
42 percent improvement. This emphasizes the advan-
tages of the evolutionary approach in terms of accuracy
and speed.

We need to emphasize here that the evolutionary ap-
proach performed in the same number of epochs better
than what 10 different BP runs did. To explain this fur-
ther, we needed to find the best number of hidden units
on our test task. To do this, we trained 10 different neu-
ral networks with number of hidden units ranging from
1 to 10. In the evolutionary approach, however, we sat
the maximum number of hidden units and the evolution-
ary approach determined the appropriate number without
the need of experimenting with 10 different networks. In
addition, the crossover is much faster than BP, adding
more advantages to the evolutionary approach.

5.Conclusions and Future Research

In this research, we investigated the simultaneous evo-
lution of architectures and connection weights in ANNs.
In so doing, we proposed the concept of multiobjective
optimization to determine the best architecture and ap-
propriate connection weights concurrently. The multiob-
jective optimization problem was then solved using the
Pareto Differential Evolution algorithm. The results on
a test problem was significantly better when compared
with Backpropagation. Although it shows a very promis-
ing performance, in our future work, we will need to ex-
periment with more problems to generalize our findings.
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