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Abstract- In this paper, we present a comparison be-
tween two multi-objective formulations to the forma-
tion of neuro-ensembles. The first formulation splits the
training set into two non-overlapping stratified subsets
and form an objective to minimize the training error on
each subset, while the second formulation adds random
noise to the training set to form a second objective. A
variation of the memetic Pareto artificial neural network
(MPANN) algorithm is used. MPANN is based on dif-
ferential evolution for continuous optimization. The en-
semble is formed from all networks on the Pareto fron-
tier. It is found that the first formulation outperformed
the second. The first formulation is also found to be com-
petitive to other methods in the literature.


1 Introduction


A mixture of predictors/classifiers (ensemble) provides
a better bias–variance trade-off which usually results in
an improvement in the prediction accuracy [14]. Many
studies [17, 18, 19, 20, 26] focused on the construction
of ensembles using artificial neural networks (ANNs),
more specifically multi-layer feed-forward artificial neural
networks. The field is usually called neuro-ensemble, to
denote the use of ANN to form an ensemble.


In this paper, we have chosen to compare our work
against the negative correlation learning (NCL) method
of [19] because the latter can be seen as one of the recent
well-tested work that was also combined with evolutionary
computations to evolve an ensemble of neural networks
[20] and has also been used successfully for feature selec-
tion tasks [7].


Liu and Yao [19] proposed the NCL algorithm for
training an ensemble of ANNs using Backpropagation
[18]. A mathematical penalty term describing the negative
correlation between the networks is added to the conven-
tional mean square error of each network and traditional
backpropagation (BP) [23] is used for network training.
In a study presented in [21], an analysis of NCL revealed
that the penalty function in NCL acts to maximize the
average difference between each network and the mean of


the population; while the intended aim of anti-correlation
mechanisms is to maximize the average difference between
pairs of population members, which is not necessarily the
same thing.


In NCL, the ensemble is trained using the training
set, where the output of the ensemble F p is given by the
following equation:


F p =
1


M


M∑


m=1


Ŷ p(m) (1)


The expected error of pattern p is given by the average error
of the ensemble, Errorp, as defined by the following two
Equations:


Errorp =
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(3)
Here, Φp(m) is the penalty function of network m and


pattern p. This function represents the correlation term that
we need to minimize. In NCL, the following is used as the
anticorrelation measure:


Φp(m) = (Ŷ p(m) − F p)
∑


l �=m


(Ŷ p(l) − F p) (4)


The previous function has some desirable characteris-
tics, as when it is combined with the mean square error, the
result will be a nice tradeoff between the bias, variance and
co-variance. Moreover, it does not change the BP algorithm
much as it only adds a simple term to the derivative of the
error as follows:







∂Errorp(m)


∂Ŷ p(m)
= (Ŷ p(m) − Y p) − λ(Ŷ p(m) − F p) (5)


NCL was then combined with an evolutionary approach
[20] to evolve the ensemble. The k-means algorithm was
used to cluster the individuals in the population. The fittest
individual in each cluster is used as a member in the en-
semble. The authors found no statistical difference between
the use of the population as a whole in the ensemble and
the use of a subset. It is not clear however how to choose
the value of k.


Three key open research questions remain in the litera-
ture:


1. On what basis should a network be included in, or
excluded from the ensemble?


2. How should the ensemble size be determined?


3. How to ensure that the networks in an ensemble are
different?


The objective of this paper is to attempt to answer
these three questions. This is a challenging task and this
paper should be seen as only an attempt to provide a
theoretically-sound answer to these questions. The rest of
the paper is organized as follows: In Section 2, background
materials are covered followed by an explanation of the
methods in Section 3. Results are discussed in Section 4
and conclusions are drawn in Section 5.


2 Multiobjective optimization


Consider a MOP as presented below:-


Optimize F (�x ∈ Υ) (6)


Subject to: Υ = {�x ∈ Rn|G(�x) ≤ 0} (7)


where �x is a vector of decision variables
(x1, . . . , xn) and F (�x ∈ Υ) is a vector of objec-
tive functions (f1(�x ∈ Υ), . . . , fK(�x ∈ Υ)). Here
f1(�x ∈ Υ), . . . , fK(�x ∈ Υ), are functions on Rn and Υ is
a nonempty set in Rn. The vector G(�x) represents a set of
constraints.


The aim is to find the vector �x∗ ∈ Υ which optimizes
F (�x ∈ Υ). Without any loss of generality, we assume that
all objectives are to be minimized. We note that any max-
imization problem can be transformed to a minimization


f1


f2


A


B


C
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Figure 1: The concept of dominance in multiobjective op-
timization. Assuming that both f1 and f2 are to be mini-
mized, B is dominated by D since D is better than B when
measured on all objectives. However, A, C and D are non–
dominated since none of them is better than the other two
when measured on all objectives.


one by multiplying the former by -1.


The core aspect in the discussion of a multiobjective
optimization problem (MOP) is the possible conflict that
arises in the case of optimizing the objectives simulta-
neously. At a certain point, one objective can just be
improved at the expense of at least another objective. The
principle of dominance (Figure 1) in MOP allows a partial
order relation that works as follows: a solution does not
have an advantage to be included in the set of optimal
solutions unless there is no solution that is better than the
former when measured on all objectives. A non–dominated
solution is called Pareto. To formally define the concept of
non–dominated solutions in MOPs, we need to define two
operators, � and � and then assume two vectors, �x and
�y. �x � �y iff ∃ xi ∈ �x and yi ∈ �y such that xi �= yi.
And, �x � �y iff ∀ xi ∈ �x and yi ∈ �y, xi ≤ yi, and
�x � �y. � and � can be seen as the “not equal to” and “less
than” operators over two vectors, respectively. We can now
define the concepts of local and global optimality in MOPs.


Definition 1 Global efficient (non–inferior/ pareto–
optimal) solution A vector �x∗ ∈ Υ is said to be a
global efficient solution of MOP iff � �x ∈ Υ such that
F (�x) � F (�x∗).


Definition 2 Global non–dominated solution A vector
�y∗ ∈ F (�x) is said to be global non–dominated solution
of MOP iff its projection onto the decision space, �x∗, is a
global efficient solution of MOP.


A MOP can be solved in different ways. One method is







by taking a weighted sum of the objectives. However, this
is not an efficient way to solve the problem [24]. First, the
weighted sum method could only generate a single non-
dominated solution at a time. Second, it assumes convexity
of the Pareto front. Third, the question of determining
the appropriate values for the weights remains unsolved;
that is, we will need to run the algorithm a number of
times with different weights. Another method for solving
MOPs is through the use of goal programming, where an
aspiration level is set for each objective, transforming each
objective to an equality after adding underachievement
and overachievement deviations, then a single objective is
constructed through the minimization of a prioritized and/or
weighted sum of the relevant deviations. This method is
biased to the choice of the aspiration levels.


A third method for solving MOP, ε constraint, is to
sequentially optimize each objective. The way it works
is as follows: select one of the objective and construct a
single objective optimization problem ignoring the other
objectives. The optimum of the single objective problem in
conjunction with the corresponding objective function are
used to form a constraint while ε is the right hand side of
this constraint representing the amount the decision maker
is willing to sacrifice in the corresponding optimal objective
value. After adding this constraint to the constraint set of
the problem, another objective is selected and the process
is repeated until either all objectives are selected or the
solution does not change. An obvious drawback to this
approach is that it is sensitive to the order of optimizing the
objectives and the value of ε.


A fourth group of methods for solving MOPs generate a
single specific Pareto solution. Compromise programming
and Benson’s method are representatives of this class.
A fifth group of methods are called interactive methods,
where an interactive session is established with the decision
maker to find satisfactory solutions.


The last group of methods is evolutionary algorithms
(EAs) [8, 9]. EAs offered something different from all
other methods. Being population based, they are able to
generate a set of near-Pareto solutions in a single run. In
addition, they do not require assumptions of convexity, dif-
ferentiability, and/or continuity as traditional optimization
problems do. EAs with local search are usually used to
improve the performance of EAs to get closer to the actual
optimal or, the Pareto set in case of MOPs.


In EANN, an evolutionary algorithm is used for training
the ANN. A major advantage to the evolutionary approach
over BP alone is the ability to escape a local optimum.
The major disadvantage of the EANN approach is that it is


computationally expensive, as the evolutionary approach is
normally slow.


Recently, the problem of simultaneous optimization of
the network architecture and the corresponding training
error has been casted as a multiobjective optimization prob-
lem [4]. It was found that by combining BP with an EMO
algorithm, a considerable reduction in the computational
cost can be achieved [4]. The multiobjective optimization
outputs a set of solutions, where no solution in the set is
better than all others when compared on all objectives. The
Pareto set provided a new insight into the learning problem,
where an obvious question that emerged from the study
is how to utilize the information embedded in the set as a
whole. One answer to this question is to form an ensemble,
which is the focus of this paper.


3 Formation of Neural Networks ensembles


3.1 Evolutionary artificial neural networks


The following notations will be used for a single hidden
layer ANN:


• I and H are the number of input and hidden units
respectively.


• X̃
p
∈ X = (xp


1, x
p
2, . . . , x


p
I), p = 1, . . . P , is the pth


pattern in the input feature space X of dimension I ,
and P is the total number of patterns.


• Without any loss of generality, Yp
o ∈ Yo is the corre-


sponding scalar of pattern X
p in the hypothesis space


Yo.


• wih and who, are the weights connecting input unit
i, i = 1 . . . I , to hidden unit h, h = 1 . . . H , and
hidden unit h to the output unit o respectively. The
number of outputs is assumed to be 1 in this paper.


• Θh(X̃p) = σ(ah); ah =
∑I


i=1
wihx


p
i , h = 1 . . . H ,


is the hth hidden unit’s output corresponding to the
input pattern X


p, where ah is the activation of hidden
unit h, and σ(.) is the activation function taken in this
paper to be the logistic function σ(z) = 1


1+e−Dz , with
D the function’s sharpness or steepness and is taken
to be 1.


• Ŷ p
o = σ(ao); ao =


∑H


h=1
whoΘh(X̃p) is the net-


work’s output and ao is the activation of output unit o


corresponding to the input pattern X̃
p.


In this paper, we use the quadratic error function by
squaring the difference between the predicted and actual







output. We will also make use of the traditional BP algo-
rithm as a local search method. For a complete description
of BP, see for example [12].


3.2 The multiobjective learning problem


In casting the learning problem as a multiobjective
problem, a successfully-tested formulation was presented
in [4]. We will compare in this paper two different for-
mulations more suitable for neuro-ensemble. In the first
formulation, the training set is divided into two subsets
using stratified sampling, where each objective corresponds
to the minimization of error for each of these subsets. In the
second formulation, the first objective is to minimize the
error on the overall training set while the second is similar
to the first with a Gaussian error being added.


Let p1 and p2 be the number of patterns/instances in
the two subsets Sub1 and Sub2 respectively. The learning
problem can be formulated as


Prob1


Minimize f1 =
∑


o


∑


p1


(Ŷ p1
o − Y p1


o )2 (8)


Minimize f2 =
∑


o


∑


p2


(Ŷ p2
o − Y p2


o )2 (9)


The second alternative is


Prob2


Minimize f3 =
∑


o


∑


p


(Ŷ p
o − Y p


o )2 (10)


Minimize f4 =
∑


o


∑


p


(Ŷ p
o − Y p


o )2 + N(0, 0.2) (11)


In Prob1, there is no guarantee that the ensemble size
would be more than 1. Take the case where a network is
large enough to over-fit on both Sub1 and Sub2, where
the training error on each of them is zero. In this case, the
Pareto set would have a single solution. It is therefore our
assumption that we choose a network size small enough
not to over-fit the union of Sub1 and Sub2, while it is large
enough to learn each of them independently. In Prob2,
it is unlikely that the ensemble size will be 1 since it is
impossible to find a network which satisfies both objectives
and achieve error on both equal to 0.


Our second assumption relates to the algorithm. Getting
to the actual Pareto frontier is always a challenge for
any algorithm. We do not assume that we have to get to
the actual Pareto frontier for this method to work. The


networks on the Pareto set returned by the algorithm will
represent still a bias-variance trade-off and therefore, will
be potentially good.


The ensemble is formed from all networks on the
Pareto frontier found by the evolutionary method. We have
used three methods for forming the ensemble’s gate. In
voting, the predicted class is the one where the majority of
networks agreed. In winner-take-all, the network with the
largest activation in the ensemble is used for prediction.
In simple averaging, the activations for all networks in the
ensemble are averaged and the class is determined using
this average.


3.3 The MPANN algorithm


Recently, we developed the Pareto differential evolution
(PDE) method [5]. The algorithm is an adaptation of the
original differential evolution (DE) introduced by Storn
and Price [28] for optimization problems over continuous
domains. There is a large number of evolutionary multi-
objective optimization (EMO) algorithms in the literature
[8, 9, 10, 11, 13, 27, 29, 29, 29, 25, 15, 16], but we selected
PDE as it has been tested successfully in the area of neural
networks [2, 4].


PDE generally improves over traditional differential
evolution algorithms because of the use of Gaussian distri-
bution, which spreads the children around the main parent
in both directions of the other two supporting parents. Since
the main parent is a non-dominated solution in the current
population, it is found [3] that the Gaussian distribution
helps to generate more solutions on the Pareto-front; which
is a desirable characteristic in EMO. PDE was also tested
successfully for evolving neural networks, where it is
called Memetic Pareto Artificial Neural Network (MPANN)
algorithm [1, 2, 4].


1. Create a random initial population of potential so-
lutions. The elements of the weight matrix Ω
are assigned uniformally distributed random values
U(0, 1).


2. Apply BP to all individuals in the population.


3. Repeat


(a) Evaluate the individuals in the population and
label the non-dominated ones.


(b) If the number of non-dominated individuals is
less than 3 repeat the following until the number
of non-dominated individuals is greater than or







equal to 3 so that we have the minimum number
of parents needed for crossover:


i. Find a non-dominated solution among
those who are not marked.


ii. Mark the solution as non-dominated.


(c) Delete all dominated solutions from the popula-
tion.


(d) Repeat


i. Select at random an individual as the main
parent α1, and two individuals, α2, α3 as
supporting parents.


ii. Crossover: For all weights do


ωchild
ih ← ωα1


ih +N(0, 1)(ωα2


ih −ωα3


ih ) (12)


ωchild
ho ← ωα1


ho +N(0, 1)(ωα2


ho−ωα3


ho ) (13)


iii. Apply BP to the child then add the child to
the population.


(e) Until the population size is M


4. Until termination conditions are satisfied.


4 Experiments


Similar to [20], we have tested MPANN on two bench-
mark problems; the Australian credit card assessment
problem and the diabetes problem, available by anonymous
ftp from ice.uci.edu [6].


The Australian credit card assessment dataset contains
690 patterns with 14 attributes; 6 numeric and 8 discrete
(with 2 to 14 possible values). The predicted class is
binary - 1 for awarding the credit and 0 for not. To be
consistent with the literature [22], the dataset is divided
into 10 folds where class distribution is maintained in each
fold. Cross–validation is used where we run the algorithm
with 9 out of the 10 folds for each data set, then we test
with the remaining one. Similar to [20], the number of
generations is 200, the population size 25, the learning rate
for BP 0.003, the number of hidden units is set to 5, and the
number of epochs BP was applied to an individual is set to
5 for each subset incase of Prob1.


The diabetes dataset has 768 patterns; 500 belonging
to the first class and 268 to the second. It contains 8
attributes. The classification problem is difficult as the class
value is a binarized form of another attribute that is highly
indicative of a certain type of diabetes without having a
one-to-one correspondence with the medical condition of
being diabetic [22]. To be consistent with the literature
[22], the dataset was divided into 12 folds where class


distribution is maintained in each fold. Cross–validation
is used where we run the algorithm with 11 out of the 12
folds for each dataset and then we test with the remaining
one. Similar to [20], the number of generations is 200,
the population size 25, the learning rate for BP 0.003,
the number of hidden units is set to 5, and the number of
epochs BP was applied to an individual is set to 5.


Table 1: Accuracy rates of MPANN2 for the Australian
Credit Card and the diabetes datasets.


.


Australian credit card dataset
Prob1 Prob2


Simple averaging
Training Testing Training Testing


Mean 0.849 0.865 0.850 0.844
SD 0.019 0.043 0.017 0.058
Min 0.803 0.797 0.809 0.724
Max 0.877 0.928 0.869 0.913


Majority voting
Training Testing Training Testing


Mean 0.854 0.862 0.852 0.844
SD 0.018 0.049 0.015 0.056
Min 0.812 0.783 0.821 0.724
Max 0.879 0.928 0.871 0.913


Winner-rakes-all
Training Testing Training Testing


Mean 0.847 0.858 0.834 0.824
SD 0.018 0.044 0.027 0.053
Min 0.805 0.797 0.768 0.724
Max 0.876 0.913 0.866 0.9


Diabetes dataset
Prob1 Prob2


Simple averaging
Training Testing Training Testing


Mean 0.769 0.777 0.753 0.744
SD 0.023 0.032 0.019 0.034
Min 0.737 0.723 0.738 0.690
Max 0.808 0.84 0.795 0.806


Majority voting
Training Testing Training Testing


Mean 0.771 0.779 0.755 0.744
SD 0.023 0.033 0.019 0.034
Min 0.737 0.723 0.738 0.690
Max 0.81 0.84 0.795 0.806


Winner-rakes-all
Training Testing Training Testing


Mean 0.767 0.777 0.753 0.746
SD 0.022 0.037 0.020 0.032
Min 0.737 0.723 0.738 0.690
Max 0.807 0.84 0.795 0.802







The results of this experiment are presented in Table 1.
It is interesting to see that the training error is slightly
worse than the test error for Prob1. In a normal situation,
this might be interpreted as under-training. The situation
here is very different indeed. Let us first explain how this
training error is calculated. Recall that we have divided the
training set into two subsets using stratified samples. By
virtue of the Pareto definition, the Pareto frontier would
have networks which are over-fitting on the first subset but
not on the second and other networks which are over-fitting
on the second subset but not on the first. However, the
sum of the bias of a machine trained on the first subset and
another machine trained on the second subset would be less
than a machine trained on the union of the two subsets.
Therefore, in a conventional situation, where the whole
training set is used as a single training set, a biased machine
would usually perform better on the training and worse on
the test. In Prob1, this is unlikely to occur since the bias
and the variance are averaged over the entire Pareto-set.
For Prob2, however, it is clear that the performance on the
training is better than on testing as would be expected since
the whole training set is used for training the networks.


We can also observe in Table 1 that the standard devia-
tion on the training set is always smaller than on the test.
This should be expected given that the networks are trained
on two subsets which constitute the entire training set for
Prob1 or on the entire training set as in Prob2.


4.1 Comparisons with other work


We compare our results against backprob[22] and Liu
et.al. [20]. In Table 2, we find that the Pareto-based
ensemble is better than BP and equivalent to Liu et.al.
with smaller ensemble size. Although it is desirable in a
new method to perform better than other methods on some
dataset, the main contribution from our perspective here is
that the decision on which network to include in, or exclude
from, the ensemble is determined automatically by the
definition of the Pareto frontier. Also, the ensemble’s size
is automatically determined.


5 Conclusion


In this paper, we cast the problem of training artificial
neural networks as a multiobjective optimization problem
and use the resultant Pareto frontier to form an ensemble.
The method provides a theoretically-sound approach for
formation of neuro-ensembles while answering three main
questions in the neural network ensemble regarding the
criteria for including a network in, or excluding it from, the


Table 2: Comparing MPANN against other work for the
Australian credit card and diabetes data sets. The three
rates for MPANN and Liu et. al. represent the performance
using simple average, vote, winner-takes-all strategies, re-
spectively.


.


Accuracy Rate on Test Set
Algorithm Australian Diabetes
This paper 0.865,0.862,0.858 0.777,0.779,0.777


Backprob[22] 0.846 0.749
Liu et.al. [20] 0.855,0.857,0.865 0.766,0.764,0.779


ensemble, the Pareto set defines the size of the ensemble,
and the Pareto concept ensures that the network in the
ensemble are different.
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