Identification and Optimization of AB_2 Phases Using Principal Component Analysis, Evolutionary Neural Nets and Multiobjective Genetic Algorithms


Available data for a large number of AB2 compounds were subjected to a rigorous study using a combination of Principal Component Analysis (PCA) technique, multiobjective genetic algorithms, and neural networks that evolved through genetic algorithms. The identification of various phases and phase-groups were very successfully done using a decision tree approach. Since the variable hyperspaces for the different phases were highly intersecting in nature, a cumulative probability index was defined for the formation of individual compounds, which was maximized along with Pauling's electronegativity difference. The resulting Pareto-frontiers provided further insight into the nature of bonding prevailing in these compounds.