Most real-life optimization problems require taking into account not one, but multiple objectives simultaneously. In most cases these objectives are in conflict, i.e. the improvement of some objectives implies the deterioration of others. In single-objective optimization there exists a global optimum, while in the multi-objective case no optimal solution is clearly defined, but rather a set of solutions. In the last decade most papers dealing with multi-objective optimization use the concept of Pareto-optimality. The goal of Pareto-based multi-objective strategies is to generate a front (set) of non-dominated solutions as an approximation to the true Pareto-optimal front. However, this front is unknown for problems with large and highly complex search spaces, which is why meta-heuristic methods have become important tools for solving this kind of problem. Hybridization in the multi-objective context is nowadays an open research area. This article presents a novel extension of the well-known Pareto archived evolution strategy (PAES) which combines simulated annealing and tabu search. Experiments on several mathematical problems show that this hybridization allows an improvement in the quality of the non-dominated solutions in comparison with PAES, and also with its extension M-PAES.