Energy-efficient clustering in mobile ad-hoc networks using multi-objective particle swarm optimization


Abstract

A mobile ad hoc network (MANET) is dynamic in nature and is composed of wirelessly connected nodes that perform hop-by-hop routing without the help of any fixed infrastructure. One of the important requirements of a MANET is the efficiency of energy, which increases the lifetime of the network. Several techniques have been proposed by researchers to achieve this goal and one of them is clustering in MANETs that can help in providing an energy-efficient solution. Clustering involves the selection of cluster-heads (CHs) for each cluster and fewer CHs result in greater energy efficiency as these nodes drain more power than noncluster-heads. In the literature, several techniques are available for clustering by using optimization and evolutionary techniques that provide a single solution at a time. In this paper, we propose a multi-objective solution by using multi-objective particle swarm optimization (MOPSO) algorithm to optimize the number of clusters in an ad hoc network as well as energy dissipation in nodes in order to provide an energy-efficient solution and reduce the network traffic. In the proposed solution, inter-cluster and intra-cluster traffic is managed by the cluster-heads. The proposed algorithm takes into consideration the degree of nodes, transmission power, and battery power consumption of the mobile nodes. The main advantage of this method is that it provides a set of solutions at a time. These solutions are achieved through optimal Pareto front. We compare the results of the proposed approach with two other well-known clustering techniques; WCA and CLPSO-based clustering by using different performance metrics. We perform extensive simulations to show that the proposed approach is an effective approach for clustering in mobile ad hoc networks environment and performs better than the other two approaches. (C) 2011 Elsevier B.V. All rights reserved.