In this paper, we present a simulated annealing algorithm for solving multi-objective simulation optimization problems. The algorithm is based on the idea of simulated annealing with constant temperature, and uses a rule for accepting a candidate solution that depends on the individual estimated objective function values. The algorithm is shown to converge almost surely to an optimal solution. It is applied to a multi-objective inventory problem; the numerical results show that the algorithm converges rapidly. (C) 2009 Elsevier Inc. All rights reserved.