Several important applications require a time-dependent (on-line) in which either the objective function or the problem parameters or both vary with time. Several studies are available in the literature about the use of genetic algorithms for time dependent fitness landscape in single-objective optimization problems. But when dynamic multi-objective optimization is concerned, very few studies can be found. Taking inspiration from Artificial Life (ALife), a strategy is proposed ensuring the approximation of Pareto-optimal set and front in case of unpredictable parameters changes. It is essentially an ALife-inspired evolutionary algorithm for variable fitness landscape search. We describe the algorithm and test it on some test cases.