Metaheuristic optimization frameworks: a survey and benchmarking


This paper performs an unprecedented comparative study of Metaheuristic optimization frameworks. As criteria for comparison a set of 271 features grouped in 30 characteristics and 6 areas has been selected. These features include the different metaheuristic techniques covered, mechanisms for solution encoding, constraint handling, neighborhood specification, hybridization, parallel and distributed computation, software engineering best practices, documentation and user interface, etc. A metric has been defined for each feature so that the scores obtained by a framework are averaged within each group of features, leading to a final average score for each framework. Out of 33 frameworks ten have been selected from the literature using well-defined filtering criteria, and the results of the comparison are analyzed with the aim of identifying improvement areas and gaps in specific frameworks and the whole set. Generally speaking, a significant lack of support has been found for hyper-heuristics, and parallel and distributed computing capabilities. It is also desirable to have a wider implementation of some Software Engineering best practices. Finally, a wider support for some metaheuristics and hybridization capabilities is needed.