Multi-objective optimization is generally a time consuming step of the design process. In this paper, a Pareto based multi-objective genetic algorithm is proposed, which enables a faster convergence without degrading the estimated set of solutions. Indeed, the population diversity is correctly conserved during the optimization process; moreover, the solutions belonging to the frontier are equally distributed along the frontier. This improvement is due to an extension function based on a natural phenomenon, which is similar to a cyclical epidemic which happens every N generations (eN-MOGA). The use of this function enables a faster convergence of the algorithm by reducing the necessary number of generations.