Transient Responses' Optimization by Means of Set-based Multi-objective Evolution


In this article, a novel solution to multi-objective problems involving the optimization of transient responses is suggested. It is claimed that the common approach of treating such problems by introducing auxiliary objectives overlooks tradeoffs that should be presented to the decision makers. This means that, if at some time during the responses, one of the responses is optimal, it should not be overlooked. An evolutionary multi-objective algorithm is suggested in order to search for these optimal solutions. For this purpose, state-wise domination is utilized with a new crowding measure for ordered sets being suggested. The approach is tested on both artificial as well as on real life problems in order to explain the methodology and demonstrate its applicability and importance. The results indicate that, from an engineering point of view, the approach possesses several advantages over existing approaches. Moreover, the applications highlight the importance of set-based evolution.