A Multi-Objective Scatter Search for a Dynamic Cell Formation Problem


Cellular manufacturing system-an important application of group technology (GT)-has been recognized as an effective way to enhance the productivity in a factory. Consequently, a multi-objective dynamic cell formation problem is presented in this paper, where the total cell load variation and sum of the miscellaneous costs (machine cost, inter-cell material handling cost, and machine relocation cost) are to he minimized simultaneously. Since this type of problem is NP-hard. a new multi-objective scatter search (MOSS) is designed for finding locally Pareto-optimal frontier. To demonstrate the efficiency of the proposed algorithm, MOSS is compared with two salient multi-objective genetic algorithms, i.e. SPEA-II and NSGA-II based on some comparison metrics and statistical approach. The computational results indicate the superiority of the proposed MOSS compared to these two genetic algorithms.