Bat-Inspired Optimization Approach for the Brushless DC Wheel Motor Problem


This paper presents a metaheuristic algorithm inspired in evolutionary computation and swarm intelligence concepts and fundamentals of echolocation of micro bats. The aim is to optimize the mono and multiobjective optimization problems related to the brushless DC wheel motor problems, which has 5 design parameters and 6 constraints for the mono-objective problem and 2 objectives, 5 design parameters, and 5 constraints for multiobjective version. Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this newly introduced technique to high nonlinear problems in electromagnetics.