In recent years, a general-purpose local-search heuristic method called Extremal Optimization (EO) has been successfully applied in some NP-hard combinatorial optimization problems. In this paper, we present a novel Pareto-based algorithm, which can be regarded as an extension of EO, to solve multiobjective optimization problems. The proposed method, called Multiobjective Population-based Extremal Optimization (MOPEO), is validated by using five benchmark functions and metrics taken from the standard literature on multiobjective evolutionary optimization. The experimental results demonstrate that MOPEO is competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOPEO can be considered as a viable alternative to solve multiobjective optimization problems.