Connections of Reference Vectors and Different Types of Preference Information in Interactive Multiobjective Evolutionary Algorithms


Abstract

We study how different types of preference information coming from a human decision maker can be utilized in an interactive multiobjective evolutionary optimization algorithm (MOEA). The idea is to convert different types of preference information into a unified format which can then be utilized in an interactive MOEA to guide the search towards the most preferred solution(s). The format chosen here is a set of reference vectors which is used within the interactive version of the reference vector guided evolutionary algorithm (RVEA). The proposed interactive RVEA is then applied to the multiple-disk clutch brake design problem with five objectives to demonstrate the potential of the idea in supporting decision making in optimization problems involving more than three objectives.