In many applications one is faced with the problem that multiple objectives have to be optimized at the same time. Since typically the solution set of such multi-objective optimization problems forms a manifold which cannot be computed analytically, one is in many cases interested in a suitable finite size approximation of this set. One widely used approach is to find a representative set that maximizes the dominated hypervolume that is defined by the images in objective space of these solutions and a given reference point.
In this paper, we propose a new point-wise iterative search procedure, Hypervolume Directed Search (HVDS), that aims to increase the hypervolume of a given point in an archive for bi-objective unconstrained optimization problems. We present the HVDS both as a standalone algorithm and as a local searcher within a specialized evolutionary algorithm. Numerical results confirm the strength of the novel approach.