Recently, evolutionary algorithm based on decomposition (MOEA/D) has been found to be very effective and efficient for solving complicated multiobjective optimization problems (MOPs). However, the selected differential evolution (DE) strategies and their parameter settings impact a lot on the performance of MOEA/D when tackling various kinds of MOPs. Therefore, in this paper, a novel adaptive control strategy is designed for a recently proposed MOEA/D with stable matching model, in which multiple DE strategies coupled with the parameter settings are adaptively conducted at different evolutionary stages and thus their advantages can be combined to further enhance the performance. By exploiting the historically successful experience, an execution probability is learned for each DE strategy to perform adaptive adjustment on the candidate solutions. The proposed adaptive strategies on operator selection and parameter settings are aimed at improving both of the convergence speed and population diversity, which are validated by our numerous experiments. When compared with several variants of MOEA/D such as MOEA/D, MOEA/D-DE, MOEA/D-DE+PSO, ENS-MOEA/D, MOEA/D-FRRMAB and MOEA/D-STM, our algorithm performs better on most of test problems.