Related to the safety of public lives and property in the lower area of reservoirs, flood control is a priority for most large reservoirs. Considering both dam safety and downstream flood control, reservoir flood control is a multi-objective problem (MOP). To meet the needs of irrigation and generating electricity after the flood, the decision maker usually has his/her preferred final scheduling water level. To deal with this kind of MOP with user-preference information, we incorporate user-preference information into the framework of MOEA/D (multi-objective evolutionary algorithm-based decomposition). The widely used preference information is mainly composed of reference points and preference directions. Compared with the Pareto dominance-based multi-objective evolutionary algorithms (MOEAs), MOEA/D can naturally include two kinds of preference information since MOEA/D is directly based on the reference point and the preference direction. The weight vector of a subproblem in MOEA/D is just its preference. Aiming to obtain uniformly distributed solutions on the objective space, one of innovation points in this paper is using modified Tchebycheff decomposition instead of Tchebycheff decomposition as the decomposition method. To focus the search on the interesting regions of decision maker, the other innovation point in this paper is to integrate biased subproblem (weight vector) adjustment into the framework of MOEA/D. The distribution of subproblems (weight vectors) are adjusted periodically so that the subproblems are re-distributed adaptively to search the interesting regions. Some subproblems, which are far away from the preference regions, are deleted. And then some new subproblems, which are expected to search the preference regions, are added into the current evolutionary population. The efficiency and the effectiveness of the proposed algorithm are assessed through multi-objective reservoir flood control problem and two- to ten-objective test problems.