Genetic Algorithms with Dynamic Niche Sharing for Multimodal Function Optimization


Abstract

Genetic algorithms utilize populations of individual hypotheses that converge over time to a single optimum, even within a multimodal domain. This paper examines methods that enable genetic algorithms to identify multiple optima within multimodal domains by maintaining population members within the niches defined by the multiple optima. A new mechanism, dynamic niche sharing, is developed that is able to efficiently identify and search multiple niches (peaks) in a multimodal domain. Dynamic niche sharing is shown to perform better than two other methods for multiple optima identification, standard sharing and deterministic crowding.