Preference Representation Using Gaussian Functions on a Hyperplane in Evolutionary Multi-Objective Optimization


Many-objective optimization has attracted much attention in evolutionary multi-objective optimization (EMO). This is because EMO algorithms developed so far often degrade their search ability for optimization problems with four or more objectives, which are frequently referred to as many-objective problems. One of promising approaches to handle many objectives is to incorporate the preference of a decision maker (DM) into EMO algorithms. With the preference, EMO algorithms can focus the search on regions preferred by the DM, resulting in solutions close to the Pareto front around the preferred regions. Although a number of preference-based EMO algorithms have been proposed, it is not trivial for theDMto reflect his/ her actual preference in the search. We previously proposed to represent the preference of the DM using Gaussian functions on a hyperplane. The DM specifies the center and spread vectors of the Gaussian functions so as to represent his/ her preference. The preference handling is integrated into the framework of NSGA-II. This paper extends our previous work so that obtained solutions follow the distribution of Gaussian functions specified. The performance of our proposed method is demonstrated mainly for benchmark problems and real-world applications with a few objectives in this paper. We also show the applicability of our method to many-objective problems.