This paper presents an evolutionary algorithm for generic multiobjective design optimization problems. The algorithm is based on nondominance of solutions in the objective and constraint space and uses effective mating strategies to improve solutions that are weak in either. Since the methodology is based on nondominance, scaling and aggregation affecting conventional penalty function methods for constraint handling does not arise. The algorithm incorporates intelligent partner selection for cooperative mating. The diversification strategy is based on niching which results in a wide spread of solutions in the parametric space. Results of the algorithm for the design examples clearly illustrate the efficiency of the algorithm in solving multidisciplinary design optimization problems.