Multiobjective Optimization of Slotted Electrical Discharge Abrasive Grinding of Metal Matrix Composite Using Artificial Neural Network and Nondominated Sorting Genetic Algorithm


Abstract

The alternative use of electrical discharge grinding and abrasive grinding, which is applied with the application of slotted wheel named as slotted electrodischarge abrasive grinding, is much suitable for machining of metal matrix composites. But the selection of process parameters is a difficult task due to the complexity of the process. The aim of this study is to optimize the process parameters of slotted electrodischarge abrasive grinding process using a combined approach of artificial neural network and nondominated sorting genetic algorithm II. The artificial neural network architecture has been trained and tested with experimental data, and then the developed model is coupled with nondominated sorting genetic algorithm II to develop a hybrid approach of artificial neural network-nondominated sorting genetic algorithm II, which is used for optimization of process parameters. During experimentation, the effect of current, pulse on-time, pulse off-time, wheel speed and grit number has been studied on material removal rate and average surface roughness (Ra). The results have shown that prediction capability of artificial neural network model is within the range of acceptable limits. The developed hybrid approach of artificial neural network-nondominated sorting genetic algorithm II gives optimal solution with correlation coefficient of material removal rate and Ra as 0.9979 and 0.9982, respectively.