Feature-based classifier ensembles for diagnosing multiple faults in rotating machinery


Recent researches in fault classification have shown the importance of accurately selecting the features that have to be used as inputs to the diagnostic model. In this work, a multi-objective genetic algorithm (MOGA) is considered for the feature selection phase. Then, two different techniques for using the selected features to develop the fault classification model are compared: a single classifier based on the feature subset with the best classification performance and an ensemble of classifiers working on different feature subsets. The motivation for developing ensembles of classifiers is that they can achieve higher accuracies than single classifiers. An important issue for an ensemble to be effective is the diversity in the predictions of the base classifiers which constitute it, i.e. their capability of erring on different sub-regions of the pattern space. In order to show the benefits of having diverse base classifiers in the ensemble, two different ensembles have been developed: in the first, the base classifiers are constructed on feature subsets found by MOGAs aimed at maximizing the fault classification performance and at minimizing the number of features of the subsets; in the second, diversity among classifiers is added to the MOGA search as the third objective function to maximize. In both cases, a voting technique is used to effectively combine the predictions of the base classifiers to construct the ensemble output. For verification, some numerical experiments are conducted on a case of multiple-fault classification in rotating machinery and the results achieved by the two ensembles are compared with those obtained by a single optimal classifier.