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Abstract – This study introduces a hybrid multi-
objective evolutionary algorithm (MOEA) for the 
optimization of aircraft control system design. 
The strategy suggested here is composed mainly of two 
stages. The first stage consists of training an Artificial 
Neural Network (ANN) with objective values as inputs 
and decision variables as outputs to model an 
approximation of the inverse of the objective function 
used. The second stage consists of a local improvement 
phase in objective space preserving objectives 
relationships, and a mapping process to decision 
variables using the trained ANN. Both the hybrid 
MOEA and the original MOEA were applied to an 
aircraft control system design application for 
assessment.        

1 INTRODUCTION 

Evolutionary Algorithms are stochastic approximation 
techniques based on the concept of “survivals of the 
fittest”. These approximation techniques are especially 
well tuned for solving multiobjective optimization 
problems due to their ability to explore vast solution 
spaces and search from a family of candidate solutions 
rather than from just a single point. However, these 
evolutionary techniques are less suited to fine-tuning 
structures that are already close to optimal solutions. As 
stated by Davis [5] and re-illustrated by Knowles [13], for 
improving optimization results achieved by genetic 
algorithms one should: “Hybridize where possible”.   

Local search processes conventionaly hybridized with 
evolutionary algorithms are most widely structured as 
follows: 

 
1-Local perturbation of the decision variables of a certain 
individual in a local search range, moving it to another 
point in an adaptive or fixed size neighbourood in the 
decision variable space. 

 
2-Evaluating the performance of the new individual by 
calculating the objective function. 

 
3-Either replacing the old individual by the new one, or 
rejecting the new individual based on a certain acceptance 
criteria depending on the local search strategy (e.g. hill 
climbing, tabu search, simulated annealing). 

In this work a new local search procedure is 
introduced which aims to improve the solutions achieved 
by a multi- objective genetic algorithm (MOGA) [8] 

directly in the objective space. A vaguely similar 
approach was introduced by [10] and applied to the ZDT 
bi-objective benchmark problems [16]. In [10] the main 
objective was to accelerate the search of MOEA by 
approximating the objective function using NN 
techniques. In Evolutionary  Multiobjective Optimization 
(EMO) the bi-objective case is by far the most heavily 
studied. EMO applications, by contrast, are frequently 
more ambitious, with the number of treated objectives [4]. 
Study reveals [14 p147] that conclusions drawn from bi-
objective analysis cannot be generalised to higher 
numbers of conflicting objectives, hence, the study 
presented in this work is dedicated to the investigation of 
“Many objective optimization” problem.  

Real-world engineering design problems often involve 
the satisfaction of multiple performance measures, or 
objectives, which should be addressed simultaneously. 
Automotive and aerospace examples provide illustrations 
of some typical design challenges and demonstrate that 
these problems often involve a large number of objectives 
[7]. The local search suggested in this work is designed 
for addressing many objective (more than 2) optimization 
problems. The suggested method can be easily coupled 
with a progressive preference articulation strategy, in 
order to focus the search into specific regions of interests 
to the decision maker, by modifying the values of the 
objectives in an informed way in the right direction 
towards the goal values.  The use of progressive 
preference articulation is a highly commendable strategy 
for enhancing the search and coping with many-objectives 
optimization. Improving solutions in objective space 
requires an inverse mapping of objective values into 
decision variable values, known as reverse engineering. 
This can be done by introducing the inverse of the 
objective function used in the MOGA. Unfortunately this 
is not feasible when dealing with complex objective 
functions, most simulation based objective functions and 
when the objective function is treated as a black box 
function. On the other hand, in ideal situations where the 
objective function is reasonably simple and available, 
inverting the objective function is a process that increases 
the computational cost of the algorithm, and therefore is 
not prefered.   

The use of an inverse artificial neural network, trained 
with the objective values as inputs and the corresponding 
decision variables as outputs, consequently arose. In the 
proposed hybrid algorithm, a multi-layer perceptron 
(MLP) has been adopted for the ANN and trained with 
the exact objective and decision variable values calculated 
using the exact objective functions.  
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2 NEURAL NETWORK 

Neural Networks (NN) are sophisticated analytical 
techniques for modelling functions. It is a powerful 
approach to modelling stochastic and noisy patterns of 
data in order to produce predicted values of unknown 
systems. The NN needs to be trained to achieve desirable 
predictions and model complex functions as closely as 
possible.  The process of teaching the NN consists of 
feeding it with samples of data and manipulating 
weighting variables by adjusting their values and 
minimizing prediction errors. When training a NN, it is 
vital to ensure well-spread, meaningful and problem 
defining data. Abundance of data is an essential point for 
achieving well-trained NN, although unfortunately data 
abundance is a major problem in several applications. 
Multilayer perceptrons (MLPs) are feedforward neural 
networks trained with the standard backpropagation 
algorithm [1][18]. They are supervised networks that 
require training with exact collected data. MLPs are 
widely used in the field of pattern classification and 
recognition. One of the drawbacks of ANN is the lack of 
standardization in choosing the number of hidden layers 
and hidden neurons per layer, which constitutes the 
architecture of a NN (see fig 1). 

 

Figure 1: Multi Layer Perceptron 
 
Hybridizing NN with the MOGA is very useful for 

approximating expensive objective functions. In the 
context of this work, NN is used in a supplementary local 
improvement step to map objective values back to 
decision variable space by approximating the inverse of 
the objective function. The ability to map objective 
vectors to decision variables will make it possible to 
search in objective space for desired combinations of 
objective values. 

 
 
 
 
 
 

3 APPLICATION TO AIRCRAFT 
CONTROL SYSTEM DESIGN  
 

The classical problem of optimizing an aircraft control 
system design was addressed to test the performance of 
the proposed optimization strategy. The importance, 
standardization, and abundant number of criteria to be 
optimized included in this classical problem were the 
main reasons for choosing this real world application as a 
benchmark for testing the proposed hybrid MOGA. In 
this section a simplified illustration of an aircraft 
dynamical model is shown and a common understanding 
of the multi- objective optimization problem is illustrated. 

Figure 2 below illustrates the aircraft body in 3D 
Cartesian space. The longitudinal, or roll, axis is denoted 
X, the lateral, or pitch, axis is denoted Y and the vertical, 
or yaw, axis is denoted Z. 
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Figure 2: Three main axes of  the body of an Aircraft 

 
The motion of an aircraft in the air is described in 

terms of these 3 axes.  During its motion, the aircraft 
makes a combination of changes in both angles and rates 
of angular velocities, therefore its dynamical model can 
be represented by an equation combining the main 
objectives involved in the motion of the aircraft.   This 
equation is highly non-linear across the operating 
envelope of the aircraft, but it can be linearized for a 
small deviation around the equilibrium trajectory.  
 
A simplified dynamical model of an aircraft motion can 
be represented by a fourth order linear equation  [15].  
The correpsonding state equation (1) is: 
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where the state vector, x ,is: 
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Control u vector is: 
 

u=












δ
δ

r

a  

The control v
 

where up is th
and   C and K
 
C=  
 
 
By substitutin
 

The eigenva
stability prop
In the contex
constituted t
actual dyn
characteristic
major issues 
in this work
optimized is 
vector).  
 
The other con
-The characte
• the spira
• the damp
• the damp
• the dutch
-The required
to the millitar
• )1( sφ ≥ 
• )8.2( sφ
• Minimise
 
For further d
the variables 

4 THE PR

The main 
is to tackle th
objectives w
harmony, ind
improve stan
genetic algo
evolutionary 
introducing a

cycle. The incorporation of local search is designed to 
fine tune the population of solutions directly in the 
objective space rather than the decision variable space. 
When exploring solutions in the objective space,  
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OPOSED HYBRID ALGORITHM 

goal of the proposed hybrid algorithm (fig 3)  
e problem of optimizing many (more than 2) 
hose various relationships demonstrate 

ependency and conflict. The objective is to 
dard results achieved by the multiobjective 
rithm in particular, and any global 
approach in general. This is achieved by 
 local search process inside the evolutionary 

movements should be well structured and delicate to 
avoid leaping into unfeasible regions, thereby “fine-
tuning” the solutions, leaving the process of stochastic 
exploration of space to the evolutionary global search of 
the MOGA.  A feedforward artificial neural network was  
incorporated in the evolutionary process of the MOGA. 
The ANN was trained to represent the inverse 
relationship; i.e. the exact objective values, resulting from 
the objective function evalutions in the MOGA, are used 
as inputs to the ANN coupled with their corresponding 
decision variables as outputs.   
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Figure 3: The Hybrid MOGA 

 
 The ANN was deployed later on to map new objective 

vectors highlighted by the local search into corresponding 
decision variables, with a minimum acceptable error of 
prediction. 

4.1 Inverse ANN Training 
Unless using meta-modeling techniques, generally, at 
every generation of a genetic algorithm, regardless of its 
sophistication and complexity, the objective function is 
calculated. This is done to assess the performance of the 
current population of solutions, and assign fitness scores 
to each individual based on the objective function results.  
Consequently the idea of training an ANN with exact data 
(objective vectors and decision variables) to model the 
inverse of the objective function has emerged, knowing 
that adding an ANN training process would not increase 
the complexity nor the computational costs of the 
algorithm, as the process would consist of straight 
forward, reasonably simple, mathematical calculations.  



In this work, a multi layer perceptron (MLP) [1] with a 
single hidden unit, 30 hidden neurons, 8 input units 
denoting each of the 8 objectives tackled and 7 output 
units designated to the corresponding decision variables, 
was deployed (fig 4). The number of hidden neurons was 
set to 30, and was experientially demonstrated to be the 
most suitable and avoiding the problem of overfitting 
models due to high unsuitable ANN complexity for the 
problem considered in this work. The standard 
backpropagation learning algorithm was adopted in the 
learning process and weight adjustment. This training 
phase takes place at every generation of the MOGA until 
the process is half through the whole optimization process 
in terms of the predetermined number of generations. In 
order to ensure a diverse set of training data, the ANN 
was trained with the entire objective vectors as inputs and 
their corresponding decision variables vectors as outputs. 
 

 

It was noticed that training the ANN with 50 
generations of data (objectives and DV), when running 
the MOGA for 100 generations, was enough to reach a 
reasonably small error in the prediction ability of the 
ANN. Due to the stochastic nature of the MOGA, we are 
more confident that the data fed to the ANN for training 
purposes is well spread and representative assuming no 
genetic drift.  

4.2 Local Improvement  
After having trained the ANN for a certain sufficient 
number of generations, the training process stops and the 
algorithm switches to the validation mode. At each of the 
remaining generations, a local improvement operator is 
applied to the current objective vectors. The introduced 
local improvement phase is commited to introducing 
overall local improvements in terms of all objectives as 
much as possible, i.e. without detriment to some 
objectives, especially when trying to improve one of two 
or more competing or harmonious objectives. 

This is done by visually (using parallel coordinates 
[9][11] or scatterplot matrices [3]) or quantitively (e.g. 
Kendall sample correlation statistic [12]) determining a 
priori the relationships between the objectives and later 
on performing small logical and feasible improvements 
while preserving the relationship between the objectives 
(e.g. see fig.5). In other words, the pair-wise relationships 
existing between pairs of objectives were identified 
during the first half of the optimization process where the 
training process of the neural network takes place. 
Relationships such as harmony, independency and 
conflict between pairs of objectives are identified a priori 
the start of the local search process.  

Decision Variables (DV) Set 

Figure 4: Training the ANN with exact data  
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Figure 5: Example of Objectives relationship 
 
Being able to easily integrate progressive preference 

articulation is a major benefit; the local search process 
might then be permitted to improve one of two competing 
objectives while deteriorating the performance of the 
competing one by an acceptable amount reflecting the 
decision maker’s preferences. 

 
The hybridization interface between the newly 

implemented local search technique and the MOGA is 
located prior to the selection for recombination and the 
recombination steps. This choice of location is designed 
to make any beneficial effects of the local search operator 
available to the genetic selection and recombination 
process. Consequently, the local search fine-tunes the 
parents of the genetic population instead of the offspring; 
this ideally should then produce fitter offspring. This 
concept has its analogy with the heredity mechanism in 
human biology; healthy parents are more probable to 
produce healthy offspring while parents suffering from a 
certain disease are more likely to transmit the disease or 
points of weakness by heredity to their descendants and 
thus produce weaker offspring. 

Harmony Conflict Independency



The local improvement process is a well-defined and 
structured mechanism. The functionality of the local 
improvement process will be illustrated briefly using an 8 
objectives optimization problem. The local search starts 
dealing with independent objectives that are not 
influenced by the improvement or the deterioration of 
other objectives. Each independent objective is treated 
separately, and the local search sorts the objective 
function vectors into descending order in terms of the 
designated objective function value, noting that a 
minimization problem is being considered (see fig 6).  

 

 
After sorting the objective vector in terms of the 

independent obj 7, the first row in the matrix would 
consequently consist of the combination of objective 
values containing the worst (highest) value in terms of obj 
7. The improvement process takes place in terms of that 
objective by shifting each value of obj 7 to the next best 
value, in other words, the worst value becomes the second 
worst, 4th worst  5th  worst and so on (for example 
from fig 6 (in the sorted matrix in term of obj7), v3 under 
obj 7 becomes v1, v1  v99 ...etc). In this way, nind – 1 
shifts takes place (nind = number of individuals), and end 
up only improving the best solution (from fig 6, v2 under 
obj7) by minimizing it furthermore by a small distance 
concluded from statistical information about the 
distribution and the clustering of solutions and the 
average, the minimum and maximum  distance between 
neighbouring solutions in term of a specific objective. 
When shifting values, repetitive values are taken into 

consideration, and therefore all equal values are replaced 
by the next best value. 

After having improved independent objectives, 
cooperating and competing objectives are then improved 
by applying similar “descending sort and improve” 
procedure while preserving relationships between the 
objectives, and taking into considerations the decision 
maker priorities. 

4.3 Objective Vectors to Decision Variables mapping 
After the local improvement in objective space takes 
place, we end up with a new objective vector locally 
improved compared to the original objective vector that 
resulted from the MOGA optimization process. The next 
step is to map the resulting objective vectors to 
corresponding decision variables vectors to be passed 
back to the global search process of the MOGA for 
recombination and mutation. This mapping process will 
be applied by feeding the new objective vector to the 
previously trained ANN, which in its turn will predict 
reasonably accurate corresponding decision variables 
(fig.7).  

 

Figure 6: Sorting the objective vector in terms of obj7
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Figure 7: Objective vectors to Decision vectors Mapping 

5 Results 

The MOGA hybridized with the newly implemented local 
search technique and the inverse neural network training 
process was tested against the multiobjective optimization 
problem of aircraft control system design. The intention 
was to assess the performance of the hybrid algorithm, 
also called memetic algorithm, and compare its results 
with those produced by the MOGA. The MOGA and the 
hybrid genetic algorithm had the following basic common 
configuration:  The genetic population size was set to 100 
individual per generation. Concatenation of real number 
decision variables was the suitable choice to encode the 
problem under investigation. In addition a simple non-
elitist strategy was used for the selection for survival 
process (i.e. no generational gap) and a Pareto based 
ranking along with stochastic universal sampling was 
used for the selection and recombination process. For the 
recombination process, a single-point two parents 
crossover with a probability of 0.8 alongside a Gaussian 
mutation was implemented. Due to the stochastic nature 
of the evolutionary strategies, a well-based judgment 
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concerning the performance of a specific algorithm 
cannot be stated unless the whole optimization process is 
repeated a number of times. In the case of this work, each 
algorithm was subjected to 20 iterations, each running for 
100 generations.  
 
In the following, statistical results concerning the best 
non-dominated solutions achieved by the 2 optimization 
techniques are discussed. The binary ε-indicator [17] was 
deployed to assess the quality of the non-dominated 
solutions achieved by the memetic algorithm and contrast 
it with the quality of the best solutions achieved by the 
MOGA for each of the 20 runs executed. This 
performance metric computes the minimum epsilon value 
required for all solutions in an approximation set A in 
order to not to be worse than any solution in another 
approximation set B. Noting that the binary ε-indicator is 
an asymmetric operator, i.e. “EpsilonMetric 
(MemeticData, MogaData) ≠ EpsilonMetric (MogaData, 
MemeticData)“, it was constantly clear that the minimum 
ε value required for the non dominated solutions achieved 
by the memetic algorithm to dominate all the best 
solutions achieved by the MOGA was much more smaller 
than the minimum ε value required for the non dominated 
solutions achieved by the MOGA to dominate the 
memetic solutions.  
 

The out-performance of the memetic algorithm was then 
articulated in terms of the resulting mean of the ε values 
achieved for the 20 non-dominated sets of solutions 
achieved at each run of the 2 algorithms. The significance 
of the experiential result is then assessed using 
randomization testing. This is a simple, yet effective, 
technique that does not rely on any assumptions 
concerning the attributes of the underlying processes. The 
central idea of the method is that, if the observed result 
has arisen by chance, then this value will not appear 
unusual in a distribution of results obtained through many 
random relabellings of the samples [14]. 
 

Figure 8: Statistical Significance of the outperformance of the 
memetic algorithm 

 
In figure 8 the randomization testing of the mean of the 
binary ε-indicator results are illustrated to depict any 
statistical significance of the results. The grey histogram 
represents the randomization results whilst the real 
observed result is illustrated by the black circle. Generally 
it is visually remarkable if the achieved results are 
statistically significant or not, although sometimes closer 

analysis might be needed and minor improvements can be 
inferred. The mean (or alternatively median) values of the 
minimum ε values required for algorithm A to outperform 
algorithm B according to “ε-Metric(A,B)” (where A 
denotes the memetic algorithm, B denotes MOGA) was 
used as a the test statistic. For 1000 iterations, the non 
dominated solutions resulting from the MOGA and the 
memetic algorithm were combined, randomly relabeled 
and assigned to A and B in “ε-Metric(A,B)”. From figure 
8, it was very clear that the observed remarks concerning 
the outperformance of the memetic algorithm over the 
MOGA were extremely significant. The real observed ε 
was depicted by the black circle in figure 8, and was 
obviously remarkable and distinguishable from the 
randomization results depicted by the grey histogram. 
 

In the remaining part of this section, further results 
visualizations and testing are illustrated. In fig 9 the 
average values attained for each of the 8 objectives 
considered, at every run of the MOGA (dotted line) and 
the hybrid MOGA (stars line) are illustrated. The average 
values attained for each objective at the end of each 100 
generations constituting a single run of an algorithm 
reflects the global performance of the underlying 
optimization technique. Noting that the problem under 
consideration is a minimization problem, it was very clear 
that the introduced hybrid algorithm outperformed the 
MOGA in terms of 7 out of 8 objectives. 
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Figure 9: Average values of the objectives 
 
On the other hand, assessing the minimum values 

achieved for the objectives at each of the 20 runs of the 2 
algorithms, it is notable that the minimum values achieved 
for the 2 conforming objectives (2 and 8) has beaten the 
values acheived by the MOGA at every run (fig 10). 
Similar results are seen for objective 4. Results related to 
objective 7 were favouring the MOGA, while the 
remaining objectives were globally equivalent in term of 
minimum values reached in both algorithms. 



Assessing the minimum and maximum values 
achieved for the objectives illustrates the search range of 
the algorithms and pinpoint the best globally non-
dominated values achieved for these objectives .  
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In figure 11 the maximum values (i.e worst) of the 

non-dominated solutions attained by both algorithms are 
shown. It is remarkable that the hybrid MOGA has 
shiffted downwards the whole search range of objectives 
1,2,3,4,5, and in other words has improved the search 
range by lowering its ceiling values. MOGA resulted 
lower maximum values in terms of objective 8. 
Intersecting  performances were noted in terms of 
objective 7, while exactly the same maximum values were 
attained for objective 6 by both algorithms. 

The performance of the introduced hybrid MOGA can 
be significantly deemed a success and an amelioration to 
the standard results achieved by the MOGA for the 
problem of 8 objective optimization of the design of an 
aircraft  lateral control system. 

 

Figure 10: minimum values of the objectives 
 
The search range of the majority of the objectives was 

improved, and the average values achieved for 7 out of 8 
objectives were outperforming the results of the MOGA.  

Furthermore, the non-dominated solutions were 
extracted from the set of non-dominated solutions 
achieved by the Hybrid MOGA and the MOGA.  The 
statistical results illustrated in figure 12 show that at each 
run of the algorithms, at least 80% of the non-dominated 
solutions acheived by the hybrid MOGA were also non-
dominated by the best results acheived by the MOGA. 
Furthermore,  mostly less than 40% of the non-dominated 
solutions acheived by the MOGA were non-dominated 
compared to the values resulting from the hybrid 
approach. 

 

Figure 11: maximum values of the objectives 
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6 Conclusions 

A local improvement process in objective space was 
hybridized with the multiobjective genetic algorithm. An 
inverse artificial neural network was trained in the global 
search process of the MOGA, and was deployed to model 
the inverse objective function of an aircraft control 
system design problem to map objective values to 
decision variable space.  The results achieved by the 
introduced hybrid MOGA are deemed a global 
improvement in terms of 7 out of 8 objectives, and 
constantly at least 80 % of the best solutions produced by 
the hybrid MOGA were non-dominated by the best 
solutions produced by the MOGA. Most of the research 
carried in the field of multiobjective optimization focuses 
on bi-objective problems. In real life applications, the 
number of objectives to optimize simultaneously can be 
much higher. Further research investigating the 
optimization of high numbers of objectives is surely 



needed and beneficial. On the other hand, artificial neural 
networks are highly earning interest and are widely used 
and deemed advantageous in several application domains. 
Further research concerning the improvement of ANN 
performances, investigating sophisticated learning 
algorithms and architectures is certainly profitable. 
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