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Abstra
t. A halftoning te
hnique that uses a simple GA has proven

to be very e�e
tive to generate high quality halftone images. Re
ently,

the two major drawba
ks of this 
onventional halftoning te
hnique with

GAs, i.e. it uses a substantial amount of 
omputer memory and pro-


essing time, have been over
ome by using an improved GA (GA-SRM)

that applies geneti
 operators in parallel putting them in a 
ooperative-


ompetitive stand with ea
h other. The halftoning problem is a true

multiobje
tive optimization problem. However, so far, the GA based

halftoning te
hniques have treated the problem as a single obje
tive op-

timization problem. In this work, the improved GA-SRM is extended to

a multiobje
tive optimization GA to generate simultaneously halftone

images with various 
ombinations of gray level and spatial resolution.

Simulation results verify that the proposed s
heme 
an e�e
tively gener-

ate several high quality images simultaneously in a single run redu
ing

even further the overall pro
essing time.

Keywords: multiobje
tive geneti
 algorithm, multiobje
tive optimiza-

tion, halftoning problem, 
ooperative-
ompetitive geneti
 operators.

1 Introdu
tion

The multiobje
tive nature of most real-world problems makes multiobje
tive

optimization (MO) a very important resear
h topi
. Evolutionary algorithms

(EAs) seem parti
ularly desirable to solve MO problems be
ause they evolve

simultaneously a population of potential solutions to the problem in hand, whi
h

allows to sear
h for a set of Pareto optimal solutions 
on
urrently in a single run

of the algorithm. Many authors have been in
reasingly investigating MO using

EAs in re
ent years and the number of appli
ations has been rapidly growing

[1{4℄. In the signal pro
essing area, appli
ation methods using EAs, espe
ially

geneti
 algorithms (GAs), are also steadily being developed[5℄.

In this work, we espe
ially fo
us on the image halftoning te
hnique using GAs.

Kobayashi et al.[6, 7℄ use a GA to generate bi-level halftone images with quality

higher than 
onventional te
hniques su
h as ordered dithering, error di�usion

and so on[8℄. However, it uses a substantial amount of 
omputer memory and

pro
essing time[6, 7℄. Re
ently, Aguirre et al.[9, 10℄ have proposed an improved

GA (GA-SRM) to over
ome these two drawba
ks of the 
onventional halfton-

ing te
hnique with GAs. GA-SRM is based on an empiri
al model of GA that
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applies geneti
 operators in parallel putting them in a 
ooperative-
ompetitive

stand with ea
h other[11{14℄. The improved GA-SRM, extended to the halfton-

ing problem, 
an generate high quality images a
hieving a 98% redu
tion in the

population size and an 85%-70% redu
tion in pro
essing time.

The halftoning problem is a true MO problem in whi
h high gray level and

high spatial resolution must be sought to a
hieve high quality images. The GA

based halftoning te
hniques mentioned above, however, treat the problem as a

single obje
tive optimization problem and 
an generate only one image at a time.

In this work, the improved GA-SRM[9, 10℄ is extended to a multiobje
tive

optimization GA to generate simultaneously halftone images with various 
ombi-

nations of gray level and spatial resolution. The simulations results show that the

proposed s
heme 
an e�e
tively generate several images in a single run redu
ing

even further the overall pro
essing time.

2 Halftoning Problem with GAs

Digital halftoning, a key 
omponent of an image display prepro
essor, is the

method that 
reates the illusion of 
ontinuous tone pi
tures on printing and

displaying devi
es that are 
apable of produ
ing only binary pi
ture elements.

The fast growing 
omputer and information industry requires ea
h time higher

image quality and demands higher resolution devi
es. The halftoning algorithms


apable of delivering the appropriate image quality for su
h devi
es are also

needed.

Kobayashi et al.[6, 7℄ use a GA to generates bi-level halftone images with

quality higher than traditional te
hniques su
h as ordered dithering, error dif-

fusion and so on[8℄. An input gray tone image of R gray levels is divided into

non-overlapping blo
ks of n � n pixels, and then the 2-dimensional optimum

binary pattern for ea
h image blo
k is sear
hed using a GA[6, 7℄. The GA uses

a n � n 2-dimensional binary representation for the individuals. Crossover in-

ter
hanges either sets of adja
ent rows or 
olumns between two individuals and

mutation inverts bits with a very small probability per bit after 
rossover sim-

ilar to 
anoni
al GA[15, 16℄. Individuals are evaluated for two fa
tors required

to obtain visually high quality halftone images. (i) One is high gray level res-

olution (lo
al mean gray levels 
lose to the original image), and (ii) the other

is high spatial resolution (appropriate 
ontrast near edges)[6, 7℄. The gray level

resolutions error is 
al
ulated by

E

m

(x

(t)

i

) =

1

n

2

X

(j;k)2blo
k

j p(j; k)� p̂

b

(j; k) j (1)

where x

(t)

i

is i-th individual at t-th generation, p(j; k) is the gray level of the

(j; k)-th pixel in the original image blo
k, and p̂

b

(j; k) is the estimated gray

level asso
iated to the (j; k)-th pixel from the generated binary blo
k. To obtain

p̂

b

(j; k), a referen
e region around the (j; k)-th binary pixel (for example 5 � 5

pixels) is 
onvoluted by a gaussian �lter that models the 
orrelation among

pixels. On the other hand, the spatial resolution error is 
al
ulated by
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where �p

s

(j; k) is the lo
al mean gray level around the (j; k)-th pixel (within a

referen
e region) in the original image blo
k, and q(j; k) is the binary level of

the (j; k)-th pixel in the generated image blo
k. These two errors are 
ombined

into one single obje
tive fun
tion as

e(x

(t)

i

) = !

m

E

m

(x

(t)

i

) + !




E




(x

(t)

i

) (3)

where !

m

and !




are the weighting parameters for gray level and spatial reso-

lution errors, respe
tively. The individuals' �tness is assigned by

f(x

(t)

i

) = e(x

(t)

W

)� e(x

(t)
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) (4)

where e(x

(t)

W

) is the 
ombined error of the worst individual at t-th generation. The

high image quality that 
an be a
hieved is the method's major strength. However,

it uses a substantial amount of 
omputer memory and pro
essing time. High

quality, visually satisfa
tory, halftone images are obtained with 200 individuals

and 200 generations (totally 40,000 evaluations) per image blo
k[6, 7℄.

Re
ently, Aguirre et al.[9, 10℄ have proposed an improved GA (GA-SRM)

to over
ome these two drawba
ks of the 
onventional halftoning te
hnique with

GAs. GA-SRM is based on an empiri
al model of GA that applies geneti
 op-

erators in parallel putting them in a 
ooperative-
ompetitive stand with ea
h

other[11{14℄. GA-SRM is applied to the halftoning image problem using geneti


operators properly modi�ed for this kind of problem(see 4.3). GA-SRM with

parallel adaptive dynami
 blo
k (ADB) mutation impressively redu
es pro
ess-

ing time and 
omputer memory to generate high quality images. For example,

GA-SRM with qualitative ADB using a 2 parent 4 o�spring 
on�guration needs

about 6,000-12,000 evaluations per image blo
k, depending on the input image,

to obtain results similar to those a
hieved by the 
onventional image halftoning

te
hnique using GAs. These data represent a 98% redu
tion in the population

size and an 85%-70% redu
tion in pro
essing time.

3 Multiobje
tive Optimization (MO)

MO methods deal with �nding optimal solutions to problems having multiple

obje
tives. Let us 
onsider, without loss of generality, a minimization multiob-

je
tive problem with M obje
tives:

minimize g(x) = (g

1

(x); � � � ; g

M

(x)) (5)

where x 2 X is a solution ve
tor in the solution spa
e X, and g

1

(�); � � � ; g

M

(�)

the M obje
tives to be minimized. Key 
on
epts used in determining a set of

solutions for multiobje
tive problems are dominan
e, Pareto optimality, Pareto

set, and Pareto front. These 
on
epts 
an be de�ned as follows.

A solution ve
tor y 2 X is said to dominate a solution ve
tor z 2 X,

denoted by g(y) � g(z), if and only if y is partially less than z, i.e., 8j 2

f1; � � � ;Mg; g

j

(y) � g

j

(z) ^ 9j 2 f1; � � � ;Mg : g

j

(y) < g

j

(z).
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A solution ve
tor x 2 X is said to be Pareto optimal with respe
t to X if it

is not dominated by any other solution ve
tor, i.e., :9 x

0

2 X : g(x

0

) � g(x).

The presen
e of multiple obje
tives, usually 
on
i
ting among them, gives rise

to a set of optimal solutions. The Pareto optimal set is de�ned as:

P = fx 2Xj:9 x

0

2X : g(x

0

) � g(x)g (6)

and the Pareto front is de�ned as:

PF = fg(x) = (g

1

(x); � � � ; g

M

(x)) jx 2 Pg (7)

The multiobje
tive nature of most real-world problems makes MO a very

important resear
h topi
. The presen
e of various obje
tives, however, implies

trade-o� solutions and makes these problems 
omplex and diÆ
ult to solve. EAs

seem parti
ularly desirable to solve MO problems be
ause they evolve simulta-

neously a population of potential solutions to the problem in hand, whi
h allows

to sear
h for a set of Pareto optimal solutions 
on
urrently in a single run of the

algorithm.

Many authors have been in
reasingly investigating MO using EAs (MOEA)

and the number of appli
ations has been rapidly growing. The list of 
ontribu-

tors to the �eld is extensive and 
omprehensive reviews 
an be found in [1{4℄.

Fonse
a and Fleming[1℄ and Horn[2℄ examine major MOEA te
hniques, Coello

[3℄ presented a MOEA review 
lassifying implementations from a detailed algo-

rithmi
 standpoint, dis
ussing the strengths and weaknesses of ea
h te
hnique.

Re
ently, Van Veldhuizen and Lamont[4℄ expand upon these reviews.

4 GA-SRM extension to MO

4.1 Con
ept of GA-SRM

We have presented an empiri
al model of GA that puts parallel geneti
 operators

in a 
ooperative-
ompetitive stand with ea
h other pursuing better balan
es for


rossover and mutation over the 
ourse of a run[11{14℄. The main features of

the model are (i) two geneti
 operators with 
omplementary roles applied in

parallel to 
reate o�spring: Self-Reprodu
tion with Mutation (SRM) that put

emphasis on mutation, and Crossover and Mutation (CM) that put emphasis

on re
ombination (ii) an extin
tive sele
tion me
hanism, and (iii) an adaptive

mutation s
hedule that varies SRM's mutation rates from high to low values

based on SRM's own 
ontribution to the population.

The parallel formulation of geneti
 operators allows the 
ombination of 
ross-

over with high mutation rates avoiding operators' interferen
es, i.e. bene�
ial

re
ombinations produ
ed by 
rossover are not lost due to the high disruption

introdu
ed by parallel mutation and similarly the survivability of bene�
ial mu-

tations are not a�e
ted by ine�e
tive 
rossing over operations. The parallel appli-


ation of geneti
 operators impli
itly in
reases the levels of 
ooperation between

them to introdu
e and propagate bene�
ial mutations. It also sets the stage for


ompetition between operators' o�spring.
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Although the parallel formulation of geneti
 operators 
an avoid interferen
es

between operators, it does not prevent SRM from 
reating deleterious mutations

or CM from produ
ing ine�e
tive 
rossing over operations. To 
ope with these


ases we also in
orporate in the model the 
on
ept of extin
tive sele
tion that

has been widely used in Evolutionary Strategies[17℄. Through extin
tive sele
-

tion the o�spring 
reated by CM and SRM 
oexist 
ompeting for survival and

reprodu
tion as well. The poor performing individuals 
reated by CM and SRM

are eliminated. The parallel formulation of geneti
 operators tied to extin
tive

sele
tion 
reates a 
ooperative-
ompetitive environment for the o�spring 
reated

by CM and SRM. GA-SRM based on this model remarkably improves the sear
h

performan
e of GA[10, 14, 18℄.

4.2 Multiobje
tive GA-SRM for Halftoning Problem

To extend GA-SRM to MO for halftoning image generation we follow a 
oop-

erative population sear
h with aggregation sele
tion[2, 19{22℄. The population

is monitored for non-dominated solutions; however, Pareto based �tness assign-

ment[23, 24℄ is not dire
tly used. A predetermined set of weightsW , whi
h pon-

der the multiple obje
tives, de�nes the dire
tions that the algorithm will sear
h

simultaneously in the 
ombined spa
e of the multiple obje
tives.W is spe
i�ed

by

W = f!

1

;!

2

; � � � ;!

N

g (8)

where N indi
ates the number of sear
h dire
tions. The k-th sear
h dire
tion !

k

is a ve
tor of nonnegative weights spe
i�ed by

!

k

= (!

k

1

; � � � ; !

k

M

) (9)

where M indi
ates the number of obje
tives and its 
omponents satisfy the

following 
onditions

!

k

j

� 0 (j = 1; � � � ;M) (10)

M

X

j=1

!

k

j

= 1 (11)

We evaluate individuals for the same two fa
tors indi
ated in 2, (number of

obje
tives M = 2): (i) high gray level resolution and, (ii) high spatial resolution.

Here we use the same evaluation fun
tions E

m

and E




, respe
tively, proposed

in [6, 7℄ to 
al
ulate obje
tive values and assign its normalized values to ea
h

individual as indi
ated by

g

1

(x

(t)

i

) =

100� (E

m

(x

(t)

i

)�E

min

m

)

E

max

m

�E

min

m

(12)

g

2

(x

(t)

i

) =

100� (E




(x

(t)

i

)�E

min




)

E

max




�E

min




(13)

where E

max

m

, E

min

m

, E

max




, and E

min




are maximum and minimum values for E

m

and E




, respe
tively, obtained experimentally using various test images.
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The obje
tive values are 
al
ulated on
e for ea
h individual in the o�spring

population. However, we keep as many �tness values as de�ned sear
h dire
tions.

A 
ombined obje
tive value is 
al
ulated for ea
h !

k

(k = 1; 2; � � � ; N) by

g

k

(x

(t)

i

) =

M

X

j=1

!

k

j

g

j

(x

(t)

i

) = !

k

1

g

1

(x

(t)

i

) + !

k

2

g

2

(x

(t)

i

) (14)

and the individuals' �tness in the k-th sear
h dire
tion is assigned by

f

k

(x

(t)

i

) = g

k

(x

(t)

W

)� g

k

(x

(t)

i

) (15)

where g

k

(x

(t)

W

) is the 
ombined obje
tive value of the worst individual in the k-th

sear
h dire
tion at the t-th generation.

For ea
h sear
h dire
tion !

k

, CM 
reates a 
orresponding �

k

CM

number of

o�spring. Similarly, SRM 
reates �

k

SRM

o�spring (see detailed information about

CM and SRM implementation for halftoning problem in 4.3). Thus, the total

o�spring number for ea
h sear
h dire
tion is

�

k

= �

k

CM

+ �

k

SRM

: (16)

The o�spring 
reated for all N sear
h dire
tions 
oexist within one single o�-

spring population. Hen
e the overall o�spring number is

� =

N

X

k=1

�

k

: (17)

SRM's mutation rates are adapted based on a normalized mutants survival

ratio. The normalized mutant survival ratio used in [9, 10℄ is extended to


 =

N

X

k=1

�

k

SRM

N

X

k=1

�

k

SRM

�

�

N

X

k=1

�

k

(18)

where �

k

is the number of individuals in the parent population of the k-th sear
h

dire
tion P

k

(t), �

k

SRM

is the number of individuals 
reated by SRM present in

P

k

(t) after extin
tive sele
tion, �

k

SRM

is the o�spring number 
reated by SRM

and � is the overall o�spring number as indi
ated in Eq. (17).

We 
hose (�; �) Proportional Sele
tion[17℄ to implement the extin
tive sele
-

tion me
hanism. Sin
e we want to sear
h simultaneously in various dire
tions,

sele
tion to 
hoose the parent individuals that will reprodu
e either with CM or

SRM is a

ordingly applied for ea
h one of the predetermined sear
h dire
tions.

Thus, sele
tion probabilities for ea
h sear
h dire
tion !

k

are 
omputed by

P

k

s

(x

(t)

i

) =

8

>

>

<

>

>

:

f

k

(x

(t)

i

) =

�

k

X

j=1

f

k

(x

(t)

j

) (1 � i � �

k

� �

k

)

0 (�

k

< i � �)

(19)
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Fig. 1. Blo
k diagram of the extended multiobje
tive GA-SRM

where x

(t)

i

is an individual at generation t whi
h has the i-th highest �tness

value in the k-th sear
h dire
tion f

k

(x

(t)

i

), �

k

is the number of parents and �

k

is

the number of o�spring in the k-th sear
h dire
tion, and � is the overall number

of o�spring.

Note that for ea
h sear
h dire
tion only �

k

< � individuals are 
reated.

However, the parent population �

k

is 
hosen among the overall � o�spring pop-

ulation. In this way information sharing is en
ourage among individuals 
reated

for neighboring sear
h dire
tions provided that the neighbors' �tness are 
om-

petitive with the lo
als'. Fig. 1 presents the blo
k diagram of the extended

multiobje
tive GA-SRM.

On
e the o�spring has been evaluated, a set of non-dominated solutions is

sought for ea
h sear
h dire
tion, i.e. for the k-th sear
h dire
tion non-domination

is 
he
ked only among the o�spring 
reated for that sear
h dire
tion. Two se
-

ondary populations keep the non-dominated solutions. P


ur

(t) keeps the non-

dominated solution obtained from the o�spring population at generation t and

P

nds

keeps the set of the non-dominated solutions found through the genera-

tions. P

nds

is updated at ea
h generation with P


ur

(t). In the halftoning prob-

lem an image is divided into blo
ks and the GA is applied to ea
h image blo
k.

Hen
e, the GA would generate a set of non-dominated solutions for ea
h image

blo
k. Sin
e we are interested in generating simultaneously various Pareto opti-

mal \whole" images, a de
ision making pro
ess is integrated to 
hose only one

solution for ea
h sear
h dire
tion in ea
h image blo
k. Thus, among the various

non-dominated solutions found for a given sear
h dire
tion, we 
hose the one

that minimizes the 
ombined error E

m

and E




in that parti
ular dire
tion.

4.3 CM and SRM for Halftoning Problem

In the halftoning problem an individual is represented as a n�n two-dimensional

stru
ture. In this work we use the same two-dimensional operators, CM (Crossover

and Mutation) and SRM-ADB (Self Reprodu
tion with Mutation - Adaptive

Dynami
 Blo
k), presented in [9, 10℄ to 
reate o�spring.
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CM �rst 
rosses over two previously sele
ted parents inter
hanging either

their rows or 
olumns, similar to [6, 7℄, and then it applies standard mutation

inverting bits with a small mutation probability per bit, p

(CM)

m

, analogous to


anoni
al GAs. Thus, mutation in CM is of a quantitative nature after whi
h

the number of 0s and 1s may 
hange. It may be worth trying more spe
ialized

approa
hes to implementing 
rossover, however this point will not be dis
ussed

in this work.

SRM, on the other hand, �rst 
reates an exa
t 
opy of a previously sele
ted

individual from the parent population and then applies mutation only to the

bits inside a mutation blo
k. SRM is provided with an Adaptive Dynami
-

Blo
k (ADB) mutation s
hedule similar to Adaptive Dynami
-Segment mutation

(ADS)[12, 14℄. With ADB mutation is dire
ted only to a blo
k (square region)

of the 
hromosome and the mutation blo
k area ` � ` is dynami
ally adjusted

to `=2 � `=2 every time the normalized mutants survival ratio 
 by Eq. (18)

falls under a threshold � . The blo
k's side length ` varies from n to 2, [n; 2℄.

The o�set position of the mutation blo
k is 
hosen at random for ea
h 
hro-

mosome. The adaptive me
hanism in SRM is designed to 
ontrol the required

exploration-exploitation balan
e during the sear
h pro
ess.

The e�e
t of ADB's mutation on the distribution of 0s and 1s within an

individual 
ould be of a qualitative or quantitative nature. It has been veri�ed

in [9, 10℄ that for the halftoning problem ADB with qualitative mutation shows

superior performan
e than ADB with quantitative mutation (i.e. bit 
ipping

mutation). Sin
e qualitative mutation do not 
hange the number of 0s and 1s

within an individual it has an impa
t only on the spatial resolution error E




,

while quantitative mutation has an impa
t on both E

m

and E




in Eq. (3) and

(14). Thus, qualitative mutation is less disruptive and 
an take better advantage

of the high 
orrelation among 
ontiguous pixels in an image[25℄ 
ontributing to

a more e�e
tive sear
h. Therefore, in this work we use ADB with qualitative

mutation, whi
h is implemented as a bit swapping pro
ess. Note that there is

no need to set a mutation probability in qualitative mutation sin
e all pairs of

bits within the mutation blo
k are simply swapped.

5 Experimental Results and Dis
ussion

We observe and 
ompare the performan
e of four kinds of GAs generating

halftone images: (i) a simple GA that uses CM and proportional sele
tion, similar

to [6, 7℄, (denoted as 
GA) (ii) an extended 
GA using the same multiobje
tive

te
hnique des
ribed in 4.2 (denoted as a moGA), (iii) a GA with SRM that uses

CM, SRM and (�; �) proportional sele
tion[9, 10℄ (denoted as GA-SRM), and

(iv) the extended multiobje
tive GA-SRM (denoted as moGA-SRM).

The GAs are applied to SIDBA's ben
hmark images in our simulation. The

size of the original image is 256� 256 pixels with R = 256 gray levels. An image

is divided into 256 non-overlapping blo
ks, ea
h one of size n�n = 16�16 pixels.

For ea
h blo
k, the algorithms were set with di�erent seeds for the random initial

population.
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We de�ne 11 sear
h dire
tions, N = 11, setting W = f!

1

;!

2

; � � � ;!

11

g =

f(0:0; 1:0); (0:1; 0:9); � � � ; (1:0; 0:0)g. With !

1

= (0:0; 1:0) the sear
h fo
uses ex-


lusively in E




's spa
e and with !

11

= (1:0; 0:0) in E

m

's; whereas with !

k

,

2 � k � 10, the sear
h fo
uses in the 
ombined spa
e of E




and E

m

. moGA and

moGA-SRM generate simultaneously one image for ea
h dire
tion in a single

run. On the other hand, to generate the 11 images with either 
GA or GA-SRM

an equal number of separate runs are 
arried out, ea
h one using a di�erent !

k

as weighting parameter. Unless stated otherwise, the GAs are set with the pa-

rameters detailed in Table 1

1)

and the experimental image used is \Lenna". The

values set for 
rossover and mutation probabilities in 
GA are the same used in

[6, 7℄. The image quality attained by the 
GA with a 200 parent population and

the same T = 4� 10

4

evaluations used in [6, 7℄ are taken as a referen
e for 
om-

parison in our study. The number of generations performed for ea
h algorithm

is 
al
ulated as T=�.

Table 1. Geneti
 algorithms parameters

Parameter 
GA moGA GA-SRM moGA-SRM

Sele
tion Proport. (�; �) Proport. (�; �) Proport. (�; �) Proport.

Mating (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j

p




0:6 0:6 1:0 1:0

p

(CM)

m

0:001 0:001 0:001 0:001

�

k

: �

k

- 1 : 1 1 : 2 1 : 2

�

k

CM

: �

k

SRM

- - 1 : 1 1 : 1

� - - 0:40 0:40

Table 2 shows the average in all image blo
ks of the non-normalized 
om-

bined errors e

k

(x) = !

k

1

E

m

(x) + !

k

2

E




(x) by 
GA(200) after T evaluations for

ea
h sear
h dire
tion !

k

, 1 � k � 11, under 
olumnW . For the other algorithms

under W we present the fra
tion of T at whi
h the algorithm rea
h similar im-

age quality (for 
GA(200) these values are all 1:00 and are shown right below

the 
ombined error). Column T

W

indi
ates the overall evaluations needed to

generate the 11 images. Sin
e the 
GA generates one image at a time, it needs

11T

2)

evaluations to generate all 11 images. The �rst moGA row show results

by the multiobje
tive simple GA with a �

k

= 18 parents and a �

k

= 18, � = 198

o�spring 
on�guration. moGA simultaneously generates the 11 images and needs

approximately 2:43T

3)

to guarantee that all images would have at least the same

quality as 
GA(200). moGA's se
ond row show results by moGA with a �

k

= 4

parents and a �

k

= 4, � = 44 o�spring 
on�guration. In this 
ase population size

redu
tion in moGA a

elerates a little bit more the overall 
onvergen
e and still

produ
es better images than 
GA(200). It should be noti
ed that population

1)

GA-SRM sear
h only in one dire
tion at a time and the population related parame-

ters �

k

, �

k

, �

k

CM

, and �

k

SRM

should be read without the index k

2)

The entire number of evaluations required by the single obje
tive GAs to generate

all 11 images are given by the sum of the evaluations expended in ea
h dire
tion

3)

In the 
ase of multiple obje
tive GAs, due to the 
on
urrent sear
h, the maximum

number of the evaluations among all sear
h dire
tions determines the overall number

of evaluations needed to generate all 11 images
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redu
tions in 
GA a

elerates 
onvergen
e but it is a�e
ted by a lost of diversity

and the �nal image quality is inferior than 
GA(200)'s[6, 7℄. moGA bene�ts from

the information sharing indu
ed by sele
tion (see explanation below for Fig. 2)

and 
an tolerate population redu
tions. Compared with 
GA, the results by

moGA represents an enormous redu
tion in pro
essing time and illustrates the

bene�ts that 
an be a
hieved by in
luding multiobje
tive te
hniques within GAs.

Table 2. Evaluations to generate high quality images (Lenna)

W = f!

1

;!

2

; � � � ;!

11

g

Algorithm !

1

!

2

!

3

!

4

!

5

!

6

!

7

!

8

!

9

!

10

!

11

T

W


ombined error 121:0 111:4 100:6 89:5 78:2 66:9 55:5 44:2 32:8 21:5 10:1 -


GA(200) 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 11T

2)

moGA(18; 198) 1:43 2:43 1:65 1:27 1:21 1:00 0:86 0:76 0:70 0:65 0:72 2:43T

3)

moGA(4; 44) 1:12 2:30 1:44 1:36 1:20 1:02 0:85 0:79 0:73 0:66 0:79 2:30T

3)

GA-SRM(2; 4) 0:40 0:23 0:15 0:13 0:12 0:11 0:10 0; 09 0:09 0:08 0:08 1:58T

2)

moGA-SRM(9; 198) 1:12 1:07 0:58 0:44 0:30 0:27 0:24 0:23 0:22 0:21 0:21 1:12T

3)

moGA-SRM(2; 44) 1:56 1:03 0:50 0:30 0:20 0:16 0:15 0:13 0:12 0:12 0:12 1:56T

3)

moGA-SRM

�

(2; 44) 0:96 0:92 0:40 0:31 0:22 0:17 0:15 0:14 0:13 0:13 0:13 0:96T

3)

Row GA-SRM(2,4) presents results by GA-SRM with a 2 parents and 4

o�spring 
on�guration. GA-SRM even with a very s
aled down population 
on-

�guration 
onsiderably redu
es pro
essing time to generate high quality images

for all 
ombinations of weighting parameters. GA-SRM, for this parti
ular im-

age, would need approximately 1:58T

2)

to generate all 11 images. Note that

GA-SRM sequentially generating the 11 images is faster than moGA.

The �rst moGA-SRM row show results by the multiobje
tive proposed GA-

SRM with a �

k

= 9 parents and a �

k

= 18, � = 198 o�spring 
on�guration.

Compared with moGA we 
an see that the in
lusion of SRM notoriously in
reases

the multiobje
tive algorithm's performan
e needing no more than 1:12T

3)

to

generate the 11 images, whi
h is faster than GA-SRM. Results by a s
aled down

population 
on�guration is shown in row moGA-SRM(2,44) that represents a

�

k

= 2 parents and a �

k

= 4, � = 44 o�spring 
on�guration. The population size

redu
tion in moGA-SRM a

elerates 
onvergen
e in all but one sear
h dire
tion

(see under !

1

) and the overall evaluation time is similar to GA-SRM. From GA-

SRM and moGA-SRM results we see that parallel mutation SRM 
an greatly

improve the performan
e of single obje
tive as well as multiobje
tive geneti


algorithms in the halftoning problem.

We observe that moGA(2,44), whi
h uses CM but not SRM, only for !

1

produ
es faster 
onvergen
e than moGA-SRM (e

1

= 0:0E

m

+ 1:0E




). It seems

that CM alone is parti
ularly useful for sear
hing in E




's sear
h spa
e. However,

when the sear
h involves both E

m

's and E




's spa
es the intera
tion of CM and

SRM produ
e better results. We 
ondu
t an experiment in whi
h we favor CM's

o�spring over SRM's only in the !

1

dire
tion. In row moGA-SRM

�

(2,44) we

show results using a 
on�guration that 
reates o�spring in !

1

dire
tion only

with CM, i.e. �

1

CM

= 4, �

1

SRM

= 0 and �

k

CM

= 2, �

k

SRM

= 2 for 2 � k � 11. This
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has the e�e
t of a

elerating 
onvergen
e in !

1

sear
h dire
tion and therefore

redu
ing the overall evaluation time to 0:96T .

E

m

and E




represent �tness lands
apes with di�erent degree of diÆ
ulty for

the GAs. E

m

's lands
ape is smoother than E




's and the GAs are expe
ted to


onverge faster in E

m

's dire
tion. This is 
orroborated by the results obtained

by the GAs. In Table 2 we 
an see that for !

k

with k � 6, E

m

's dire
tions,

the algorithms need less time to 
onverge. It should be spe
ially noti
ed that

moGA-SRM for those dire
tions �nds high quality images in less than 0:2T . This

behavior and the results by the last experiment mentioned above suggest that

it may be worth trying dynami
 
on�gurations so that more resour
es 
ould be

assigned to those dire
tions that require more time to 
onverge a

elerating the

overall time needed to generate images simultaneously.

Table 3. A
tual per
entage of evaluations expended in ea
h sear
h dire
tion

W = f!

1

;!

2

; � � � ;!

11

g

Algorithm !

1

!

2

!

3

!

4

!

5

!

6

!

7

!

8

!

9

!

10

!

11


GA(200) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

moGA(18; 198) 13.0 22.1 15.0 11.5 11.0 9.1 7.8 6.9 6.4 5.9 6.5

moGA(4; 44) 10.2 20.9 13.1 12.4 10.9 9.3 7.7 7.2 6.6 6.0 7.2

GA-SRM(2; 4) 40.0 23.0 15.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0

moGA� SRM(9; 198) 10.2 9.7 5.3 4.0 2.7 2.5 2.2 2.1 2.0 1.9 1.9

moGA� SRM(2; 44) 14.2 9.4 4.5 2.7 1.8 1.5 1.4 1.2 1.1 1.1 1.1

moGA� SRM

�

(2; 44) 8.7 8.4 3.6 2.8 2.0 1.5 1.4 1.3 1.2 1.2 1.2

In Table 2 moGA's and moGA-SRM's rows show the evaluations expended

by the algorithm in all sear
h dire
tions. The a
tual per
entage of the evalua-

tions expended in ea
h sear
h dire
tion is shown in Table 3. From this table it


an be seen that with the multiobje
tive algorithms there is a substantial redu
-

tion of the a
tual number evaluations for ea
h sear
h dire
tion. These redu
tions

are explained by the information sharing indu
ed by the sele
tion pro
ess. As

mentioned in 4.2 and indi
ated by Eq. (19), the individuals with higher �tness

in a spe
i�
 dire
tion are sele
ted as parents. Thus, the individuals 
hosen to be

parents for the k-th sear
h dire
tion at generation t may have been 
reated for

neighboring dire
tions at generation t-1. To verify this point we also observe the


omposition of the parent population for ea
h sear
h dire
tion. Fig. 2 shows the

average distribution for some of the !

k

dire
tions after 0:1T and T evaluations,

respe
tively. For example, in Fig. 2(a), the parent population of !

4

is in average


omposed by 18% of individuals 
oming from !

3

, 30% from !

4

itself, and 13%

from !

5

. From these �gures we 
an see that ea
h sear
h dire
tion bene�ts from

individuals that initially were meant for other neighboring dire
tions. This infor-

mation sharing pushes forward the sear
h redu
ing 
onvergen
e times. Looking

at Fig. 2(a) and Fig. 2(b) we 
an see that the information sharing is higher

during the initial stages of the sear
h.

Fig. 3 illustrates typi
al transitions of the non-normalized 
ombined error

e(x) over the number of evaluations for some of the sear
h dire
tions by the

GAs. The plots are 
ut after T evaluations. From these �gures it 
an be visually
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(a) after 0:1T (b) after T

Fig. 2. moGA-SRM's average parent population distribution

appre
iated the higher 
onvergen
e velo
ity and higher 
onvergen
e reliability

(lower errors) by the algorithms that in
lude SRM, GA-SRM and moGA-SRM.

In general, moGA is faster than the 
GA, but their �nal image quality tends to

be the same. Also, it should be noti
ed that results by moGA and moGA-SRM

are a
hieved simultaneously in one run (thus, T for these algorithms indi
ates

the evaluations expended in all sear
h dire
tions).

 moGA-SRM(2,44)
 GA-SRM(2,4)
 moGA(4,44)
 cGA(200)

T0.5 T

ω1

ω2

ω4

e(  (t))x

100

120
 moGA-SRM(2,44)
 GA-SRM(2,4)
 moGA(4,44)
 cGA(200)

T0.5 T

ω6

ω9

ω11

e(  (t))x

20

40

60

80

Fig. 3. Error transition for various !

k

Fig. 4 show the original image \Lenna" and the images generated by two


onventional halftoning te
hniques: ordered dithering (s
reen) and error di�u-

sion[8℄. Fig. 5 show some of the simultaneously generated images by moGA-

SRM. From these �gures we 
an see that moGA-SRM generates more pleasant

images to the human observer than traditional te
hniques. Another point to be

remarked is that traditional halftoning te
hniques 
an generate only one image.

On the other hand, among the images generated by moGA-SRM there is a grad-

ual di�eren
e a

ording to spatial and gray level resolution, whi
h makes the
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(a) original image (b) ordered dithering (s
reen) (
) error di�usion

Fig. 4. Lenna's original and generated images by two 
onventional te
hniques

!

1

!

2

!

4

!

6

!

9

!

11

Fig. 5. Lenna's simultaneously generated images by moGA-SRM

�

(2,44) after 0:96T

GA based halftoning te
hnique more 
exible to users' requirements as well as

more robust to 
onstraints imposed by displaying and printing devi
es.

With regards to pro
essing time, running software implementations of the

algorithms in a Pentium III pro
essor (600 MHz), to generate one image 
on-

ventional te
hniques need only few se
onds while GA-SRM (also implemented in

software) needs about 8 minutes. Note that GA based te
hniques in this study

pro
ess one blo
k at a time always starting with random initial populations.

Due to the high 
orrelation among neighbor blo
ks of an image, redu
tions on

pro
essing time are expe
ted by using previously generated image blo
ks in the
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initial populations of the subsequent blo
ks. However it is 
lear that, from a

pro
essing time standpoint, in order to apply GA based halftoning te
hniques

on-line they must be improved further to redu
e as mu
h as possible the number

of evaluations needed to generate higher quality images. Also, the GA's �nal

implementation for industrial appli
ation must be in hardware.

Finally, we should also say that similar results were obtained for other SIBDA's

ben
hmark images.

6 Con
lusions

In this work we have extended an improved GA (GA-SRM) to a multiobje
tive

optimization GA (moGA-SRM) for the image halftoning problem aiming to si-

multaneously generate halftone images with various 
ombinations of gray level

and spatial resolution.

GA-SRM is based on an empiri
al model of GA that puts parallel geneti
 op-

erators in a 
ooperative-
ompetitive stand with ea
h other. To extend GA-SRM

we follow a 
ooperative population sear
h with aggregation sele
tion preserving

the fundamental features of the 
ooperative-
ompetitive model. We 
ompare the

performan
e of four geneti
 algorithms generating halftone images: (i) a single

obje
tive simple GA (
GA), (ii) a single obje
tive GA-SRM, (iii) a multiobje
tive

simple GA (moGA), (iv) the proposed multiobje
tive GA-SRM (moGA-SRM).

From our experimental results we observe that multiobje
tive te
hniques ben-

e�t from information sharing and 
an greatly redu
e pro
essing time to generate

simultaneously high quality images. To generate 11 images moGA requires only

about 21% of the evaluations used by 
GA. The 
ooperative-
ompetitive model

for parallel operators helps to in
rease the performan
e of single and multi ob-

je
tive GAs in this problem redu
ing even further pro
essing time. GA-SRM

requires about 15% and moGA-SRM about 9% of the evaluations used by 
GA.

As future works, important issues to be explored related to the halftoning

problem are (i) the e�e
t of the de�nition of the weights set on the algorithm's

stability and 
onvergen
e, (ii) dynami
 and parallel hierar
hi
al 
on�gurations

for moGA-SRM in order to a

elerate the overall time needed to generate im-

ages simultaneously. Also, we are planning to 
ontinue studying moGA-SRM's

behavior in a wider range of problems that in
lude more than two obje
tives[18℄

and use it in other real world appli
ations.
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