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Abstrat. A halftoning tehnique that uses a simple GA has proven

to be very e�etive to generate high quality halftone images. Reently,

the two major drawbaks of this onventional halftoning tehnique with

GAs, i.e. it uses a substantial amount of omputer memory and pro-

essing time, have been overome by using an improved GA (GA-SRM)

that applies geneti operators in parallel putting them in a ooperative-

ompetitive stand with eah other. The halftoning problem is a true

multiobjetive optimization problem. However, so far, the GA based

halftoning tehniques have treated the problem as a single objetive op-

timization problem. In this work, the improved GA-SRM is extended to

a multiobjetive optimization GA to generate simultaneously halftone

images with various ombinations of gray level and spatial resolution.

Simulation results verify that the proposed sheme an e�etively gener-

ate several high quality images simultaneously in a single run reduing

even further the overall proessing time.

Keywords: multiobjetive geneti algorithm, multiobjetive optimiza-

tion, halftoning problem, ooperative-ompetitive geneti operators.

1 Introdution

The multiobjetive nature of most real-world problems makes multiobjetive

optimization (MO) a very important researh topi. Evolutionary algorithms

(EAs) seem partiularly desirable to solve MO problems beause they evolve

simultaneously a population of potential solutions to the problem in hand, whih

allows to searh for a set of Pareto optimal solutions onurrently in a single run

of the algorithm. Many authors have been inreasingly investigating MO using

EAs in reent years and the number of appliations has been rapidly growing

[1{4℄. In the signal proessing area, appliation methods using EAs, espeially

geneti algorithms (GAs), are also steadily being developed[5℄.

In this work, we espeially fous on the image halftoning tehnique using GAs.

Kobayashi et al.[6, 7℄ use a GA to generate bi-level halftone images with quality

higher than onventional tehniques suh as ordered dithering, error di�usion

and so on[8℄. However, it uses a substantial amount of omputer memory and

proessing time[6, 7℄. Reently, Aguirre et al.[9, 10℄ have proposed an improved

GA (GA-SRM) to overome these two drawbaks of the onventional halfton-

ing tehnique with GAs. GA-SRM is based on an empirial model of GA that
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applies geneti operators in parallel putting them in a ooperative-ompetitive

stand with eah other[11{14℄. The improved GA-SRM, extended to the halfton-

ing problem, an generate high quality images ahieving a 98% redution in the

population size and an 85%-70% redution in proessing time.

The halftoning problem is a true MO problem in whih high gray level and

high spatial resolution must be sought to ahieve high quality images. The GA

based halftoning tehniques mentioned above, however, treat the problem as a

single objetive optimization problem and an generate only one image at a time.

In this work, the improved GA-SRM[9, 10℄ is extended to a multiobjetive

optimization GA to generate simultaneously halftone images with various ombi-

nations of gray level and spatial resolution. The simulations results show that the

proposed sheme an e�etively generate several images in a single run reduing

even further the overall proessing time.

2 Halftoning Problem with GAs

Digital halftoning, a key omponent of an image display preproessor, is the

method that reates the illusion of ontinuous tone pitures on printing and

displaying devies that are apable of produing only binary piture elements.

The fast growing omputer and information industry requires eah time higher

image quality and demands higher resolution devies. The halftoning algorithms

apable of delivering the appropriate image quality for suh devies are also

needed.

Kobayashi et al.[6, 7℄ use a GA to generates bi-level halftone images with

quality higher than traditional tehniques suh as ordered dithering, error dif-

fusion and so on[8℄. An input gray tone image of R gray levels is divided into

non-overlapping bloks of n � n pixels, and then the 2-dimensional optimum

binary pattern for eah image blok is searhed using a GA[6, 7℄. The GA uses

a n � n 2-dimensional binary representation for the individuals. Crossover in-

terhanges either sets of adjaent rows or olumns between two individuals and

mutation inverts bits with a very small probability per bit after rossover sim-

ilar to anonial GA[15, 16℄. Individuals are evaluated for two fators required

to obtain visually high quality halftone images. (i) One is high gray level res-

olution (loal mean gray levels lose to the original image), and (ii) the other

is high spatial resolution (appropriate ontrast near edges)[6, 7℄. The gray level

resolutions error is alulated by
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is i-th individual at t-th generation, p(j; k) is the gray level of the

(j; k)-th pixel in the original image blok, and p̂

b

(j; k) is the estimated gray

level assoiated to the (j; k)-th pixel from the generated binary blok. To obtain

p̂

b

(j; k), a referene region around the (j; k)-th binary pixel (for example 5 � 5

pixels) is onvoluted by a gaussian �lter that models the orrelation among

pixels. On the other hand, the spatial resolution error is alulated by
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s

(j; k) is the loal mean gray level around the (j; k)-th pixel (within a

referene region) in the original image blok, and q(j; k) is the binary level of

the (j; k)-th pixel in the generated image blok. These two errors are ombined

into one single objetive funtion as
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where !
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and !



are the weighting parameters for gray level and spatial reso-

lution errors, respetively. The individuals' �tness is assigned by
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where e(x

(t)

W

) is the ombined error of the worst individual at t-th generation. The

high image quality that an be ahieved is the method's major strength. However,

it uses a substantial amount of omputer memory and proessing time. High

quality, visually satisfatory, halftone images are obtained with 200 individuals

and 200 generations (totally 40,000 evaluations) per image blok[6, 7℄.

Reently, Aguirre et al.[9, 10℄ have proposed an improved GA (GA-SRM)

to overome these two drawbaks of the onventional halftoning tehnique with

GAs. GA-SRM is based on an empirial model of GA that applies geneti op-

erators in parallel putting them in a ooperative-ompetitive stand with eah

other[11{14℄. GA-SRM is applied to the halftoning image problem using geneti

operators properly modi�ed for this kind of problem(see 4.3). GA-SRM with

parallel adaptive dynami blok (ADB) mutation impressively redues proess-

ing time and omputer memory to generate high quality images. For example,

GA-SRM with qualitative ADB using a 2 parent 4 o�spring on�guration needs

about 6,000-12,000 evaluations per image blok, depending on the input image,

to obtain results similar to those ahieved by the onventional image halftoning

tehnique using GAs. These data represent a 98% redution in the population

size and an 85%-70% redution in proessing time.

3 Multiobjetive Optimization (MO)

MO methods deal with �nding optimal solutions to problems having multiple

objetives. Let us onsider, without loss of generality, a minimization multiob-

jetive problem with M objetives:

minimize g(x) = (g

1

(x); � � � ; g

M

(x)) (5)

where x 2 X is a solution vetor in the solution spae X, and g

1

(�); � � � ; g

M

(�)

the M objetives to be minimized. Key onepts used in determining a set of

solutions for multiobjetive problems are dominane, Pareto optimality, Pareto

set, and Pareto front. These onepts an be de�ned as follows.

A solution vetor y 2 X is said to dominate a solution vetor z 2 X,

denoted by g(y) � g(z), if and only if y is partially less than z, i.e., 8j 2

f1; � � � ;Mg; g

j

(y) � g

j

(z) ^ 9j 2 f1; � � � ;Mg : g

j

(y) < g

j

(z).
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A solution vetor x 2 X is said to be Pareto optimal with respet to X if it

is not dominated by any other solution vetor, i.e., :9 x

0

2 X : g(x

0

) � g(x).

The presene of multiple objetives, usually oniting among them, gives rise

to a set of optimal solutions. The Pareto optimal set is de�ned as:

P = fx 2Xj:9 x

0

2X : g(x

0

) � g(x)g (6)

and the Pareto front is de�ned as:

PF = fg(x) = (g

1

(x); � � � ; g

M

(x)) jx 2 Pg (7)

The multiobjetive nature of most real-world problems makes MO a very

important researh topi. The presene of various objetives, however, implies

trade-o� solutions and makes these problems omplex and diÆult to solve. EAs

seem partiularly desirable to solve MO problems beause they evolve simulta-

neously a population of potential solutions to the problem in hand, whih allows

to searh for a set of Pareto optimal solutions onurrently in a single run of the

algorithm.

Many authors have been inreasingly investigating MO using EAs (MOEA)

and the number of appliations has been rapidly growing. The list of ontribu-

tors to the �eld is extensive and omprehensive reviews an be found in [1{4℄.

Fonsea and Fleming[1℄ and Horn[2℄ examine major MOEA tehniques, Coello

[3℄ presented a MOEA review lassifying implementations from a detailed algo-

rithmi standpoint, disussing the strengths and weaknesses of eah tehnique.

Reently, Van Veldhuizen and Lamont[4℄ expand upon these reviews.

4 GA-SRM extension to MO

4.1 Conept of GA-SRM

We have presented an empirial model of GA that puts parallel geneti operators

in a ooperative-ompetitive stand with eah other pursuing better balanes for

rossover and mutation over the ourse of a run[11{14℄. The main features of

the model are (i) two geneti operators with omplementary roles applied in

parallel to reate o�spring: Self-Reprodution with Mutation (SRM) that put

emphasis on mutation, and Crossover and Mutation (CM) that put emphasis

on reombination (ii) an extintive seletion mehanism, and (iii) an adaptive

mutation shedule that varies SRM's mutation rates from high to low values

based on SRM's own ontribution to the population.

The parallel formulation of geneti operators allows the ombination of ross-

over with high mutation rates avoiding operators' interferenes, i.e. bene�ial

reombinations produed by rossover are not lost due to the high disruption

introdued by parallel mutation and similarly the survivability of bene�ial mu-

tations are not a�eted by ine�etive rossing over operations. The parallel appli-

ation of geneti operators impliitly inreases the levels of ooperation between

them to introdue and propagate bene�ial mutations. It also sets the stage for

ompetition between operators' o�spring.
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Although the parallel formulation of geneti operators an avoid interferenes

between operators, it does not prevent SRM from reating deleterious mutations

or CM from produing ine�etive rossing over operations. To ope with these

ases we also inorporate in the model the onept of extintive seletion that

has been widely used in Evolutionary Strategies[17℄. Through extintive sele-

tion the o�spring reated by CM and SRM oexist ompeting for survival and

reprodution as well. The poor performing individuals reated by CM and SRM

are eliminated. The parallel formulation of geneti operators tied to extintive

seletion reates a ooperative-ompetitive environment for the o�spring reated

by CM and SRM. GA-SRM based on this model remarkably improves the searh

performane of GA[10, 14, 18℄.

4.2 Multiobjetive GA-SRM for Halftoning Problem

To extend GA-SRM to MO for halftoning image generation we follow a oop-

erative population searh with aggregation seletion[2, 19{22℄. The population

is monitored for non-dominated solutions; however, Pareto based �tness assign-

ment[23, 24℄ is not diretly used. A predetermined set of weightsW , whih pon-

der the multiple objetives, de�nes the diretions that the algorithm will searh

simultaneously in the ombined spae of the multiple objetives.W is spei�ed

by

W = f!

1

;!

2

; � � � ;!

N

g (8)

where N indiates the number of searh diretions. The k-th searh diretion !

k

is a vetor of nonnegative weights spei�ed by

!

k

= (!

k
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k

M

) (9)

where M indiates the number of objetives and its omponents satisfy the

following onditions

!

k
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� 0 (j = 1; � � � ;M) (10)

M
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k
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We evaluate individuals for the same two fators indiated in 2, (number of

objetives M = 2): (i) high gray level resolution and, (ii) high spatial resolution.

Here we use the same evaluation funtions E

m

and E



, respetively, proposed

in [6, 7℄ to alulate objetive values and assign its normalized values to eah

individual as indiated by
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where E
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m

, E

min

m

, E
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, and E
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are maximum and minimum values for E

m

and E



, respetively, obtained experimentally using various test images.
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The objetive values are alulated one for eah individual in the o�spring

population. However, we keep as many �tness values as de�ned searh diretions.

A ombined objetive value is alulated for eah !

k

(k = 1; 2; � � � ; N) by

g

k

(x

(t)

i
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M
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and the individuals' �tness in the k-th searh diretion is assigned by

f
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where g

k

(x

(t)

W

) is the ombined objetive value of the worst individual in the k-th

searh diretion at the t-th generation.

For eah searh diretion !

k

, CM reates a orresponding �

k

CM

number of

o�spring. Similarly, SRM reates �

k

SRM

o�spring (see detailed information about

CM and SRM implementation for halftoning problem in 4.3). Thus, the total

o�spring number for eah searh diretion is

�

k

= �

k

CM

+ �

k

SRM

: (16)

The o�spring reated for all N searh diretions oexist within one single o�-

spring population. Hene the overall o�spring number is

� =

N

X

k=1

�

k

: (17)

SRM's mutation rates are adapted based on a normalized mutants survival

ratio. The normalized mutant survival ratio used in [9, 10℄ is extended to

 =

N

X

k=1

�

k

SRM

N

X
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�

k

SRM
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�

N
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k
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where �

k

is the number of individuals in the parent population of the k-th searh

diretion P

k

(t), �

k

SRM

is the number of individuals reated by SRM present in

P

k

(t) after extintive seletion, �

k

SRM

is the o�spring number reated by SRM

and � is the overall o�spring number as indiated in Eq. (17).

We hose (�; �) Proportional Seletion[17℄ to implement the extintive sele-

tion mehanism. Sine we want to searh simultaneously in various diretions,

seletion to hoose the parent individuals that will reprodue either with CM or

SRM is aordingly applied for eah one of the predetermined searh diretions.

Thus, seletion probabilities for eah searh diretion !

k

are omputed by

P
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Fig. 1. Blok diagram of the extended multiobjetive GA-SRM

where x

(t)

i

is an individual at generation t whih has the i-th highest �tness

value in the k-th searh diretion f

k

(x

(t)

i

), �

k

is the number of parents and �

k

is

the number of o�spring in the k-th searh diretion, and � is the overall number

of o�spring.

Note that for eah searh diretion only �

k

< � individuals are reated.

However, the parent population �

k

is hosen among the overall � o�spring pop-

ulation. In this way information sharing is enourage among individuals reated

for neighboring searh diretions provided that the neighbors' �tness are om-

petitive with the loals'. Fig. 1 presents the blok diagram of the extended

multiobjetive GA-SRM.

One the o�spring has been evaluated, a set of non-dominated solutions is

sought for eah searh diretion, i.e. for the k-th searh diretion non-domination

is heked only among the o�spring reated for that searh diretion. Two se-

ondary populations keep the non-dominated solutions. P

ur

(t) keeps the non-

dominated solution obtained from the o�spring population at generation t and

P

nds

keeps the set of the non-dominated solutions found through the genera-

tions. P

nds

is updated at eah generation with P

ur

(t). In the halftoning prob-

lem an image is divided into bloks and the GA is applied to eah image blok.

Hene, the GA would generate a set of non-dominated solutions for eah image

blok. Sine we are interested in generating simultaneously various Pareto opti-

mal \whole" images, a deision making proess is integrated to hose only one

solution for eah searh diretion in eah image blok. Thus, among the various

non-dominated solutions found for a given searh diretion, we hose the one

that minimizes the ombined error E

m

and E



in that partiular diretion.

4.3 CM and SRM for Halftoning Problem

In the halftoning problem an individual is represented as a n�n two-dimensional

struture. In this work we use the same two-dimensional operators, CM (Crossover

and Mutation) and SRM-ADB (Self Reprodution with Mutation - Adaptive

Dynami Blok), presented in [9, 10℄ to reate o�spring.
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CM �rst rosses over two previously seleted parents interhanging either

their rows or olumns, similar to [6, 7℄, and then it applies standard mutation

inverting bits with a small mutation probability per bit, p

(CM)

m

, analogous to

anonial GAs. Thus, mutation in CM is of a quantitative nature after whih

the number of 0s and 1s may hange. It may be worth trying more speialized

approahes to implementing rossover, however this point will not be disussed

in this work.

SRM, on the other hand, �rst reates an exat opy of a previously seleted

individual from the parent population and then applies mutation only to the

bits inside a mutation blok. SRM is provided with an Adaptive Dynami-

Blok (ADB) mutation shedule similar to Adaptive Dynami-Segment mutation

(ADS)[12, 14℄. With ADB mutation is direted only to a blok (square region)

of the hromosome and the mutation blok area ` � ` is dynamially adjusted

to `=2 � `=2 every time the normalized mutants survival ratio  by Eq. (18)

falls under a threshold � . The blok's side length ` varies from n to 2, [n; 2℄.

The o�set position of the mutation blok is hosen at random for eah hro-

mosome. The adaptive mehanism in SRM is designed to ontrol the required

exploration-exploitation balane during the searh proess.

The e�et of ADB's mutation on the distribution of 0s and 1s within an

individual ould be of a qualitative or quantitative nature. It has been veri�ed

in [9, 10℄ that for the halftoning problem ADB with qualitative mutation shows

superior performane than ADB with quantitative mutation (i.e. bit ipping

mutation). Sine qualitative mutation do not hange the number of 0s and 1s

within an individual it has an impat only on the spatial resolution error E



,

while quantitative mutation has an impat on both E

m

and E



in Eq. (3) and

(14). Thus, qualitative mutation is less disruptive and an take better advantage

of the high orrelation among ontiguous pixels in an image[25℄ ontributing to

a more e�etive searh. Therefore, in this work we use ADB with qualitative

mutation, whih is implemented as a bit swapping proess. Note that there is

no need to set a mutation probability in qualitative mutation sine all pairs of

bits within the mutation blok are simply swapped.

5 Experimental Results and Disussion

We observe and ompare the performane of four kinds of GAs generating

halftone images: (i) a simple GA that uses CM and proportional seletion, similar

to [6, 7℄, (denoted as GA) (ii) an extended GA using the same multiobjetive

tehnique desribed in 4.2 (denoted as a moGA), (iii) a GA with SRM that uses

CM, SRM and (�; �) proportional seletion[9, 10℄ (denoted as GA-SRM), and

(iv) the extended multiobjetive GA-SRM (denoted as moGA-SRM).

The GAs are applied to SIDBA's benhmark images in our simulation. The

size of the original image is 256� 256 pixels with R = 256 gray levels. An image

is divided into 256 non-overlapping bloks, eah one of size n�n = 16�16 pixels.

For eah blok, the algorithms were set with di�erent seeds for the random initial

population.
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We de�ne 11 searh diretions, N = 11, setting W = f!

1

;!

2

; � � � ;!

11

g =

f(0:0; 1:0); (0:1; 0:9); � � � ; (1:0; 0:0)g. With !

1

= (0:0; 1:0) the searh fouses ex-

lusively in E



's spae and with !

11

= (1:0; 0:0) in E

m

's; whereas with !

k

,

2 � k � 10, the searh fouses in the ombined spae of E



and E

m

. moGA and

moGA-SRM generate simultaneously one image for eah diretion in a single

run. On the other hand, to generate the 11 images with either GA or GA-SRM

an equal number of separate runs are arried out, eah one using a di�erent !

k

as weighting parameter. Unless stated otherwise, the GAs are set with the pa-

rameters detailed in Table 1

1)

and the experimental image used is \Lenna". The

values set for rossover and mutation probabilities in GA are the same used in

[6, 7℄. The image quality attained by the GA with a 200 parent population and

the same T = 4� 10

4

evaluations used in [6, 7℄ are taken as a referene for om-

parison in our study. The number of generations performed for eah algorithm

is alulated as T=�.

Table 1. Geneti algorithms parameters

Parameter GA moGA GA-SRM moGA-SRM

Seletion Proport. (�; �) Proport. (�; �) Proport. (�; �) Proport.

Mating (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j (x

i

;x

j

); i 6= j

p



0:6 0:6 1:0 1:0

p

(CM)

m

0:001 0:001 0:001 0:001

�

k

: �

k

- 1 : 1 1 : 2 1 : 2

�

k

CM

: �

k

SRM

- - 1 : 1 1 : 1

� - - 0:40 0:40

Table 2 shows the average in all image bloks of the non-normalized om-

bined errors e

k

(x) = !

k

1

E

m

(x) + !

k

2

E



(x) by GA(200) after T evaluations for

eah searh diretion !

k

, 1 � k � 11, under olumnW . For the other algorithms

under W we present the fration of T at whih the algorithm reah similar im-

age quality (for GA(200) these values are all 1:00 and are shown right below

the ombined error). Column T

W

indiates the overall evaluations needed to

generate the 11 images. Sine the GA generates one image at a time, it needs

11T

2)

evaluations to generate all 11 images. The �rst moGA row show results

by the multiobjetive simple GA with a �

k

= 18 parents and a �

k

= 18, � = 198

o�spring on�guration. moGA simultaneously generates the 11 images and needs

approximately 2:43T

3)

to guarantee that all images would have at least the same

quality as GA(200). moGA's seond row show results by moGA with a �

k

= 4

parents and a �

k

= 4, � = 44 o�spring on�guration. In this ase population size

redution in moGA aelerates a little bit more the overall onvergene and still

produes better images than GA(200). It should be notied that population

1)

GA-SRM searh only in one diretion at a time and the population related parame-

ters �

k

, �

k

, �

k

CM

, and �

k

SRM

should be read without the index k

2)

The entire number of evaluations required by the single objetive GAs to generate

all 11 images are given by the sum of the evaluations expended in eah diretion

3)

In the ase of multiple objetive GAs, due to the onurrent searh, the maximum

number of the evaluations among all searh diretions determines the overall number

of evaluations needed to generate all 11 images
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redutions in GA aelerates onvergene but it is a�eted by a lost of diversity

and the �nal image quality is inferior than GA(200)'s[6, 7℄. moGA bene�ts from

the information sharing indued by seletion (see explanation below for Fig. 2)

and an tolerate population redutions. Compared with GA, the results by

moGA represents an enormous redution in proessing time and illustrates the

bene�ts that an be ahieved by inluding multiobjetive tehniques within GAs.

Table 2. Evaluations to generate high quality images (Lenna)

W = f!

1

;!

2

; � � � ;!

11

g

Algorithm !

1

!

2

!

3

!

4

!

5

!

6

!

7

!

8

!

9

!

10

!

11

T

W

ombined error 121:0 111:4 100:6 89:5 78:2 66:9 55:5 44:2 32:8 21:5 10:1 -

GA(200) 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 11T

2)

moGA(18; 198) 1:43 2:43 1:65 1:27 1:21 1:00 0:86 0:76 0:70 0:65 0:72 2:43T

3)

moGA(4; 44) 1:12 2:30 1:44 1:36 1:20 1:02 0:85 0:79 0:73 0:66 0:79 2:30T

3)

GA-SRM(2; 4) 0:40 0:23 0:15 0:13 0:12 0:11 0:10 0; 09 0:09 0:08 0:08 1:58T

2)

moGA-SRM(9; 198) 1:12 1:07 0:58 0:44 0:30 0:27 0:24 0:23 0:22 0:21 0:21 1:12T

3)

moGA-SRM(2; 44) 1:56 1:03 0:50 0:30 0:20 0:16 0:15 0:13 0:12 0:12 0:12 1:56T

3)

moGA-SRM

�

(2; 44) 0:96 0:92 0:40 0:31 0:22 0:17 0:15 0:14 0:13 0:13 0:13 0:96T

3)

Row GA-SRM(2,4) presents results by GA-SRM with a 2 parents and 4

o�spring on�guration. GA-SRM even with a very saled down population on-

�guration onsiderably redues proessing time to generate high quality images

for all ombinations of weighting parameters. GA-SRM, for this partiular im-

age, would need approximately 1:58T

2)

to generate all 11 images. Note that

GA-SRM sequentially generating the 11 images is faster than moGA.

The �rst moGA-SRM row show results by the multiobjetive proposed GA-

SRM with a �

k

= 9 parents and a �

k

= 18, � = 198 o�spring on�guration.

Compared with moGA we an see that the inlusion of SRM notoriously inreases

the multiobjetive algorithm's performane needing no more than 1:12T

3)

to

generate the 11 images, whih is faster than GA-SRM. Results by a saled down

population on�guration is shown in row moGA-SRM(2,44) that represents a

�

k

= 2 parents and a �

k

= 4, � = 44 o�spring on�guration. The population size

redution in moGA-SRM aelerates onvergene in all but one searh diretion

(see under !

1

) and the overall evaluation time is similar to GA-SRM. From GA-

SRM and moGA-SRM results we see that parallel mutation SRM an greatly

improve the performane of single objetive as well as multiobjetive geneti

algorithms in the halftoning problem.

We observe that moGA(2,44), whih uses CM but not SRM, only for !

1

produes faster onvergene than moGA-SRM (e

1

= 0:0E

m

+ 1:0E



). It seems

that CM alone is partiularly useful for searhing in E



's searh spae. However,

when the searh involves both E

m

's and E



's spaes the interation of CM and

SRM produe better results. We ondut an experiment in whih we favor CM's

o�spring over SRM's only in the !

1

diretion. In row moGA-SRM

�

(2,44) we

show results using a on�guration that reates o�spring in !

1

diretion only

with CM, i.e. �

1

CM

= 4, �

1

SRM

= 0 and �

k

CM

= 2, �

k

SRM

= 2 for 2 � k � 11. This
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has the e�et of aelerating onvergene in !

1

searh diretion and therefore

reduing the overall evaluation time to 0:96T .

E

m

and E



represent �tness landsapes with di�erent degree of diÆulty for

the GAs. E

m

's landsape is smoother than E



's and the GAs are expeted to

onverge faster in E

m

's diretion. This is orroborated by the results obtained

by the GAs. In Table 2 we an see that for !

k

with k � 6, E

m

's diretions,

the algorithms need less time to onverge. It should be speially notied that

moGA-SRM for those diretions �nds high quality images in less than 0:2T . This

behavior and the results by the last experiment mentioned above suggest that

it may be worth trying dynami on�gurations so that more resoures ould be

assigned to those diretions that require more time to onverge aelerating the

overall time needed to generate images simultaneously.

Table 3. Atual perentage of evaluations expended in eah searh diretion

W = f!

1

;!

2

; � � � ;!

11

g

Algorithm !

1

!

2

!

3

!

4

!

5

!

6

!

7

!

8

!

9

!

10

!

11

GA(200) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

moGA(18; 198) 13.0 22.1 15.0 11.5 11.0 9.1 7.8 6.9 6.4 5.9 6.5

moGA(4; 44) 10.2 20.9 13.1 12.4 10.9 9.3 7.7 7.2 6.6 6.0 7.2

GA-SRM(2; 4) 40.0 23.0 15.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0

moGA� SRM(9; 198) 10.2 9.7 5.3 4.0 2.7 2.5 2.2 2.1 2.0 1.9 1.9

moGA� SRM(2; 44) 14.2 9.4 4.5 2.7 1.8 1.5 1.4 1.2 1.1 1.1 1.1

moGA� SRM

�

(2; 44) 8.7 8.4 3.6 2.8 2.0 1.5 1.4 1.3 1.2 1.2 1.2

In Table 2 moGA's and moGA-SRM's rows show the evaluations expended

by the algorithm in all searh diretions. The atual perentage of the evalua-

tions expended in eah searh diretion is shown in Table 3. From this table it

an be seen that with the multiobjetive algorithms there is a substantial redu-

tion of the atual number evaluations for eah searh diretion. These redutions

are explained by the information sharing indued by the seletion proess. As

mentioned in 4.2 and indiated by Eq. (19), the individuals with higher �tness

in a spei� diretion are seleted as parents. Thus, the individuals hosen to be

parents for the k-th searh diretion at generation t may have been reated for

neighboring diretions at generation t-1. To verify this point we also observe the

omposition of the parent population for eah searh diretion. Fig. 2 shows the

average distribution for some of the !

k

diretions after 0:1T and T evaluations,

respetively. For example, in Fig. 2(a), the parent population of !

4

is in average

omposed by 18% of individuals oming from !

3

, 30% from !

4

itself, and 13%

from !

5

. From these �gures we an see that eah searh diretion bene�ts from

individuals that initially were meant for other neighboring diretions. This infor-

mation sharing pushes forward the searh reduing onvergene times. Looking

at Fig. 2(a) and Fig. 2(b) we an see that the information sharing is higher

during the initial stages of the searh.

Fig. 3 illustrates typial transitions of the non-normalized ombined error

e(x) over the number of evaluations for some of the searh diretions by the

GAs. The plots are ut after T evaluations. From these �gures it an be visually
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Fig. 2. moGA-SRM's average parent population distribution

appreiated the higher onvergene veloity and higher onvergene reliability

(lower errors) by the algorithms that inlude SRM, GA-SRM and moGA-SRM.

In general, moGA is faster than the GA, but their �nal image quality tends to

be the same. Also, it should be notied that results by moGA and moGA-SRM

are ahieved simultaneously in one run (thus, T for these algorithms indiates

the evaluations expended in all searh diretions).

 moGA-SRM(2,44)
 GA-SRM(2,4)
 moGA(4,44)
 cGA(200)

T0.5 T

ω1

ω2

ω4

e(  (t))x

100

120
 moGA-SRM(2,44)
 GA-SRM(2,4)
 moGA(4,44)
 cGA(200)

T0.5 T

ω6

ω9

ω11

e(  (t))x

20

40

60

80

Fig. 3. Error transition for various !

k

Fig. 4 show the original image \Lenna" and the images generated by two

onventional halftoning tehniques: ordered dithering (sreen) and error di�u-

sion[8℄. Fig. 5 show some of the simultaneously generated images by moGA-

SRM. From these �gures we an see that moGA-SRM generates more pleasant

images to the human observer than traditional tehniques. Another point to be

remarked is that traditional halftoning tehniques an generate only one image.

On the other hand, among the images generated by moGA-SRM there is a grad-

ual di�erene aording to spatial and gray level resolution, whih makes the
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(a) original image (b) ordered dithering (sreen) () error di�usion

Fig. 4. Lenna's original and generated images by two onventional tehniques

!

1

!

2

!

4

!

6

!

9

!

11

Fig. 5. Lenna's simultaneously generated images by moGA-SRM

�

(2,44) after 0:96T

GA based halftoning tehnique more exible to users' requirements as well as

more robust to onstraints imposed by displaying and printing devies.

With regards to proessing time, running software implementations of the

algorithms in a Pentium III proessor (600 MHz), to generate one image on-

ventional tehniques need only few seonds while GA-SRM (also implemented in

software) needs about 8 minutes. Note that GA based tehniques in this study

proess one blok at a time always starting with random initial populations.

Due to the high orrelation among neighbor bloks of an image, redutions on

proessing time are expeted by using previously generated image bloks in the
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initial populations of the subsequent bloks. However it is lear that, from a

proessing time standpoint, in order to apply GA based halftoning tehniques

on-line they must be improved further to redue as muh as possible the number

of evaluations needed to generate higher quality images. Also, the GA's �nal

implementation for industrial appliation must be in hardware.

Finally, we should also say that similar results were obtained for other SIBDA's

benhmark images.

6 Conlusions

In this work we have extended an improved GA (GA-SRM) to a multiobjetive

optimization GA (moGA-SRM) for the image halftoning problem aiming to si-

multaneously generate halftone images with various ombinations of gray level

and spatial resolution.

GA-SRM is based on an empirial model of GA that puts parallel geneti op-

erators in a ooperative-ompetitive stand with eah other. To extend GA-SRM

we follow a ooperative population searh with aggregation seletion preserving

the fundamental features of the ooperative-ompetitive model. We ompare the

performane of four geneti algorithms generating halftone images: (i) a single

objetive simple GA (GA), (ii) a single objetive GA-SRM, (iii) a multiobjetive

simple GA (moGA), (iv) the proposed multiobjetive GA-SRM (moGA-SRM).

From our experimental results we observe that multiobjetive tehniques ben-

e�t from information sharing and an greatly redue proessing time to generate

simultaneously high quality images. To generate 11 images moGA requires only

about 21% of the evaluations used by GA. The ooperative-ompetitive model

for parallel operators helps to inrease the performane of single and multi ob-

jetive GAs in this problem reduing even further proessing time. GA-SRM

requires about 15% and moGA-SRM about 9% of the evaluations used by GA.

As future works, important issues to be explored related to the halftoning

problem are (i) the e�et of the de�nition of the weights set on the algorithm's

stability and onvergene, (ii) dynami and parallel hierarhial on�gurations

for moGA-SRM in order to aelerate the overall time needed to generate im-

ages simultaneously. Also, we are planning to ontinue studying moGA-SRM's

behavior in a wider range of problems that inlude more than two objetives[18℄

and use it in other real world appliations.
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