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Abstract

Epistasis and NK-Landscapes in the context of multiobjec-
tive evolutionary algorithms are almost unexplored subjects.
Here we present an extension of Kauffman’s NK-Landscapes
to multiobjective MNK-Landscapes in order to use them as
a benchmark tool and as a mean to understand better the
working principles of multiobjective evolutionary algorithms
(MOEAs). In this work we present an elitist multiobjective
random bit climber (moRBC) and compare its performance
with NSGA-II and SPEA2, two elitist state of the art MOEAs.

1. Introduction

Epistasis is a term used in biology to describe a range
of non-additive phenomena due to the non-linear inter-
dependence of gene values. In the context of evolutionary
algorithms (EAs) this terminology is used to describe non-
linearities in fitness functions due to changes in the values
of interacting bits. An implication of epistatic interactions
among bits is that the fitness function develops conflicting
constraints. That is, a mutation in one bit may improve its
own contribution to fitness but may decrease the contributions
of other bits with which it interacts. Hence, epistatic interac-
tions increase the difficulty in trying to optimize all bits si-
multaneously. The influence of epistasis on the performance
of single objective EAs is being increasingly investigated.
Kauffman’s NK-Landscapes model of epistatic interactions
[1], particularly, have been the center of several theoretical
and empirical studies both for the statistical properties of the
generated landscapes and for their EA-hardness (see for ex-
ample [2] and there in). However, the effects of epistasis and
NK-Landscapes in the context of multiobjective evolutionary
algorithms (MOEAs) are almost unexplored subjects.

In this work we present an extension of Kauffman’s NK-
Landscapes to multiobjective MNK-Landscapes in order to
use them as a benchmark tool and as a means to understand
better the working principles of MOEAs. Also, we intro-
duce an elitist multiobjective random bit climber (moRBC)
and compare its performance with NSGA-II and SPEA2, two

elitist state of the art MOEAs on scalable random epistatic
problems.

2. Multiobjective MNK-Landscapes

A multiobjective MNK-Landscape is defined as a vec-
tor function f(·) = (f1(·), f2(·), · · · , fM (·)) : BN → �
where M is the number of objectives, fi(·) is the i-th ob-
jective function, B = {0, 1}, and N is the bit string length.
K = {K1, · · · , KM} is a set of integers where Ki (i =
1, 2, · · · , M ) is the number of bits in the string that epistat-
ically interact with each bit in the i-th landscape. Each fi(·)
can be expressed as an average of N functions as follows

fi(x) =
1
N

N∑

j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (1)

where fi,j : BKi+1 → � gives the fitness contribution of bit
xj to fi(·), and z

(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are the Ki bits inter-

acting with bit xj in the string x. The fitness contribution fi,j

of bit xj is a number between [0.0, 1.0] drawn from a uniform
distribution. Thus, each fi(·) is a non-linear function of x ex-
pressed by a Kauffman’s NK-Landscape model of epistatic
interactions [1]. Fig. 1 shows an example of the fitness func-
tions f1,3 and f2,3 associated to bit x3 contributing to the first
objective function f1(·) and second one f2(·), respectively,
based on a different epistatic model for each objective.

For a given N , we can tune the ruggedness of the fitness
function fi(·) by varying Ki. In the limits, Ki = 0 corre-
sponds to a model in which there are no epistatic interactions
and the fitness contribution from each bit value is simply ad-
ditive, which yields a single peaked smooth i-th fitness land-
scape. On the opposite extreme, Ki = N − 1 corresponds
to a model in which each bit value is epistatically affected
by all the remaining bit values yielding a maximally rugged
fully random i-th fitness landscape. Varying Ki from 0 to
N − 1 gives a family of increasingly rugged multi-peaked
landscapes.

Besides defining N and Ki for each fi(·), it is also pos-
sible to arrange the epistatic pattern between bit xj and the
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Figure 1: An example of the fitness functions
f1,3(x3, z

(1,3)
1 , z

(1,3)
2 ) and f2,3(x3, z

(2,3)
1 , z

(2,3)
2 ) associ-

ated to bit x3 contributing to the first objective function f1(·)
and second one f2(·), respectively.

Ki other interacting bits. That is, the distribution Di of Ki

bits among N . Thus, M , N , K = {K1, K2, · · · , KM}, and
D = {D1, D2, · · · , DM}, completely specify a multiobjec-
tive MNK-Landscape and by varying them we can analyze
the properties of the multiobjective landscapes and study the
effects of the number of objectives, size of the search space,
intensity of epistatic interactions, and epistatic pattern on the
performance of multiobjective combinatorial optimization al-
gorithms.

3. Multiobjective Optimization Concepts

Let us consider, without loss of generality, a maximization
multiobjective problem with M objectives:

maximize f(x) = (f1(x), f2(x), · · · , fM (x)) (2)

where x ∈ S is a solution vector in the solution space S,
and f1(·), f2(·), · · · , fM (·) the M objectives to be maximized.
Important concepts used in determining a set of solutions for
multiobjective problems are dominance, Pareto non domi-
nated set, Pareto optimal set, Pareto front, and true Pareto
front. These concepts are frequently used in this work and
can be defined as follows.
Dominance: A solution x dominates other solution y if and
only if the two following conditions are true:

1. ∀m ∈ {1, · · · , M} fm(x) ≥ fm(y)

2. ∃m ∈ {1, · · · , M} fm(x) > fm(y).

Dominance of x over y is denoted by f(x) � f(y). A solu-
tion z is nondominated by other solution y if f(y) � f (z).

Pareto nondominated set: A Pareto nondominated set P is
such that all its elements are nondominated amongst them-
selves and it is defined by

P = {x|¬∃ y ∈ P : f (y) � f(x)}. (3)

Pareto nondominated optimal set: The Pareto nondominated
optimal set is obtained taking into account the whole search
space S and it is defined by

P1 = {x ∈ S|¬∃ y ∈ S : f (y) � f(x)}. (4)

Pareto front: The Pareto front obtained from a nondominated
set P is defined by

F = {f(x) = (f1(x), f2(x), · · · , fM (x)) |x ∈ P}. (5)

True Pareto front: The true Pareto front is obtained from the
Pareto nondominated optimal set P1 and it is defined by

F1 = {f(x) = (f1(x), f2(x), · · · , fM (x)) |x ∈ P1}. (6)

4. The Algorithms

4.1. Random Bit Climber using a Population for Restarts
moRBC(δ : 1 + 1).

moRBC(δ : 1 + 1) begin with a randomly created parent
string p of length N . A random permutation of the string po-
sitions is generated and a child c is created by flipping one
bit of the parent individual following the order indicated by
the random permutation. The child substitutes the parent if
it fulfills a given REPLACEMENT CRITERION. After testing
all N positions indicated by the random permutation, if re-
placements were detected a new permutation of string posi-
tions is generated and testing continues. If no replacements
were detected, a local optimum relative to the replacement
criterion has been found and the moRBCs opt for a RESTART.
This process continues until a given number of evaluations
has been expended. The nondominated solutions found dur-
ing the search are kept in an Archive of a limited capac-
ity. Nondominated individuals with better crowding distance
[3](p.236) are preferred by the procedure that updates the
Archive. Additionally, a Population of up to δ solutions
nondominated by the parent and amongst themselves are also
kept. The procedure used to update the Population is the same
used to update the Archive.

moRBC(δ : 1+1) uses dominance as REPLACEMENT CRI-
TERION for climbing. When a dominance local optimum has
been found, moRBC(δ : 1 + 1) RESTARTS the search by re-
placing the parent with one individual chosen from the col-
lected Population. If Population is empty, it performs a
hard restart, i.e the parent is replaced by a random string cre-
ated anew. Since individuals in the Population are nondom-
inated by the parent and also nondominated amongst them-
selves, restarting the search from the Population implies an
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elitist strategy. However, some individuals in the Population
may actually be dominated by the Archive. Hence, this
elitism is “local” to the parent. moRBC(δ:1 + 1) incorpo-
rate dominance, elitism, and diversity preserving strategies
(in objective space), features common to most of the state of
the art MOEAs [3, 4].

4.2. NSGA-II

NSGA-II uses an elite-preservation strategy and an explicit
diversity-preserving mechanism [3]. NSGA-II keeps at the t-
th generation a parent population Pt and an offspring popu-
lation Qt, both of same size µ. The parent population Pt+1

at the t + 1-th generation is a subset of the best individu-
als obtained from the combined population Rt of parents and
offspring. That is, Rt = Pt ∪ Qt ∧ Pt+1 ⊂ Rt, where
|Rt| = 2µ, |Pt+1| = µ. To obtain Pt+1, Rt is first clas-
sified into nondominated fronts. The first front F1 contains
the best nondominated solutions S1. The subsequent fronts
Fj , j > 1, contain lower level nondominated solutions and
are obtained by disregarding solutions corresponding to the
previous higher nondominated fronts, ie. Fj, j > 1, is ob-
tained from the set Rt −

⋃j−1
k=1 Sk. Once the classification

of nondominated fronts is over, the parent population Pt+1

is filled with solutions belonging to the higher fronts, start-
ing with front F1. Each solution in Pt is assigned a fitness
equal to its nondomination level (1 is the best level). Binary
tournament selection with crowded tournament operator, re-
combination, and mutation operators are used to create the
offspring population Qt+1 from Pt+1. During selection, a
solution i wins a tournament if it has a better rank than j. If
i and j have the same rank, the solution with best crowding
distance wins.

4.3. SPEA2

SPEA2 [5] creates a population Pt of µ individuals at the
t-th generation, and introduces elitism by explicitly maintain-
ing and external population Et. Et stores a fixed number or
the best nondominated solution found since the beginning of
the simulation. Each member i of the external population Et

is assigned a fitness in proportion to the number of individ-
uals ni in the current population Pt it dominates. That is,
fj = ni

µ+1 . The fitness of the j-th member of the current
population Pt is calculated taking into account the number
of solutions ni, i ∈ Et, that dominate j ∈ Pt . That is,
fj = 1 +

∑
i∈Et

fi. In other words, solutions in Pt with
lower fj are better. The next population Pt+1 of size µ is cre-
ated from Et ∪ Pt by applying binary tournament selection,
recombination, and mutation. SPEA2 uses a nearest neigh-
bor density estimation method with an enhanced truncation
method for the external population Et in order to efficiently
guide the search and to guarantee the preservation of bound-
ary solutions.

5. Metric and Test Problems

In this work we use the hypervolume metric H proposed
by Zitzler [5] to evaluate and compare the performance of the
algorithms. Let A be a set of nondominated solutions. The
metric H calculates the hypervolume of the multidimensional
region in objective space enclosed by the elements of A and
a dominated reference point, hence computing the size of the
region A dominates. The hypervolume can be expressed as

H(A) = ∪|A|
i=1(Vi − ∩i−1

j=1ViVj) (7)

where Vi is the hypervolume rendered by the point xi ∈ A
and the reference point. For a given problem, H(A) > H(B)
if the elements of A are closer to the true Pareto front F1

than the elements of B. The hypervolume is among the few
recommended metrics for comparing nondominated sets [6].
Regarding MNK-Landscapes, the hypervolume of the true
Pareto front increases with Ki, regardless of N and M . This
is an important property to remember in comparative studies
of MOEAs.

We conduct our study on MNK-Landscapes with M =
{2, 3} objectives and N = 100 bits, vary the number of
epistatic interactions from Ki from %0 to %50 of N si-
multaneously in all objectives (K1, · · · , KM = Ki), and
set random epistatic patterns among bits for all objectives
(D1, · · · , DM = random). For each combination of M , N
and Ki, 50 different problems were randomly generated.

To observe and compare the performance on subclasses of
problems we plot the mean value of the Archive’s hypervol-
ume in the 50 problems over several values of Ki for each
value of M . We maximize all objectives and set [0.0, · · · , 0.0]
as the reference point to calculate the hypervolume. Vertical
bars overlaying the mean hypervolume curves represent 95%
confidence intervals. Throughout this work the number of
evaluations is set to 3×105 and the Archive size is set to 100.

6. Behavior Observation and Discussion

6.1. Effect of population size on moRBC

First, we study the effect of the population size on the
moRBC. Fig. 2 shows results by moRBC(δ : 1 + 1) for
some values of δ in M = 2 and M = 3 objectives. From
the plots, note that the value of the hypervolume found by the
algorithms increases rapidly with Ki, for Ki = 0 to small
values of Ki. Then, it decreases continuously with Ki, for
medium and high Ki. These decreasing values of the hy-
pervolume when Ki increases indicates that the search per-
formance of the algorithms is worsening. Also, it can be
seen that the inclusion of a Population of size δ for restarts
in moRBC(δ : 1 + 1) improves noticeably the performance
of the bit climber. The best overall performance is achieved
by moRBC(100 : 1 + 1) in two and three objectives. How-
ever, note that with small values of δ it is possible to achieve
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Figure 2: moRBC(δ : 1 + 1). M = 2 and M = 3
from left to right.

Figure 3: moRBC(δ : 1+1), NSGA-II, and SPEA2. M = 2
and M = 3 from left to right

high performance. For example, moRBC(δ : 1 + 1) with
δ = 3, and δ = 5 already approach the performance of
moRBC(100 : 1 + 1) for two, and three objectives, respec-
tively. Note that as the number of objectives increases the
size of the population δ also needs to be increased in order to
approach the performance of moRBC(100 : 1 + 1).

To explain better how the population size δ affects the
climbing process remember that the population is a set of
individuals nondominated by the parent and amongst them-
selves. Therefore the population establishes a front. Increas-
ing the size of the population would likely increase the cover-
age of its front, especially if crowding distance is also taken
into account to update the population. Thus, the population
size increases the quality level (closeness to the true Pareto)
by which nondominated solutions are accepted as members
of the population, implicitly pushing the algorithm towards
higher fronts. Since the population is used for restarts, an
algorithm that continues its search from an individual drawn
from a larger population is likely to be in a better position to
explicitly climb further by dominance to higher fronts.

6.2. Comparison with NSGA-II and SPEA2

Besides results by the moRBC, Fig. 3 also includes re-
sults by NSGA-II and SPEA2. For both MOEAs two-point
crossover is used for recombination with probability 0.6, and
mutation is implemented as the standard bit-flipping method
and applied with probability 1/N per bit. The parent and off-
spring population sizes are set to 100.

From the plots we can see that the overall performance of
the multiobjective random bit climber is better than NSGA-II
and SPEA2 for two and three objectives. Regarding NSGA-II
and SPEA2, note that they perform very similarly for two ob-
jectives and most values of Ki. For three objectives SPEA2
performs better than NSGA-II for 5 ≤ Ki ≤ 15. NSGA-II
and SPEA2 are a population based search heuristic and use
elitism. These results raise several questions regarding the
different processes involved in NSGA-II and SPEA2. Are se-
lection and recombination performing well? These questions
would be the subject of future research.

7. Conclusions

In this work we have presented an extension of Kauffman’s
NK-Landscapes to multiobjective MNK-Landscapes in order
to use them as a benchmark tool and as a means to understand
better the working principles of MOEAs. We also introduced
an elitist multiobjective random bit climber and compared its
performance against NSGA-II and SPEA2. We conducted ex-
periments on MNK-Landscapes with M = {2, 3} objectives,
N = 100 bits, varying the epistatic interactions K from 0 to
50. We observed that moRBC(δ : 1 + 1) showed superior
performance for all values of Ki in M = 2 and M = 3
objectives. Increasing Ki the performance of the MOEAs
decrease significantly. As future works, we would like to
continue studying the effects on performance of the several
processes involved in a multiobjective evolutionary algorithm
using scalable epistatic problems.
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