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Arturo Herńandez Aguirre, Salvador Botello Rionda
Center for Research in Mathematics (CIMAT)

Department of Computer Science
A.P. 402, Guanajuato, Gto. C.P. 36000 MEXICO

Email: artha,botello@cimat.mx

Carlos A. Coello Coello
CINVESTAV-IPN

Computer Science Section, Electrical Eng. Dept.
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Abstract— In this paper, we introduce PASSSS (PAS4), the
Pareto Archived and dominance Selection with Shrinkable Search
Space evolutionary computation algorithm. The main contribu-
tion of this paper is a diversity control mechanism embedded into
the selection operator of an evolutionary algorithm that can be
used (with little or no modification) to solve both single-objective
and multi-objective optimization problems. We present a detailed
description of the PAS4 algorithm, and illustrate its capabilities
by solving several engineering design problems and some test
functions from a well-known benchmark in evolutionary opti-
mization. Additionally, PAS4 is also used to solve continuous
and discrete multiobjective engineering optimization problems.

I. I NTRODUCTION

The design of constraint-handling mechanisms for evo-
lutionary algorithms has been the subject of considerable
research in the last few years [12], [3]. Perhaps the main
lesson learned from this research is that a key aspect when
designing a constraint-handling mechanism is to be able
to maintain diversity in the population of the evolutionary
algorithm adopted for optimization [15], [7]. In this paper,
we introduce a new selection operator that focuses on diver-
sity. ThePAS4 algorithm uses a selection mechanism based
on Pareto dominance [4]. However, unlike other constraint-
handling approaches that separate constraints and objectives
(see for example [5]),PAS4 does not perform tournaments
based on feasibility.PAS4 inherits its main structure from
the ISPAES algorithm introduced in [8], but it uses a(µ+λ)-
ES, enhanced with: an external memory, an adaptive grid that
operates on objective function space (which helps to control
diversity, like in PAES [9]), a mechanism to trim the search
space and to focus the search effort on promising regions, and
the selection mechanism introduced in this paper, and which
we call “most promising selection” (calledtest in Figures 1
and 3).

The organization of the paper is the following: Section II
introduces the formalities of the problem of interest to us.
Section III describes the criteria used to establish Pareto dom-
inance. Section IV explains how multiobjective concepts have
been used to handle constraints in the specialized literature.
Section V gives an introduction to the desirable properties
of the selection procedure attached to a constraint-handling
technique. Section VI presents a detailed description of the
PAS4 algorithm (for continuous search spaces), and the

(simple) changes needed for solving discrete problems with
the same approach. Section VII describes some engineering
optimization problems taken from the standard literature. Fi-
nally, Section VIII draws our conclusions and provides some
paths of future research.

II. PROBLEM STATEMENT

We are interested in the general nonlinear programming
problem in which we want to:

Find ~x which optimizesf(~x) (1)

subject to:

gi(~x) ≤ 0, i = 1, . . . , n (2)

hj(~x) = 0, j = 1, . . . , p (3)

where~x is the vector of solutions~x = [x1, x2, . . . , xr]T , n is
the number of inequality constraints andp is the number of
equality constraints (in both cases, constraints could be linear
or non-linear).

For an inequality constraint that satisfiesgi(~x) = 0, then
we will say that isactive at ~x. All equality constraintshj

(regardless of the value of~x used) are considered active at all
points of the feasible region (F).

III. B ASIC CONCEPTS

A multiobjective optimization problem (MOP) has the fol-
lowing form:

minimize [f1(~x), f2(~x), . . . , fk(~x)] (4)

subject to then inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . , n (5)

and thep equality constraints:

hj(~x) = 0 j = 1, 2, . . . , p (6)

wherek is the number of objective functionsfi : Rn → R.
We call ~x = [x1, x2, . . . , xr]

T to the vector of decision
variables. We wish to determine from among the setF of
all vectors which satisfy (5) and (6) the particular set of



valuesx∗1, x
∗
2, . . . , x

∗
n which yield the optimum values of all

the objective functions.

A. Pareto Optimality

For a given multiobjective optimization problem,~f(~x), the
Pareto optimal set(P∗) is defined as:

P∗ := {~x ∈ F | ¬∃ ~x′ ∈ F ~f(~x′) ¹ ~f(~x)}. (7)

In words, this definition says that~x∗ is Pareto optimal if
there exists no feasible vector of decision variables~x ∈ F
which would decrease some criterion without causing a simul-
taneous increase in at least one other criterion. Unfortunately,
this concept almost always gives not a single solution, but
rather a set of solutions called thePareto optimal set. The
vectors ~x∗ corresponding to the solutions included in the
Pareto optimal set are callednondominated. The image of
the Pareto optimal set under the objective functions is called
Pareto front.

IV. RELATED WORK

The PAS4 algorithm belongs to the group of techniques
in which multiobjective optimization concepts are adopted
to handle constraints. Such approaches normally adopt a
redefinition of a single-objective optimization problemf(~x)
as a multiobjective optimization one, in which we will have
m + 1 objectives, wherem is the total number of constraints.
Then, we can apply any multiobjective optimization technique
[4] to the new vector̄v = (f(~x), f1(~x), . . . , fm(~x)), where
f1(~x), . . . , fm(~x) are the original constraints of the problem.
An ideal solution~x would thus havefi(~x) ≥ 0 for 1 ≤ i ≤ m
and f(~x) ≤ f(~y) for all feasible~y (assuming minimization).
Additionally to this redefinition of a single-objective opti-
mization problem into a multiobjective optimization problem,
PAS4 uses a selection mechanism based on Pareto dominance
and retains the nondominated solutions found along the evo-
lutionary process in an external archive.

Other authors have adopted selection schemes based on
Pareto dominance (or Pareto ranking) (see for example [17]).
However, none of these authors adopted an external archive
to retain nondominated solutions, and all of these previous
approaches presented problems related to loss of diversity [3].
Additionally, no effort was made on any of these previous
approaches for focusing the search effort towards the most
promising regions of the space explored so far. These are the
main issues that distinguishes our proposal from the previous
work reported in the literature.

V. SELECTION OPERATOR

Several other authors have identified in the past that, in
order to sample the feasible region of the search space widely
enough as to reach the global optimum, it is necessary to
maintain a balance between feasible and infeasible solutions
[7], [11]. In this paper, the desired population composition
produced by an “ideal” selection operator is calledselection
blend. Also, it is desirable that the selection operator is able
to maintain diversity in the population, which in our case

in
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Fig. 1. The logical structure of thePAS4 algorithm.

implies keeping both feasible and infeasible solutions in the
population. These goals are difficult to achieve when the
selection operator is driven by “greedy rules” which tend
to be incompatible with our goal of maintaining infeasible
solutions in the population. For example, it could be the case
that the selection operator tends to increase the number of
feasible solutions over time, always disregarding infeasible
individuals. Such an operator opposes our goal of maintaining
diversity in the population. The proposal inPAS4 is to
adopt a selection operator based on Pareto dominance (see
Figure 1), which performs the following tasks: first, it findsthe
individual in the external population (i.e., our approximation
of the Pareto optimal set found so far) with the maximum
amount of violation with respect to the first constraint, and it
deletes it. Then, we consider only the second constraint, and
we apply the same procedure. This process is repeated until
we have traversed all the constraints of the problem. Note that
since we do not delete individuals based on their total amount
of constraint violation (or closeness to the feasible region),
the operator is able to preserve both feasible and infeasible
solutions in the population.

VI. T HE PAS4 ALGORITHM

The approach proposed in this paper adopts an external
population that keeps the nondominated solutions found along
the evolutionary process. Anadaptive gridapplied over objec-
tive functions space is used to keep diversity as in the Pareto
Archived Evolution Strategy (PAES) [9]. However, inPAS4

the grid reduces its size over time (i.e., generations). Thus,
its spread decreases over time, focusing the search effort on
the most promising regions of the search space. The logical
structure ofPAS4 is shown in Figure 1. Note the two loops
operating over the external population (or memory). The right
loop aims to explore the search space, while the left loop aims
to keep population diversity and to perform an exploitation of
solutions.



maxsize: max size of Pareto store
maxffeval: fitness function evaluations
Initialize Pareto store with maxsize individuals
While gen≤MaxGendo

Pick µ parents from less crowded area
Run (µ + λ)-ES until maxffeval is met
test(Pareto store,λ children)
test: adds children to Pareto store
shrinkspace(Pareto store): reduce search space

End While

Fig. 2. Main algorithm of ourPAS4

for each child ch ∈ children {
if (PSi ∈ Pareto store¹ ch) then next ch
if (ch¹ PSi ∈ Pareto storethen

delete allPSi

add ch
}

Fig. 3. Pseudo-code oftest(Pareto store,λ children) (called bymain).

PAS4’s fitness function is mainly driven by a feasibility
criterion. Global information carried by the individuals sur-
rounding the feasible region is used to concentrate the search
effort on smaller areas as the evolutionary process progresses.
Eventually, upon termination, the size of the search space
being inspected will be very small and will contain the solution
desired (this is in the case of single-objective problems. For
multi-objective problems, the final inspected zone will contain
the feasible region). The main algorithm ofPAS4 is shown
in Figure 2. Its goal is the construction of the Pareto front
which is stored in an external memory (calledPareto store).
The algorithm performsMaxGenloops. In each loop, as many
as µ parents are picked to populate a(µ + λ)-ES algorithm
which runs for a certain number of generations. When the
Pareto storecannot provideµ parents, the available parents
are mutated in order to provide the required individuals. Theλ
children are inserted into thePareto storeusing the procedure
test and their positions on the grid are recorded. Then, the
current Pareto set (in thePareto store) is passed to the
procedureshrinkspace, where new boundaries are determined
for each decision variable. The grid is recomputed, as well as
the new position of the individuals.

Most of test(Pareto store,λ children) is devoted to two
things: (1) decide whether a child should be inserted inPareto
store, and if so, (2) how to make room for the new member.
Also, after some iterations of the evolution strategy, (controlled
by maxffeval), the space is shrunk around the current Pareto
front represented by the individuals inPareto store. The
pseudo-code of this function is depicted in Figure 3.

A. Shrinking the Objective Space

The functionshrinkspace(Pareto store)contains the most
important contribution of this paper since its task is the
selection of individuals, and the reduction of the search space.
The pseudo-code ofshrinkspace(Pareto store)is shown in
Figure 4.

xpob: smallest value of eachxi ∈ X
xpob: largest value of eachxi ∈ X
select(file);
getMinMax( file, xpob, xpob);
trim(xpob, xpob );
adjustparameters(file);

Fig. 4. Pseudo-code ofshrinkspace(file) (called bymain of PAS4)

m: number of constraints
i: constraint index
maxsize: max size of Pareto store
minPareto: 15% of Pareto store
constraintvalue(x,i):

value of individual at constraint i
sortfile(Pareto store):

sort by objective function
worst(Pareto store,i):

worst individual in Pareto store for constraint i
validconstraints={1,2,3,...,m};
i=firstin(validconstraints);
While (size(Pareto store)> minPareto
and size(validconstraints)> 0) {

x=worst(Pareto store,i)
if (x violates constraint i)

Pareto store=delete(Pareto store,x)
else
validconstraints=removeindex(validconstraints,i)

if (size(validconstraints)> 0) i=nextin(validconstraints)
}
if (size(Pareto store)== minPareto))

list=Pareto store
else

file=sort(Pareto store)
selected=copy(Pareto store,minPareto)

Fig. 5. Pseudo-code ofselect(Pareto store)(called byshrinkspace)

In the following, we describe the four tasks performed by
shrinkspace:

1) The functionselect(Pareto store)selects the best 15%
individuals found inPareto store, meeting the require-
ments listed in Section V. The selection algorithm is
shown in Figure 5. Note thatvalidconstraints (a list
of indexes to the problem constraints) indicates the
ordering in which constraints are processed. The loop
steps over the constraints removing only one (the worst)
individual for each constraint. At least 15% of Pareto
set must stay inPareto store. When no more elements
can be deleted (because they are feasible), the best 15%
from Pareto storeare chosen.

2) The functiongetMinMax(Pareto store) takes the cho-
sen individuals inselected(last step in Figure 5) and
finds the extreme values of each decision variable rep-
resented inselected. Thus, the vectorsxpob andxpob are
found.

3) Function trim (xpob, xpob) shrinks the feasible space
around the potential solutions enclosed in the hypervol-
ume defined by the vectorsxpob and xpob. Thus, the
function trim (xpob, xpob) (see Figure 6) determines the
new boundaries for the decision variables.
The value ofβ is the percentage by which the boundary
values of eitherxi ∈ X must be reduced such that the
resulting hypervolumeH is a fractionα of its previous



n: size of decision vector;
xi: actual upper boundith decision variable
x

i
: actual lower boundith decision variable

xpob,i: upper bound ofith decision variable in pop
x

pob,i
: lower bound ofith decision variable in pop

∀i: i ∈ { 1, . . . , n }
slacki = 0.05× (xpob,i − x

pob,i
)

width pobi = xpob,i − x
pob,i

; widtht
i = xt

i − xt
i

deltaMini =
β∗widtht

i
−width pobi
2

deltai = max(slacki, deltaMini);
xt+1

i
= xpob,i + deltai; xt+1

i
= x

pob,i
− deltai;

if (xt+1
i

> xoriginal,i) then
xt+1

i
− = xt+1

i
− xoriginal,i; xt+1

i
= xoriginal,i;

if (xt+1
i

< xoriginal,i) then
xt+1

i
+ = x

original,i − xt+1
i

;

xt+1
i

= x
original,i

;

if (xt+1 > xoriginal,i) then xt+1
i

= xoriginal,i;

Fig. 6. Pseudo-code oftrim (called byshrinkspace)

value. The functiontrim first finds in the population
the boundary values of each decision variable:xpob,i

andxpob,i. Then the new vectorsxi andxi are updated
by deltaMini, which is the decrement in each variable
that in the overall reflects a change in the volume by a
factor β. In PAS4, all objective variables are reduced
at the same rateβ, therefore,β can be deduced fromα
as discussed next. Since we need the new hypervolume
to be a fractionα of the previous one,

Hnew≥ αHold (8)

n∏

i=1

(xt+1
i − xt+1

i ) = α

n∏

i=1

(xt
i − xt

i)

Either xi is reduced at the same rateβ, thus
n∏

i=1

β(xt
i − xt

i) = α

n∏

i=1

(xt
i − xt

i)

β = α
1
n

In short, the new search interval of each decision vari-
able xi is adjusted as follows (the complete algorithm
is shown in Figure 4):

widthnew ≥ β × widthold

At this point of the description, an obvious question is:
what is the ideal number of generations that we should
run our ES? Also, what is a good space reduction ratio?
For the sake of space, we will only indicate that we have
thoroughly studied this issue, and found a somewhat
unexpected result. We found that there are not as many
combinations to play with as one might think at first
sight. By setting the variableα to some value in the
range [90, 95]%, and callingshrinkspace() every two
or three generations of the ES algorithm (right hand
side loop in Figure 1),PAS4 exhibits a very good
performance. In fact, in our experiments, we setα =
90% and called shrinkspace() every 2 generations, and

tried to improve the behavior by changing the population
size. Thus, we claim that these parameters can remain
fixed for any problem.
The variableslack is calculated once every new search
interval is determined (usually set to5% of the interval).
The role ofslackis simply to prevent (up to some extent)
fast decreasing rates of the search interval.

4) The last step ofshrinkspace()is a call toadjustparam-
eters(file). The goal here is to re-initialize the control
variableσ through:

σi = (xi − xi)/
√

n i ∈ (1, . . . , n) (9)

This expression is also used during the generation
of the initial population. In that case, the upper and
lower bounds take the initial values of the search space
indicated by the problem. The variation of the mutation
probability follows the exponential behavior suggested
by Bäck [1].

Elitism

A special form of elitism is implemented byPAS4 to
prevent the lost of the best individual. Elitism is implemented
as follows: the best individuala is stored and only replaced by
the bestb of any generation ifb is better thana accordingly
to the selection rules (see Section V).

PAS4 for Optimizing problems in Discrete Search Spaces

Simple modifications are required for discrete optimization
problems. In such case, the initial value of all the decision
variables will be a random integer drawn from an uniform
distribution, and bounded by the upper and lower limits
indicated by the specific problem. Mutation of the decision
variables is performed in this case as follows,

xt+1
i = xt

i + rand(σi)

whereσi is the control variable of the corresponding decision
variable, andrand(σi) is a random number with uniform
distribution in the interval[0, σ]. Control variablesσi are
mutated as follows,

if(random() < 0.45) then σ = σ + 1; else σ = σ − 1;

this is, with little less probability than the average of 0.5, the
control variables diminish their value by 1. The reduction of
the search space is performed as shown in Figure 6 for the real
numbers space case, except that all results of the computations
must be rounded up to the next integer. The variableslack is
also computed as depicted in Figure 6. Its value must also be
rounded up, and its smallest possible value is 1.

VII. E XAMPLES

The parameters for all experiments described in Sec-
tions VII-B, VII-C, and VII-D, are: (1+1)-ES, Pareto store
capacity for 200 individuals, 50% the minimum size of Pareto
store, volume preservedα ≥ 90%, call shrinkspace() every 2
generations, for 500 generations.



A. Solving Michalewicz’s benchmark

Our first example is the solution of the well-known
Michalewicz’s benchmark for constrained optimization [12].
This benchmark, later extended by Runarsson & Yao [15], con-
tains a set of 13 single-objective problems with constraints of
different types (linear, nonlinear, equality and inequality). All
these test problems have continuous search spaces and present
different dimensionalities. In the past, a number of evolution-
ary algorithms with special constraint-handling schemes have
been validated using this benchmark [10], [15], [7]. However,
we will present a comparison of results only with respect to
the Stochastic Ranking approach proposed by Runarsson &
Yao [15], since this algorithm is representative of the state-of-
the-art in the area and has been used recently as a reference to
validate new constraint-handling techniques. In order to allow
a fair comparison, we set the total number of fitness function
evaluations to 350,000, as in [15].Paretostorecan hold up to
200 individuals, which means that we adopt a (150+200)-ES.
We also reduce at most 10% of search hypervolume at every
2 generations. We apply discrete crossover on the decision
variables, and intermediate crossover on the control variables.
Table I shows a comparison of the results obtained byPAS4

with respect to Stochastic Ranking.

B. Optimization of a 49-bar Plane Truss

The next example chosen is the optimization of the 49-bar
plane truss shown in Figure 7. The solutions to this problem
were calculated in discrete search space using the catalog of
Altos Hornos de Ḿexico. We will describe next both a single-
objective and multi-objective version of the problem.

1) The 49-bar Plane Truss as a Single-Objective Optimiza-
tion Problem with Constraints:In this case, the goal is to
find the cross-sectional area of each member of the truss,
such that the overall weight is minimized, subject to stress
and displacement constraints. The weight of the truss is given
by F (~x) =

∑49
j=1 γAjLj , whereAj is the cross-sectional area

of the jth member,Lj is the corresponding length of the bar,
andγ is the volumetric density of the material.

We used the catalog ofAltos Hornos de Ḿexico, S.A., with
65 entries for the cross-sectional areas available for the design.
Other relevant information is the following: Young modulus
= 2.1 × 106 kg/cm2, maximum allowable stress = 3500.00
kg/cm2, γ = 7.4250× 10−3 kg/cm3, and a horizontal load of
4994.00 kg applied to the nodes: 3, 5, 7, 9, 12, 14, 16, 19,
21, 23, 25 y 27. We solved this problem for three cases:

1) Case 1. Stress constraints only:Maximum allowable
stress = 3500.00 kg/cm2. A total of 49 constraints, thus
50 objective functions.

2) Case 2. Stress and displacement constraints:Maxi-
mum allowable stress = 3500.00 kg/cm2, maximum dis-
placement per node= 10 cm. There are 72 constraints,
thus 73 objective functions.

3) Case 3. Real-world problem: The design problem
considers traction and compression stress on the bars, as
well as their proper weight. Maximum allowable stress
= 3500.00 kg/cm2, maximum displacement per node

Fig. 7. 49-bar plane truss of the second optimization example.

TABLE II

COMPARISONS FOR THE49-BAR TRUSS, CASE 1.

Algorithm Average Weight (Kg)

PAS4 610
SA 627

GA50 649
GSSA50 619
GSSA5 625

=10 cm. A total of 72 constraints, thus, 73 objective
functions.

The average result of 30 runs for each case are shown in
Tables II, III and IV. We comparePAS4 with previous results
(based on the catalog of Altos Hornos de México) reported by
Botello et al. [2] using other heuristics with a penalty function
[14] (SA: Simulated Annealing, GA50: Genetic Algorithm
with a population of 50, and GSSA: General Stochastic Search
Algorithm with populations of 50 and 5). We can clearly see
that except for the GSSA50 technique,PAS4 produced the
lowest average weight.

2) The 49-bar Plane Truss as a Multi-Objective Optimiza-
tion Problem with Constraints:The statement of this problem
is similar to case 3 in Section VII-B.1, but now we consider
two objective functions for simultaneous optimization. Our
first objective is the minimization of the structure’s weight; the
second objective is the minimization of the horizontal displace-
ment of the node at upper right corner of the structure. The

TABLE III

COMPARISONS FOR THE49-BAR TRUSS, CASE 2.

Algorithm Average Weight (Kg)

PAS4 725
SA 737

GA50 817
GSSA50 748
GSSA5 769



TABLE I

COMPARISON OFPAS4 WITH RESPECT TOSTOCHASTIC RANKING (SR) [15].

Best Result Mean Result Median Result
Problem Optimal PAS4 SR PAS4 SR PAS4 SR

g01 −15.0000 −14.9998 −15.0000 −14.88731 −15.000 −14.99645 −15.000
g02 0.803619 0.80346 0.803515 0.79901 0.781975 0.80330 0.78580
g03 1.000000 1.00017 1.000 1.00038 1.000 1.00039 1.00000
g04 −30665.5390 −30665.5300 −30665.5390 −30665.5300 −30665.539 −30665.5300 −30665.539
g05 5126.49800 5126.5200 5126.497 5180.15545 5128.881 5152.8950 5127.372
g06 −6961.8140 −6961.8100 −6961.814 −6961.8100 −6875.940 −6961.8100 −6961.814
g07 24.30621 24.33060 24.307 24.57961 24.374 24.46830 24.357
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630 680.630 680.630 680.63243 680.656 680.632 680.641
g10 7049.331 7059.840 7054.316 7366.9965 7559.192 7342.6000 7372.613
g11 0.750000 0.7500 0.7500 0.74993 0.750 0.74991 0.750
g12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
g13 0.053950 0.053950 0.053957 0.22022 0.057006 0.08968 0.057006

TABLE IV

COMPARISONS FOR THE49-BAR TRUSS, CASE 3.

Algorithm Average Weight (Kg)

PAS4 2603
SA 2724

GA50 2784
GSSA50 2570
GSSA5 2716

Fig. 8. Pareto front for the 49-bar plane truss of Figure 7 stated as a bi-
objective optimization problem (See Section VII-B.2).

Pareto front of these two objectives subject to 71 constraints
is shown in Figure 8.

C. Optimization of 72-bar 3D Structure

The following problem is the design of the 72-bar 3D
structure shown in Figure 9. The truss is subject to two
distinct loading conditions and sixteen independent design
variables. All nodes are subject to a displacement constraint
∆ ≤ 0.25 inches in x and y direction. All bars have
a stress constraint−1759.25 kg/cm2 ≤ (σa)i ≤ 1759.25
kg/cm2, i = 1, 2 . . . 72. The minimum size constraint is0.254
cm2 ≤ Ai, i = 1, 2 . . . 72. The properties of the material are:
modulus of elasticity:7.031× 106kg/cm2, volumetric weight:
2.77 × 10−3 kg/cm3. The first loading condition has a point

Fig. 9. Optimization of a 72-bar 3D structure.

TABLE V

THE 72-BAR 3D TRUSS CROSS SECTIONS BY GROUP.

Group Member Group Member
1 A1-A4 9 A37-A40
2 A5-A12 10 A41-A48
3 A13-A16 11 A49-A52
4 A17-A18 12 A53-A54
5 A19-A22 13 A55-A58
6 A23-A30 14 A59-A66
7 A31-A34 15 A67-A70
8 A35-A36 16 A71-A72

load in node 1 with2270 kg in x direction, 2270 kg in y
direction and−2270 kg in z direction. The second loading
condition has four load points in nodes 1,2,3 and 4, with
−2270 kg in z direction. The design problem is the design of
the truss for both loading conditions. In Table V, we provide
the group description of the truss. We solved this problem as
a single-objective optimization case in both continuous and
discrete search spaces.

1) The 72-bar 3D Structure in Continuous Search Space as
a Single-Objective Optimization Problem with Constraints:
As noted, the design problem is the minimization of the weight
structure subject to both loading conditions. We compared



TABLE VI

PAS4 VS. RESULTS OF SEVERAL AUTHORS FOR OUR72-BAR 3D

STRUCTURE IN CONTINUOUS SEARCH SPACE.

Algorithm Best Minimun Weight (Kg)

PAS4 172.02
Venkayya [18] 173.06

Gellatly [6] 179.77
Renwei [13] 172.36
Schmit[16] 176.44

Xicheng [19] 172.90
GAOS [2] 173.94

TABLE VII

PAS4 STATISTICS FOR THE72-BAR 3D STRUCTURE IN CONTINUOUS

SEARCH SPACE.

Parameter Weight (Kg)

Best 172.02
Worst 172.09
Mean 172.05
Std. dev. 0.015
Median 172.04
Fact. Sol. 30

PAS4 against several results of other authors in Table VI;
as it can be observed our approach provided the best solution.
In Table VII, we show basic statistics for 30 runs.

2) The 72-bar 3D Structure in Discrete Search Space as a
Single-Objective Optimization Problem with Constraints:We
solved three cases of this problem using the catalog ofAltos
Hornos de Ḿexico, S.A.with 65 entries for the cross-sectional
areas: 1) stress constraints only; 2) stress and displacement
constraints; 3) displacement constraints, and considers bar
traction and compression stress, as well as their proper weight.
The values of material properties and constraints remain with
no change for all three cases. Statistics of the best solutions
in 30 runs for the 3 cases are shown in Table VIII.

D. Optimization of a Steel Dome

Our last example is the optimization of the weight of the
steel dome shown in Figure 10 for discrete search space (using
the catalog ofAltos Hornos de Ḿexico, S.A.)

1) The Steel Dome as a Single-Objective Optimization
problem with constraints:This truss has seven independent
design variables. For all nodes, a displacement constraint∆ ≤
20 mm was assumed in thez direction. All bars are subject to
the stress constraint given by the aforementioned catalog. The

TABLE VIII

PAS4 SOLUTIONS TO THE72-BAR 3D STRUCTURE USING A CATALOG

WITH 65 ENTRIES (DISCRETE SEARCH SPACE).

Parameter Case1 (Kg) Case2 (Kg) Case3 (Kg)

Best 92.3295 192.7194 630.400
Worst 92.3295 193.4353 640.3640
Mean 92.3295 192.9098 633.2354
Std. dev. 0.0 0.3060 2.7371
Median 92.3295 192.7194 632.9665
Fact. Sol. 30 30 30

Fig. 10. Optimization of a steel dome.

TABLE IX

PAS4 SOLUTIONS TO THE STEEL DOME(DISCRETE CASE).

Parameter Case1 (Kg) Case2 (Kg) Case3 (Kg)

Best 703.57 703.57 13642.33
Worst 703.57 703.57 13651.93
Mean 703.57 703.57 13644.56
Std. dev. 0.0 0.0 4.1304
Median 703.57 703.57 13642.33
Fact. Sol. 30 30 30

material properties are: modulus of elasticity= 2.1x106kg/cm2,
yield strength: 2750 kg/cm2. The loading conditions are a
punctual load inz direction with different magnitude:−500
kg in node 1;−40 kg in nodes 17, 23, 29, and 35;−120 kg in
nodes 16, 18, 22, 24, 28, 30, 34, and 36;−200 kg on the rest
of the nodes. We solved three cases of this problem using the
catalog ofAltos Hornos de Ḿexico, S.A.with 65 entries for
the cross-sectional areas: 1) stress constraints only; 2) stress
and displacement constraints; 3) displacement constraints, and
considers bar traction and compression stress, as well as
their proper weight. The values of material properties and
constraints remain with no change for all three cases. Solutions
for the 3 cases are shown in Table IX. Columns “Case1” and
“Case2” are equal because displacement constraints are too
small.

2) The Steel Dome as a Multi-Objective Optimization Prob-
lem with Constraints:In this case, the two objective functions
are the minimization of the weight structure, and the vertical
deformation of central node, subject to the original constraints.
In Figure 11 we show the Pareto front for this problem. The
plot shows that there are many weight combinations that keep
the vertical deformation practically with no change. It can also
be seen that this deformation increases, perhaps dangerously,
with very little variations of the weight, when this is in the
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Fig. 11. Pareto front of the steel dome stated as a bi-objective problem.

critical interval [1000, 2000] (approximately).

VIII. D ISCUSSION ANDFINAL REMARKS

We have introduced thePAS4 evolutionary algorithm that
combines the following three ideas: 1) a constraint-handling
mechanism based on multi-objective optimization concepts; 2)
a Pareto dominance-based selection operator which promotes
diversity and a desired blend including promissory and “best
unfeasible” individuals; 3) a search reduction population-
driven mechanism that directs the search towards promising
areas of the space; and 4) an external memory to store the
latest nondominated solutions found. Regarding constraint-
handling for single-objective optimization, we compared our
results with respect to stochastic ranking [15] (see Table I). We
can see that our results are highly competitive. Furthermore,
we have shown the potential of our proposal by applying
it to problems both in continuous and in discrete search
spaces. Pareto fronts in these spaces have been plotted from
our experiments.PAS4 requires to make decisions over four
parameters (described in Section VII): the size of the Pareto
set; the shrinkspace rate; the size of the new hypervolume after
reduction; and the percentage of remanent “best infeasible”
individuals in the Pareto set. These parameters are not hard to
set, and we argue that their fine-tuning is not more difficult
than that required by the traditional parameters of a genetic
algorithm. Our approach is not the simplest possible algorithm
for evolutionary optimization, but it has as an aggregated value
the fact of being able to deal (rather competitively) with both
constrained single-objective and multi-objective optimization
problems.
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