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Abstract—In this paper, we introduce PASSSS PASY), the (simple) changes needed for solving discrete problems with
Pareto Archived and dominance Selection with Shrinkable Search the same approach. Section VIl describes some engineering
Space evolutionary computation algorithm. The main contribu- — qntimization problems taken from the standard literature. Fi-

tion of this paper is a diversity control mechanism embedded into V. Section VIII d USi d id
the selection operator of an evolutionary algorithm that can be nally, section raws our conclusions and provides some

used (with little or no modification) to solve both single-objective Paths of future research.
and multi-objective optimization problems. We present a detailed
description of the PAS* algorithm, and illustrate its capabilities Il. PROBLEM STATEMENT

by solving several engineering design problems and some test \We are interested in the general nonlinear programming
fu_nctl_ons from_ a WeII-known4 benchmark in evolutionary opti- problem in which we want to:

mization. Additionally, PAS*® is also used to solve continuous
and discrete multiobjective engineering optimization problems.

Find Z which optimizesf(Z) Q)
I. INTRODUCTION biect t
subject to:
The design of constraint-handling mechanisms for evo- :

lutionary glgorlthms has been the subject of consnderab_le G(@) <0, i=1,....n )
research in the last few years [12], [3]. Perhaps the main
lesson learned from this research is that a key aspect when hi(Z)=0, j=1,...,p 3)
designing a constraint-handling mechanism is to be a%%eref is the vector of solutions = [z1, 7, .., 2,]T, n is

to maintain diversity in the population of the evolutionar)(he number of inequality constraints apds the number of

algquthm adopted for optlm ization [15], [7]. In this pap?requality constraints (in both cases, constraints could be linear
we introduce a new selection operator that focuses on diver* .
. 4 . . . or non-linear).
sity. The PAS* algorithm uses a selection mechanism based : : . e
. : .~ " For an inequality constraint that satisfiggZ) = 0, then
on Pareto dominance [4]. However, unlike other constraint- . . . - . ]
. . . Wwe will say that isactive at . All equality constraintsh;
handling approaches that separate constraints and object?/es 7 )
" régardless of the value af used) are considered active at all
(see for example [5])PAS* does not perform tournaments oints of the feasible regior)
based on feasibilityPAS* inherits its main structure from P 9 '
the ISPAES algorithm introduced in [8], but it use$a+ \)- I1l. BAsiC CONCEPTS
ES, enhanced with: an external memory, an adaptive grid thaly mitiohjective optimization problem (MOP) has the fol-
operates on objective function space (which helps to contqg{Ning form:
diversity, like in PAES [9]), a mechanism to trim the search
space ano_l to focus th_e sef_:\rch effort on promising regions, gnd minimize [f1(2), f2(Z), ..., fu(Z)] ()
the selection mechanism introduced in this paper, and which _ _ _
we call “most promising selection” (calle@st in Figures 1 ~ subject to then inequality constraints:
and 3).
The organization of the paper is the following: Section Il gi(%) <0 i=1,2,....,n ()
introduces the formalities of the problem of interest to us. : :
X . N . and thep equality constraints:
Section Il describes the criteria used to establish Pareto dom- P €q y
inance. Section IV explains how multiobjective concepts have
been used to handle constraints in the specialized literature.
Section V gives an introduction to the desirable propertieghere k is the number of objective functiong : R" — R.
of the selection procedure attached to a constraint-handlig call & = [xl,xg,...,xr]T to the vector of decision
technique. Section VI presents a detailed description of thariables. We wish to determine from among the $ebf
PAS* algorithm (for continuous search spaces), and trdl vectors which satisfy (5) and (6) the particular set of



: . . 4
valueszy, x5, ..., x) which yield the optimum values of all PASALGORITHM

the objective functions.

INITIAL POPULATION
PICK PARENTS FROM
LESS CROWDED AREA

A. Pareto Optimality

For a given multiobjective optimization problerfi(z), the
Pareto optimal se{P*) is defined as:

<SELECT>

* - = 7 7 (utA)
P ={TeF|-3F F f(&) = f(@)} (7) EVOEUTION

In words, this definition says that* is Pareto optimal if
there exists no feasible vector of decision variables F
which would decrease some criterion without causing a simul-
taneous increase in at least one other criterion. Unfortunately,
this concept almost always gives not a single solution, but <ADJUSTPARAMETERS>
rather a set of solutions called thieareto optimal setThe <RELOCATE INDIVIDUALS
vectors #* corresponding to the solutions included in the ONNEWGRID>
Pareto optimal set are callesondominated The image of
the Pareto optimal set under the objective functions is called
Pareto front Fig. 1. The logical structure of th® AS* algorithm.

ALGORITHM

ADD CHILDREN BY USING
PROCEDURE <TEST>

in ADJUSTED PARETO SET

IV. RELATED WORK

The PAS* algorithm belongs to the group of technique#mplies keeping both feasible and infeasible solutions in the
in which multiobjective optimization concepts are adoptepopulation. These goals are difficult to achieve when the
to handle constraints. Such approaches normally adoptselection operator is driven by “greedy rules” which tend
redefinition of a single-objective optimization problefitz) to be incompatible with our goal of maintaining infeasible
as a multiobjective optimization one, in which we will havesolutions in the population. For example, it could be the case
m + 1 objectives, wheren is the total number of constraints.that the selection operator tends to increase the number of
Then, we can apply any multiobjective optimization technique€asible solutions over time, always disregarding infeasible
[4] to the new vectors = (f(Z), fi(Z),..., fm(¥)), where individuals. Such an operator opposes our goal of maintaining
f1(@),..., fm(Z) are the original constraints of the problemdiversity in the population. The proposal iRAS* is to
An ideal solutionz would thus havef;(¥) > 0for 1 <i <m adopt a selection operator based on Pareto dominance (see
and f(¥) < f(¥) for all feasibley (assuming minimization). Figure 1), which performs the following tasks: first, it fintte
Additionally to this redefinition of a single-objective opti-individual in the external population (i.e., our approximation
mization problem into a multiobjective optimization problemof the Pareto optimal set found so far) with the maximum
PAS* uses a selection mechanism based on Pareto dominaagwunt of violation with respect to the first constraint, and it
and retains the nondominated solutions found along the ewsletes it. Then, we consider only the second constraint, and
lutionary process in an external archive. we apply the same procedure. This process is repeated until

Other authors have adopted selection schemes basedwsrhave traversed all the constraints of the problem. Note that
Pareto dominance (or Pareto ranking) (see for example [1Aince we do not delete individuals based on their total amount
However, none of these authors adopted an external archifeconstraint violation (or closeness to the feasible region),
to retain nondominated solutions, and all of these previotle operator is able to preserve both feasible and infeasible
approaches presented problems related to loss of diversity g}lutions in the population.

Additionally, no effort was made on any of these previous
approaches for focusing the search effort towards the most VI. THE PAS® ALGORITHM

promising regions of the space explored so far. These are thdhe approach proposed in this paper adopts an external
main issues that distinguishes our proposal from the previouepulation that keeps the nondominated solutions found along

work reported in the literature. the evolutionary process. Aadaptive gridapplied over objec-
tive functions space is used to keep diversity as in the Pareto
V. SELECTION OPERATOR Archived Evolution Strategy (PAES) [9]. However, A S*

Several other authors have identified in the past that, time grid reduces its size over time (i.e., generations). Thus,
order to sample the feasible region of the search space widi$yspread decreases over time, focusing the search effort on
enough as to reach the global optimum, it is necessary ttee most promising regions of the search space. The logical
maintain a balance between feasible and infeasible solutistaicture ofPAS* is shown in Figure 1. Note the two loops
[7], [11]. In this paper, the desired population compositionperating over the external population (or memory). The right
produced by an “ideal” selection operator is calkglection loop aims to explore the search space, while the left loop aims
blend Also, it is desirable that the selection operator is abte keep population diversity and to perform an exploitation of
to maintain diversity in the population, which in our casesolutions.



maxsize: max size of Pareto store
max f feval: fitness function evaluations
Initialize Pareto store with maxsize individuals
While gen<MaxGendo
Pick n parents from less crowded area
Run (1 + A)-ES until maxffeval is met
test(Pareto store) children)
test: adds children to Pareto store
shrinkspace(Pareto store): reduce search space

Fig. 2. Main algorithm of ourP AS*

for each child ch € children {
if (PS; € Pareto store< ch) then next ch
if (ch X PS; € Pareto storghen
delete allPS;
add ch

Fig. 3. Pseudo-code dést(Pareto store,\ children) (called bymain).

PAS*s fitness function is mainly driven by a feasibility
criterion. Global information carried by the individuals sur-
rounding the feasible region is used to concentrate the search
effort on smaller areas as the evolutionary process progresses.
Eventually, upon termination, the size of the search space
being inspected will be very small and will contain the solution
desired (this is in the case of single-objective problems. For

multi-objective problems, the final inspected zone will contain Fig. 5.

the feasible region). The main algorithm £AS* is shown
in Figure 2. Its goal is the construction of the Pareto front

Xp0b: SMallest value of each; € X
Tpob: largest value of eacl; € X
select(file);

getMinMax( file, £ o1, Tpob);
trim(zpobs Tpob );
adjustparameters(file);

End While Fig. 4. Pseudo-code ahrinkspace(file) (called bymain of PAS%)

m: number of constraints
i constraint index
maxsize: max size of Pareto store
minPareto: 15% of Pareto store
constraintvalue(x,i):

value of individual at constraint i
sortfile(Pareto store):

sort by objective function
worst(Pareto store,i):

worst individual in Pareto store for constraint i
validconstraints£1,2,3,...,n};
i=firstin(validconstraints);
While (size(Pareto store) minPareto
and size(validconstraintsy 0) {

x=worst(Pareto store,i)

if (x violates constraint i)

Pareto store=delete(Pareto store,x)

else

validconstraints=removeindex(validconstraints,i)
if (size(validconstraints)> 0) i=nextin(validconstraints|

if (size(Pareto store}= minPareto))
list=Pareto store

else
file=sort(Pareto store)
selected=copy(Pareto store,minPareto)

Pseudo-code afelect(Pareto store)called byshrinkspace

which is stored in an external memory (callBdreto storg. In the following, we describe the four tasks performed by
The algorithm perform#laxGenloops. In each loop, as manyshrinkspace

as . parents are picked to populate(a + \)-ES algorithm
which runs for a certain number of generations. When the
Pareto storecannot provideu parents, the available parents
are mutated in order to provide the required individuals. Xhe
children are inserted into tHeareto storeusing the procedure
testand their positions on the grid are recorded. Then, the
current Pareto set (in th@areto storg is passed to the
procedureshrinkspacewhere new boundaries are determined
for each decision variable. The grid is recomputed, as well as
the new position of the individuals.

Most of test(Pareto store, A children) is devoted to two
things: (1) decide whether a child should be inserteBdreto
storg and if so, (2) how to make room for the new member.
Also, after some iterations of the evolution strategy, (controlled
by maxffeva), the space is shrunk around the current Pareto
front represented by the individuals iRareto store The
pseudo-code of this function is depicted in Figure 3.

1)

2)

3)
A. Shrinking the Objective Space

The functionshrinkspace(Pareto store)contains the most
important contribution of this paper since its task is the
selection of individuals, and the reduction of the search space.
The pseudo-code ddhrinkspace(Pareto store)is shown in
Figure 4.

The functionselect(Pareto store)selects the best 15%
individuals found inPareto store meeting the require-
ments listed in Section V. The selection algorithm is
shown in Figure 5. Note thatalidconstraints (a list

of indexes to the problem constraints) indicates the
ordering in which constraints are processed. The loop
steps over the constraints removing only one (the worst)
individual for each constraint. At least 15% of Pareto
set must stay irPareto store When no more elements
can be deleted (because they are feasible), the best 15%
from Pareto storeare chosen.

The functiongetMinMax(Pareto store) takes the cho-
sen individuals inselected(last step in Figure 5) and
finds the extreme values of each decision variable rep-
resented irselectedThus, the vectorg,., andz,; are
found.

Function trim (2,06, Tpob) Shrinks the feasible space
around the potential solutions enclosed in the hypervol-
ume defined by the vectots,., and Z,.,. Thus, the
functiontrim (x 05, Tpob) (S€€ Figure 6) determines the
new boundaries for the decision variables.

The value ofg is the percentage by which the boundary
values of eitherr; € X must be reduced such that the
resulting hypervoluméT is a fractiona of its previous



n: size of decision vector; . . . i i
.- actual upper bound, . decision variable tried to improve the behavior by changing the population

=z, actual lower bound,,, decision variable size. Thus, we claim that these parameters can remain

Tpob,i: Upper bound ofi,;, decision variable in pop fixed for any problem

T .: lower bound ofi;;, decision variable in po . .

viie {1 ...n} " Pop The variableslackis calculated once every new search
slack; = 0.05 X (Tpob,i — T,y ;) interval is determined (usually set 58 of the interval).

1 =T - - ; t _ ot ot . .
width-pobi = Tpob,i s width; = — z; The role ofslackis simply to prevent (up to some extent)

£pob.’i
Brwidth! —width-pob;

ggllgfff;‘nf:xélack detaM; fast decreasing rates of the search interval.

FH = By 4 deltag 2 =2~ deltas; 4) The last step afhrinkspace()is a call toadjustparam-

it @ > Toriginat,s) then o eters(file) The goal here is to re-initialize the control
2= =T = Torigimatii T = Toriginal,i; variableo through:

if (&?11 < Toriginal,:) then . )
Ig;-x— = Zriginaly — i 5 oi= (T —z;,)/vVn i€ (l,...,n) 9)
.= . .; . . . . .

it @ > T 1) then FHL = Tyt This expression is also used during the generation

of the initial population. In that case, the upper and
lower bounds take the initial values of the search space
indicated by the problem. The variation of the mutation
probability follows the exponential behavior suggested

value. The functiontrim first finds in the population by Back [1].
the boundary values of each decision variabig,, ; .

andz,,, ;- Then the new vectors; andz, are updated Elitism

by deltaMin;, which is the decrement in each variable ) . o

that in the overall reflects a change in the volume by aA SPecial form of elitism is implemented by AS* to
factor 3. In PAS*, all objective variables are reducedrevent the lost of the bgst |n(_j|V|duaI. Elitism is implemented
at the same ratg, therefore,3 can be deduced from S follows: the best mdw@uaz! |s_stored and only repla_ced by
as discussed next. Since we need the new hypervolufg Pest of any generation ib is better tham: accordingly

to be a fractiom of the previous one, to the selection rules (see Section V).

Fig. 6. Pseudo-code dfim (called byshrinkspace

4 oo N
Hnew > aHgg o) PAS* for Optimizing problems in Discrete Search Spaces

Simple modifications are required for discrete optimization

n n
H(ﬁﬂ _£§+1) = aH(fg —zh) problems. In such case, the initial value of all the decision
i—1 i1 variables will be a random integer drawn from an uniform
Either z; is reduced at the same rafe thus .d|sFr|but|on, and bouqded by the upper and lower I|_n"_||ts
. . indicated by the specific problem. Mutation of the decision
_ _ variables is performed in this case as follows,
[15@ -2 = ][ @ - 2h) P
i=1 i=1 ait = 2! + rand(o;)
1
p=ar whereo; is the control variable of the corresponding decision

In short, the new search interval of each decision vaif@riable, andrand(o;) is a random number with uniform
able z; is adjusted as follows (the complete algorithrﬂ'St”bUt'on in the interval[0,c]. Control variabless; are
is shown in Figure 4): mutated as follows,

widthy ey > B % widthyy if(random() < 0.45) then c =o+1; else 0 =0 —1;

. . . . . this is, with little less probability than the average of 0.5, the
At th'? point of the description, an o_bwous qUeSHON 1S5 irol variables diminish their value by 1. The reduction of
what is the ideal numbe_r of generations that we sho_ e search space is performed as shown in Figure 6 for the real
run our ES? Also, what is a good space reduction ratig o space case, except that all results of the computations

For the sake of space, we will only indicate that we havr‘?lust be rounded up to the next integer. The variatder is

thoroughly studied this issue, and found a somewthSO computed as depicted in Figure 6. Its value must also be
unexpected result. We found that there are not as m nded up, and its smallest possible value is 1

combinations to play with as one might think at first
sight. By setting the variable: to some value in the VII. EXAMPLES

range [90, 95]%, and callinghrinkspace() every two The parameters for all experiments described in Sec-
or three generations of the ES algorithm (right hantions VII-B, VII-C, and VII-D, are: (1+1)-ES, Pareto store
side loop in Figure 1),PAS* exhibits a very good capacity for 200 individuals, 50% the minimum size of Pareto
performance. In fact, in our experiments, we set=  store, volume preserved > 90%, call shrinkspace() every 2
90% and called shrinkspace() every 2 generations, agénerations, for 500 generations.



A. Solving Michalewicz's benchmark
Our first example is the solution of the well-known |

127m

Michalewicz’s benchmark for constrained optimization [12][:&

4994 Kg.

This benchmark, later extended by Runarsson & Yao [15], con
tains a set of 13 single-objective problems with constraints
different types (linear, nonlinear, equality and inequality). AII%
entwem Kg

4994 Kg. 4994 Ka. 4994 Kg.

these test problems have continuous search spaces and pre e >0 ke

different dimensionalities. In the past, a number of evolution
ary algorithms with special constraint-handling schemes havi
been validated using this benchmark [10], [15], [7]. However,
we will present a comparison of results only with respect to
the Stochastic Ranking approach proposed by Runarssones&
Yao [15], since this algorithm is representative of the state-of
the-art in the area and has been used recently as a referenceg to > — e
validate new constraint-handling techniques. In order to alloif\f”‘
a fair comparison, we set the total number of fitness function o fim
evaluations to 350,000, as in [1%jaretastorecan hold up to

200 individuals, which means that we adopt a (150+200)-ES. Fig. 7. 49-bar plane truss of the second optimization example.
We also reduce at most 10% of search hypervolume at every
2 generations. We apply discrete crossover on the decision
variables, and intermediate crossover on the control variables.

4,

4994 Kg  —>x —> 4994 Kg.

TABLE Il
COMPARISONS FOR THE49-BAR TRUSS CASE 1.

Table | shows a comparison of the results obtained’bys* [Algorithm | Average Weight (Kg) ]
with respect to Stochastic Ranking. PAS? 610
SA 627
B. Optimization of a 49-bar Plane Truss GAS0 649
. _ . GSSA50 619
The next example chosen is the optimization of the 49-bar GSSAB 625

plane truss shown in Figure 7. The solutions to this problem
were calculated in discrete search space using the catalog of
Altos Hornos de Mixica We will describe next both a single- _ . S
objective and multi-objective version of the problem. f_uln?:t:i)mnéA total of 72 constraints, thus, 73 objective
1) The 49-bar Plane Truss as a Single-Objective Optimiza- ' .
tion Problem with Constraints:in this case, the goal is to_ 1he average result of 30 runs for each case are shown in
find the cross-sectional area of each member of the truZ@bles Il, Il and IV. We compar@AS* with previous results
such that the overall weight is minimized, subject to stre§gased on the catalog of Altos Hornos déxto) reported by
and displacement constraints. The weight of the truss is givBRtello et al. [2] using other heuristics with a penalty function
by F(Z) = 2?9:1 vA;L;, whereA; is the cross-sectional areal14] (SA: Simulated Annealing, GAS0: Genetic Algorithm
of the j,;, member,L; is the corresponding length of the barWith a population of 50, and GSSA: General Stochastic Search
and~ is the volumetric density of the material. Algorithm with populations of 50 and 5). We can clearly see
We used the catalog dfltos Hornos de Mixico, S.A.with that except for the GSSAS0 technique AS* produced the
65 entries for the cross-sectional areas available for the desig¥/est average weight. o o
Other relevant information is the following: Young modulus_2) The 49-bar Plane Truss as a Multi-Objective Optimiza-
= 2.1 x 10° kg/cn?, maximum allowable stress = 3500.0di0n Problem with ConstraintsThe statement of this problem
kglcn?, v = 7.4250 x 10~3 kg/cn?, and a horizontal load of IS Similar to case 3 in Section VII-B.1, but now we consider
4994.00 kg applied to the nodes: 3, 5, 7, 9, 12, 14, 16, 1/0 objective functions for simultaneous optimization. Our
21, 23, 25 y 27. We solved this problem for three cases: first objective is the minimization of the structure’s weight; the
1) Case 1. Stress constraints onlyMaximum allowable second objective is the minimization of the horizontal displace-
stress = 3500.00 kg/cnA total of 49 constraints, thus ment of the node at upper right corner of the structure. The

50 objective functions.
2) Case 2. Stress and displacement constraintddaxi- TABLE Il

mum allowable stress = 3500.00 kg/&nmaximum dis- COMPARISONS FOR THE49-BAR TRUSS, CASE 2.

placement per node- 10 cm. There are 72 constraints,

thus 73 objective functions.

[ Algorithm | Average Weight (Kg) |

. PAS* 725

3) Case 3. Real-world problem: The design problem SA 77
considers traction and compression stress on the bars, as G(‘;/;SOO 81;
well as their proper weight. Maximum allowable stress Gssﬁ ;gg

= 3500.00 kg/crh, maximum displacement per node



TABLE |
COMPARISON OF PAS* WITH RESPECT TOSTOCHASTIC RANKING (SR) [15].

Best Result Mean Result Median Result
Problem Optimal PAS* SR PAS? SR PAS* SR
g0l —15.0000 —14.9998 —15.0000 —14.88731 —15.000 —14.99645 —15.000
g02 0.803619 0.80346 0.803515 0.79901 0.781975 0.80330 0.78580
g03 1.000000 1.00017 1.000 1.00038 1.000 1.00039 1.00000
g04 —30665.5390 —30665.5300 —30665.5390 —30665.5300 —30665.539 —30665.5300 —30665.539
g05 5126.49800 5126.5200 5126.497 5180.15545 5128.881 5152.8950 5127.372
g06 —6961.8140 —6961.8100 —6961.814 —6961.8100 —6875.940 —6961.8100 —6961.814
g07 24.30621 24.33060 24.307 24.57961 24.374 24.46830 24.357
g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630 680.630 680.630 680.63243 680.656 680.632 680.641
g1l0 7049.331 7059.840 7054.316 7366.9965 7559.192 7342.6000 7372.613
gll 0.750000 0.7500 0.7500 0.74993 0.750 0.74991 0.750
g12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
g13 0.053950 0.053950 0.053957 0.22022 0.057006 0.08968 0.057006
TABLE IV
COMPARISONS FOR THE49-BAR TRUSS CASE 3.
[ Algorithm | Average Weight (Kg) |
pPAS? 2603
SA 2724
GA50 2784
GSSA50 2570
GSSA5 2716 Y
}\:
N
-~
22 : : : : : :
2F 1 X
= L .
E 18F * 4 v
S M
= x
E 16+ %y b
& e
o . L
g ar "f@egé( 1 Fig. 9. Optimization of a 72-bar 3D structure.
[m]
T o1zt gj’%;‘x@( 1
= %
o s TABLE V
1F s E
’*&M THE 72-BAR 3D TRUSS CROSS SECTIONS BY GROUP
0er I i
* Group Member | Group Member
0E . . . . . . 1 A1-Ay 9 As7-Ag0
anon 5000 B 7000 8000 9000 0000 11000 2 As-Alo 10 As1-Aus
Weight (k) 3 Aq3-Ag 11 Asg-Aso
4 A17-A1s 12 As3-Asq
; ; ; 5 A19-Aga 13 As5-Ass
Fig. 8. Pareto front for the 49-bar plane truss of Figure 7 stated as a bi- 5 A 12 "
objective optimization problem (See Section VII-B.2). 2377230 5977266
! P P ( ) 7 As1-Azg 15 Ag7-A70
8 Ass5-Ase 16 A71-A7a

Pareto front of these two objectives subject to 71 constraints

is shown in Figure 8. ) . ) o .
load in node 1 with2270 kg in z direction, 2270 kg in y

C. Optimization of 72-bar 3D Structure direction and—2270 kg in z direction. The second loading
The following problem is the design of the 72-bar 3Drondition has four load points in nodes 1,2,3 and 4, with
structure shown in Figure 9. The truss is subject to twe2270 kg in z direction. The design problem is the design of
distinct loading conditions and sixteen independent desitjme truss for both loading conditions. In Table V, we provide
variables. All nodes are subject to a displacement constraiheé group description of the truss. We solved this problem as
A < 0.25 inches inz and y direction. All bars have a single-objective optimization case in both continuous and
a stress constraint-1759.25 kglen? < (o,), < 1759.25 discrete search spaces.
kg/cn?, i = 1,2...72. The minimum size constraint 254 1) The 72-bar 3D Structure in Continuous Search Space as
cn? < A;,i=1,2...72. The properties of the material are:a Single-Objective Optimization Problem with Constraints:
modulus of elasticity7.031 x 10°kg/cn?, volumetric weight: As noted, the design problem is the minimization of the weight
2.77 x 103 kg/cm?. The first loading condition has a pointstructure subject to both loading conditions. We compared



TABLE VI

PAS* vs. RESULTS OF SEVERAL AUTHORS FOR OUR2-BAR 3D
STRUCTURE IN CONTINUOUS SEARCH SPACE
[ Algorithm | Best Minimun Weight (Kg) |

PAS? 172.02

Venkayya [18] 173.06

Gellatly [6] 179.77

Renwei [13] 172.36

Schmit[16] 176.44

Xicheng [19] 172.90

GAOS [2] 173.94

TABLE VII
PAS* STATISTICS FOR THE72-BAR 3D STRUCTURE IN CONTINUOUS )

SEARCH SPACE

[ Parameter] Weight (Kg) | ﬁ:
Best 172.02 —
Worst 172.09 "
Mean 172.05 I
Std. dev. 0.015 12.5m
Median 172.04 2
Fact. Sol. 30

Fig. 10. Optimization of a steel dome.

PAS* against several results of other authors in Table VI; TABLE IX
as it can be observed our approach provided the best solution. PAS* SOLUTIONS TO THE STEEL DOME(DISCRETE CASB.
In Table VII, we show basic statistics for 30 runs.

2) The 72-bar 3D Structure in Discrete Search Space as a

Parameter| Casel (Kg)| Case2 (Kg)| Case3 (Kg) |

. e At g : Best 703.57 703.57 13642.33
Single-Objective Optimization Problem with Constraint§e Worst 703.57 70357 13651.93
solved three cases of this problem using the catalogltfs g"tfja':jev 7%3(-)57 7%3(-)57 1251‘;‘826
Hornos de Mxico, S.Awith 65 entries for the cross-sectional Median 70357 70357 13642.33
areas: 1) stress constraints only; 2) stress and displacement Fact. Sol. 30 30 30

constraints; 3) displacement constraints, and considers bar
traction and compression stress, as well as their proper weight.

The values of material properties and constraints remain Witkhierial properties are: modulus of elasticity= 2.aSkg/cn?,
no change for all three cases. Statistics of the best soluticg;i@d strength: 2750 kg/chn The loading conditions are a
in 30 runs for the 3 cases are shown in Table VIII. punctual load inz direction with different magnitude:-500
kg in node 1;—40 kg in nodes 17, 23, 29, and 35;120 kg in
nodes 16, 18, 22, 24, 28, 30, 34, and 3&00 kg on the rest
Our last example is the optimization of the weight of thef the nodes. We solved three cases of this problem using the
steel dome shown in Figure 10 for discrete search space (Usia@alog ofAltos Hornos de Mxico, S.Awith 65 entries for
the catalog ofAltos Hornos de Nxico, S.A. the cross-sectional areas: 1) stress constraints only; 2) stress
1) The Steel Dome as a Single-Objective Optimizatieihd displacement constraints; 3) displacement constraints, and
problem with constraints:This truss has seven independengonsiders bar traction and compression stress, as well as
design variables. For all nodes, a displacement constfaiit their proper weight. The values of material properties and
20 mm was assumed in thedirection. All bars are subject to constraints remain with no change for all three cases. Solutions
the stress constraint given by the aforementioned catalog. Fbethe 3 cases are shown in Table IX. Columns “Casel” and
“Case2” are equal because displacement constraints are too
TABLE VIl small.
PAS* SOLUTIONS TO THE72-BAR 3D STRUCTURE USING A CATALOG 2) The Steel Dome as a Multi-Objective Optimization Prob-
lem with Constraints:In this case, the two objective functions
are the minimization of the weight structure, and the vertical

D. Optimization of a Steel Dome

WITH 65 ENTRIES (DISCRETE SEARCH SPACE

[ Parameter| Casel (Kg) [ Case2 (Kg) [ Case3 (Kg) ]| deformation of central node, subject to the original constraints.
S\thst g;g;gg igggg‘a‘ :foo-;gfo In Figure 11 we show the Pareto front for this problem. The
Mean 92.3205 1979098 | 633.2354 plot shows that there are many weight combinations that keep
Stda_dev 920:;29 8-23063 62-27322 the vertical deformation practically with no change. It can also
Median . 5 192.7194 .9665 . . .

Fact Sol 30 =0 20 be seen that this deformation increases, perhaps dangerously,

with very little variations of the weight, when this is in the
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Fig. 11. Pareto front of the steel dome stated as a bi-objective problem.

critical interval [1000, 2000] (approximately). 8]

VIIlI. DiscussiON ANDFINAL REMARKS

We have introduced th&®AS* evolutionary algorithm that
combines the following three ideas: 1) a constraint-handlingy
mechanism based on multi-objective optimization concepts; 2)
a Pareto dominance-based selection operator which promcmf
diversity and a desired blend including promissory and “best
unfeasible” individuals; 3) a search reduction population-
driven mechanism that directs the search towards promisi[f]lé]
areas of the space; and 4) an external memory to store the
latest nondominated solutions found. Regarding constraint-
handling for single-objective optimization, we compared o
results with respect to stochastic ranking [15] (see Table I). We
can see that our results are highly competitive. Furthermore,
we have shown the potential of our proposal by applyir{é3
it to problems both in continuous and in discrete search

author acknowledges support from CONACyYT through project
number 42435-Y.
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our experimentsPAS* requires to make decisions over four
parameters (described in Section VII): the size of the Pareto
set; the shrinkspace rate; the size of the new hypervolume aftét
reduction; and the percentage of remanent “best infeasible”
individuals in the Pareto set. These parameters are not hargh tp
set, and we argue that their fine-tuning is not more difficult
than that required by the traditional parameters of a gene[tjg]
algorithm. Our approach is not the simplest possible algorithm
for evolutionary optimization, but it has as an aggregated value
the fact of being able to deal (rather competitively) with botHe!
constrained single-objective and multi-objective optimizatiofig
problems.

ACKNOWLEDGMENTS

The first and second authors acknowledge support from
CONACYT through projects P40721-Y and 42523. The third

Some Guidelines for Genetic Algorithms with Penalty Function®rin
ceedings of the Third International Conference on Genetic Algorithms
pages 191-197. Morgan Kaufmann Publishers, 1989.

T.P. Runarsson and X. Yao. Stochastic Ranking for Constrained Evolu-
tionary Optimization.|[EEE Transactions on Evolutionary Computatjon
4(3):284-294, September 2000.

L.A. Schmidt and B. Farshi. Design of Optimum Structurdsurnal

of the American Institute of Aeronautics and Astronautics231-233,
1974.

Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method:
Constrained Optimisation by Multiobjective Genetic Algorithngon-

trol and Cybernetics26(3):391-412, 1997.

VB. Venkayya. Design of Optimum StructuréSomputers & Structures
1:265-309, 1971.

W. Xicheng and M. Guixu. A Parallel lterative Algorithm for Structural
Optimization. Computer Methods in Applied Mechanics and Engineer-
ing, 96:25-32, 1992.



