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This paper proposes a method for solving single objective constrained optimization problems by way of a socio-
behavioural simulation model. The essence of the methodology is derived from the concept that the behaviour of
an individual changes and improves due to social interaction with the society leaders. Leaders are identified after
all individuals of a society are Pareto ranked according to constraint satisfaction. At the higher end, leaders of all
societies interact among themselves for the overall improvement of the societies. Such overall improvement of
individual societies leads to a better civilization. Four well-studied single objective constrained optimization
problems have been solved to show the efficacy of the proposed methodology.
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1 INTRODUCTION

Recently much attention has been paid to the treatment of constrained optimization problems

using evolutionary computation techniques in order to solve large-scale real world problems.

Several methods have been proposed to take care of constraints in evolutionary computational

models [1–4]. A substantial part of the research on evolutionary computations, however,

focuses on the processes of natural selection and genetics [1, 5]. Computational methods

based on socio-behavioural models are fairly new developments. Reynolds [6] introduced a

cultural algorithm in which problem solving experience of individuals in a population

space was collected and reasoned about within a space that he called the belief space. This

cultural algorithm framework is based on a dual inheritance system with evolution taking

place at the micro-evolutionary (population) level and at the macro-evolutionary (belief

space) level. At the micro-evolutionary level, there is a population of individuals in which

each individual is described by a set of behavioural traits. These traits are passed from

generation to generation through socially motivated operators. At the macro-evolutionary
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level, individuals’ experiences are collected, merged, generalized and specialized in the belief

space [6]. The particle swarm optimization method is another highly innovative adaptive algo-

rithm that is based on a social–psychological metaphor. In a particle swarm, a population of

individuals adapts by moving stochastically towards previously successful regions in the

search space and are influenced by the successes of their topological neighbours [7]. However,

none of these algorithms demonstrate grouping=clustering of individuals in the parametric

space which is essential to socio-behavioural dynamics. In the present work, an algorithm is

suggested that is based on the socio-behavioural concept of society and civilization.

From time immemorial individuals of a society have interacted with one another. Such

cooperative relations result in a rich amalgamation of information thereby improving the

societies they live in. With these societies being subsets of the whole civilization, the civiliza-

tion improves as well. In the present context, a society is considered as a set of mutually inter-

acting individuals who are led by a group of leaders. These individuals are the fundamental

social entities and they interact with the leaders in their society in a quest to improve. This

improvement in an individual’s performance is due to meaningful information acquisition

from a better performing individual (leader) belonging to the same society. Such intra-society

interactions between every individual and its leader results in an improvement of every indi-

vidual’s performance, which in turn leads to the emergence of more advanced (better per-

forming) societies over time. However, intra-society interactions would not improve the

performance of the leaders. These leaders, unlike other average individuals of the society,

therefore communicate and collaborate externally with the leaders of other societies of the

civilization. Such inter-society information exchange among leaders results in the migration

of leaders toward developed societies led by better performing leaders.

2 SOCIO-BEHAVIOURAL MODEL

At any given time instant t, a civilization is defined as a set of m individuals:

CIV ¼ fx1; x2; . . . ; xmg ð1Þ

where xi ¼ ½ x1 x2 	 	 	 xn 
; 1 � i � m

m is the size of the whole civilization and n is the number of design variables defining an

individual. These m individuals are parametrically clustered into p number of mutually exclu-

sive clusters where each cluster corresponds to a society. The individuals that dominate other

individuals within a society are then identified. They thus become the leaders of the society.

Other individuals which are non-leaders share information with the leaders and move towards

better positions. This movement is governed by the equation:

x0 ¼ xðGminðxÞ; xÞ ð2Þ

where x0 is the new position of x, Gmin(x) is a function that returns the nearest leader to x in

its own society and x is the information acquisition between a leader and a non-leader. This

equation ensures an intensified local search within a society. Leaders of all societies are then

grouped together to form a global society of leaders. The global leaders’ society, once

formed, behaves like any other society. Hence, here too, a few individuals that dominate

other individuals become leaders of the society. Since this society is the leaders’ society,

the leaders of this society can be referred to as super leaders. All other individuals

(within this society) which are not super leaders, acquire information from the super leaders
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and move using the same Eq. (1) described previously. With this equation applied to the

leaders’ society, a search for the global optimum is achieved.

A visual representation of the socio-behavioural model is shown in Figure 1. Figure 1(a)

schematically depicts four societies A, B, C and D forming a civilization at an initial time

instant. The individuals are clustered to form the societies based on their positions in the

parametric space. Figure 1(b) shows the relocation of individuals towards their leaders and

Figure 1(c) shows the formation of clusters after a sufficient period of time. It is seen that

most of the individuals have gathered within the area occupied initially by cluster B (the

optimum one in this case), while the other (initial) clusters become depleted.

3 ALGORITHM

The socio-behavioural algorithm developed here is based on the socio-behavioural model

described in the previous section. An initial civilization is created through a random

FIGURE 1 (a) Clusters A, B, C and D, where leaders are marked as while other individuals are marked as �. (b)
Individuals in every cluster relocate towards their leaders. (c) Cluster formation after a sufficient period of time.
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initialization of a number of individuals. At every time instant, the individuals are separated

into a number of mutually exclusive clusters based on their positions in the parametric space.

Such clusters represent the societies and the collection of all clusters represents the civiliza-

tion. A multilevel Pareto ranking scheme based on constraint satisfaction is implemented to

generate the set of leaders. The criterion for leader selection is thus emphasized to drive

societies towards the feasible region. An individual in a society extracts information from

its nearest leader through an intra-society interaction that translates into an intensified search

around better performing points. The leaders of different societies compete among them-

selves to attract leaders from other societies. The migration of a leader from a society to

another within the civilization is achieved through an information acquisition from a better

performing leader. Over time, the above process reduces the number of individuals in

non-feasible and non-optimum regions and enlarges feasible and optimum regions. This phe-

nomenon promises search over global regions of the parametric space. The algorithm is as

follows:

Step 1: Initialize m points that correspond to m individuals in the civilization at an initial

time t¼ 0.

Step 2: Cluster the m points into p mutually exclusive clusters (each cluster represents a

society).

Step 3: Identify a set of better performing individuals in each cluster as the leaders of that

society.

Step 4: For every individual in a society that is not a leader, acquire information from its

closest leader within the same society and move to a new position for the next time

step.

Step 5: Collate the leaders of all the societies to form a global society of leaders for the

entire civilization.

Step 6: Identify a set of better performing individuals for this global society of leaders to

form super leaders for the civilization.

Step 7: For every leader in the global society that is not a super leader, acquire information

from its closest super leader and move to a new position for the next time step.

Step 8: Super leaders do not change their position and as such go to the next time step.

Step 9: Increment time step by unity: t¼ tþ 1.

Step 10: If t¼ T (where T is the time frame for the advancement of the civilization),

terminate the procedure. Else, return to Step 2.

3.1 Initialization

A civilization of m solutions is generated, where each solution vector xi ¼ ½x1 x2 	 	 	 xn
 is

generated for 1� i�m as follows:

xj ¼ lj þ Rðuj � ljÞ; 1 � j � n ð3Þ

where lj and uj are the lower and upper bounds, respectively, of the jth variable of each xi and

R is a random number between 0 and 1.

3.2 Clustering Algorithm

After initialization, the m individuals are clustered into p mutually exclusive clusters. While

clustering, each individual is considered to be a point in the n-dimensional space, where n is

the number of variables defining the individual. The distance between two points in such a
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space is essentially the Euclidean norm between the two points. The clustering is done using

the following clustering algorithm:

Step 1: From the set of m points (individuals), randomly choose any one to be the first hub.

Step 2: Find the point that is farthest from this hub, and make it the second hub.

Step 3: For each remaining point, find the distance between the point and each hub and

assign the point to the hub which is closer to it.

Step 4: Compute the average distance between hubs. This is done by adding up the distances

between all possible pairings of hubs and dividing by the number of pairs. (For

example, if there are four hubs, there will be 6 possible pairings.) In general

the maximum possible number of pairs formed by k hubs is given by k(k7 1)=2.

The average distance is then divided by 2 and assigned to a variable D. Calculate

the distance between each point and its hub. If none of these distances is greater than

D, terminate the procedure. Else, if any of these distances is greater than D, continue

to Step 5.

Step 5: Make the point that is farthest from any of the hubs to be a new hub.

Step 6: Calculate the distance between each point and the new hub. If this distance is less

than the point’s distance from the current hub, assign the point to the new hub.

Step 7: Return to Step 4.

3.3 Ranking Based on the Constraint Matrix

The process of Pareto ranking based on constraint satisfaction is described in the context of

the following optimization problem statement:

Minimize f ðxÞ

subject to giðxÞ � 0; for i ¼ 1; 2; . . . ; q ð4Þ

hjðxÞ ¼ 0; for j ¼ 1; 2; . . . ; r ð5Þ

The r equality constraints are transformed to 2r inequality constraints. This is done by con-

verting each hjðxÞ ¼ 0 to a pair of inequalities by introducing a small tolerence d> 0. These

two inequalities are:

�hjðxÞ � �d ð6Þ

hjðxÞ � �d

Therefore, the total number of inequality constraints for the problem is given by s¼ qþ 2r.

The constraint satisfaction vector for each solution x is denoted by c ¼ ½c1 c2 	 	 	 cs
 where

ci ¼

0 if the ith constraint is satisfied, 1 � i � s

�giðxÞ if the ith constraint is violated, 1 � i � q

�d� hiðxÞ if the ith constraint is violated, q þ 1 � i � q þ r

�dþ hiðxÞ if the ith constraint is violated, q þ r þ 1 � i � s

8>><
>>: ð7Þ
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The CONSTRAINT matrix for a society (cluster) consisting of w individuals will therefore

assume the form of

CONSTRAINT ¼

c11 c12 	 	 	 c1s

c21 c22 	 	 	 c2s

..

. ..
. . .

. ..
.

cw1 cw2 	 	 	 cws

2
664

3
775 ð8Þ

In a society of w individuals, all non-dominated individuals based on the CONSTRAINT

matrix are assigned a rank of 1. The rank 1 individuals are removed from the cluster and

the new set of non-dominated individuals are assigned a rank of 2. The process is continued

until every individual in the cluster is assigned a rank. Due to the way that the value of c is

computed, it should be noted that for a society where there are some feasible individuals, all

these feasible individuals are non-dominated and will be assigned a rank of 1 while all the

infeasible individuals will be ranked 2,3,4, . . . and so on.

3.4 Leader Identification Algorithm

A leader in a society is determined using the leader identification algorithm. This algorithm is

as follows: If the number of rank 1 individuals (ranked as described in the preceding section)

does not exceed 50% of the society size, then choose all rank 1 individuals as leaders. If the

number of rank 1 individuals exceed 50% of the society size, then calculate the average

objective function value of the society. Choose as leaders those rank 1 individuals whose

objective values are better than or equal to the average objective value of the society.

The resulting effect of this algorithm is such that, in the case where there are only a few

feasible individuals in a society, only these feasible individuals will be selected as leaders. As

the number of feasible individuals increases over time until there are many of them (more

than 50% of society size), then only those who are better than average (in terms of objective

function value) will become leaders. In the case where all individuals in a society are infea-

sible, then only the non-dominated ones (they are ranked 1 in terms of constraint satisfaction)

are leaders. If there are too many of these non-dominated individuals (more than 50% of

society size), then there is a need to be more selective and so only those with better than

average objective values are chosen as leaders.

3.5 Information Acquisition Operator

The information acquisition is based on a simple operator. The operator can result in a

variable value that does not already exist in either the individual or its leader, which is useful

to avoid premature convergence. The probability of a variable value being generated that is in

between that of the individual and its leader is 50%. There is a 25% probability of a variable

value being generated between the lower bound of the variable and the individual or its leader

(whichever is the lesser). There is also a 25% probability of a variable value being generated

between the upper bound of the variable and the individual or its leader (whichever is the

greater). This is explained using Figure 2. Consider the case where xAi is the ith variable

of an individual A and xLi the ith variable of a leader L, and xAi< xLi. Then the probability

that a value will be generated between xAi and xLi is 50% while the probability is 25%

each that the value generated is between li and xAi or between xLi and ui. Generating a

value between li and xAi represents a move by the individual away from its leader. Within

the socio-behavioural model, the 25% chance of this happening can be interpreted as allow-

ing for some individuals who choose not to follow their leaders but to go against them
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instead. This generates some diversity in the society and thus helps to explore the parametric

space for the global optimum.

Other operators that generate intermediate variable values like the blend crossover (BLX)

as proposed by Eshelman and Shaffer [8] or the simulated binary crossover (SBX) as

proposed by Deb and Agrawal [9] can also potentially be used in place of the above

operator.

4 EXAMPLES

4.1 Two-Variable Constrained Optimization Problem

This is a two variable constrained optimization problem from Koziel and Michalewicz [3].

Minimize f ðxÞ ¼ ðx1 � 10Þ3 þ ðx2 � 20Þ3

subject to ðx1 � 5Þ2 þ ðx2 � 5Þ2 � 100 � 0

� ðx1 � 6Þ2 � ðx2 � 5Þ2 þ 82:81 � 0

13 � x1 � 100; 0 � x2 � 100

It is subjected to two non-linear inequalities and the objective function is a cubic function.

The ratio of feasible points to sampled number of points for a 1,000,000 point random

sampling is reported to be 0.000066 [3]. The optimum solution is [14.095, 0.84296]

with an objective function value of �6961.81381. Both the constraints are active at the

optimum.

Koziel and Michalewicz [3] solved this problem using an evolutionary algorithm with

homomorphous mapping between an n-dimensional cube and a feasible search space.

Ray et al. [10] solved this problem using an evolutionary algorithm incorporating intelligent

partner selection and cooperative mating. Using the present socio-behavioural algorithm,

results were obtained for 10 runs with a civilization size of 100 and 200 time steps. The

best, average and worst objective function values obtained are [�6938.9396, �6726.1586,

�6405.1804]. For the best objective function value obtained, the number of function evalua-

tions is 15,656, the values of the two variables are [14.105, 0.8633] and the constraint values

are [0.0127, 0.0072]. Table I shows the comparison of results.

4.2 Welded Beam Design

The second example deals with a welded beam design that is a well-studied single objective

optimization problem that aims to minimize the cost of the beam subject to constraints on

shear stress, bending stress, buckling load and end deflection. The four continuous design

variables are x1, x2, x3 and x4 which are, respectively, the h; l; t and b shown in Figure 3.

FIGURE 2 Schematic representation of the information acquisition operator.
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The length L is assumed to be specified at 14 inch. The detailed formulation of the problem is

as follows:

Minimize f ðxÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0 þ x2Þ

subject to tðxÞ � tmax � 0

sðxÞ � smax � 0

x1 � x4 � 0

0:10471x2
1 þ 0:04811x3x4ð14:0 þ x2Þ � 5:0 � 0

0:125 � x1 � 0

dðxÞ � dmax � 0

P � PCðxÞ � 0

TABLE I Comparison of Results for the Two-Variable Constrained Optimization Problem.

Number of function evaluations Function value

Koziel and Michalewicz [3] 350,000 �6901.5 (best)
�6192.2 (average)
�4236.7 (worst)

1,400,000 �6952.1 (best)
�6342.6 (average)
�5473.9 (worst)

Ray et al. [10] 39,164 �6819.0391 (best)
�6773.0078 (average)
�6525.8374 (worst)

Present 15,656 �6938.9396 (best)
�6726.1586 (average)
�6405.1804 (worst)

FIGURE 3 The welded beam structure.
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The other parameters are defined as follows:

tðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0Þ2 þ

2t0t00x2

2R
þ ðt00Þ2

r

t0 ¼
Pffiffiffi

2
p

x1x2

t00 ¼
MR

J

M ¼ P L þ
x2

2

 �

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ

x1 þ x3

2

 �2
r

J ¼ 2
x1x2ffiffiffi

2
p

x2
2

12
þ

x1 þ x3

2

 �2
� �� �

sðxÞ ¼
6PL

x4x2
3

dðxÞ ¼
4PL3

Ex4x3
3

PCðxÞ ¼
4:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGx2

3x6
4=36

p
L2

1 �
x3

2L

ffiffiffiffiffiffi
E

4G

r !

where P¼ 6000 lb., L¼ 14 in, dmax¼ 0.25 in, E¼ 30� 106 psi, G¼ 12� 106 psi, tmax¼

13,600 psi, smax¼ 30,000 psi, 0.1� x1� 2.0, 0.1� x2� 10.0, 0.1� x3� 10.0 and 0.1�

x4� 2.0.

Deb [11] solved this problem using a simple genetic algorithm with a traditional penalty

function, Ragsdell and Phillips [12] used geometric programming while Siddall [13] solved

this problem with a suite of optimization techniques: ADRANS – Gall’s adaptive random

search with penalty function; APPROX – Griffith and Stewart’s successive linear approxima-

tion; DAVID – Davidon-Fletcher-Powell with penalty function; MEMGRD – Miele’s

memory gradient with penalty function; SIMPLEX – Simplex method with penalty function

and RANDOM – Richardson’s random method.

With a civilization size of 100 over 200 time steps, the best, average and worst objective

function values obtained after 10 runs are [2.4426, 2.5215, 2.6315]. For the best objective

value obtained, the number of function evaluations is 19,259, the values of the four variables

are [0.2407, 6.4851, 8.2399, 0.2497] and the constraint values are [�129.8545, �270.4023,

�0.009008, �2.9663, �0.1157, �0.2343, �372.4990]. For the run that produced the best

objective value, the iteration history of the best objective value attained is plotted in Figure 4.

Table II provides a comparison of results with the various other methods (it may be worth

noting that this comparison has been done with results of those researchers who solved

this problem with the exact same formulation as presented here, while there exist other results

in the literature for this welded beam design based on a slightly different problem formula-

tion.) The results obtained from the present method are comparable to those of the genetic

algorithm by Deb [11] although Deb used only 4500 function evaluations.

4.3 Speed Reducer Design

The third example is a more complicated example of a speed reducer design. This has been

reported to pose difficulties for various optimization algorithms in finding the feasible space.
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The weight of the speed reducer is to be minimized subject to constraints on bending stress of

the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shafts.

The variables x1; x2; . . . ; x7 are the face width, module of teeth, number of teeth in the pinion,

length of the first shaft between bearings, length of the second shaft between bearings and the

diameter of the first and second shafts. This is an example of a mixed integer programming

problem. The third variable x3 (number of teeth) is of integer value while all other variables

are continuous.

Minimize f ðxÞ ¼ 0:7854x1x2
2 ð3:3333x2

3 þ 14:9334x3 � 43:0934Þ

� 1:508x1ðx
2
6 þ x2

7Þ þ 7:4777ðx3
6 þ x3

7Þ

þ 0:7854ðx4x2
6 þ x5x2

7Þ

subject to
27

x1x2
2x3

� 1 � 0

397:5

x1x2
2x2

3

� 1 � 0

1:93x3
4

x2x3x4
6

� 1 � 0

1:93x3
5

x2x3x4
7

� 1 � 0

FIGURE 4 Iteration history of the best objective function value attained for the welded beam structure.

TABLE II Comparison of Results for the Welded Beam Design.

Siddall [13] Ragsdell and Phillips [12] Deb [11] Present

x1 0.2444 0.2455 0.2489 0.2407
x2 6.2819 6.1960 6.1730 6.4851
x3 8.2915 8.2730 8.1789 8.2399
x4 0.2444 0.2455 0.2533 0.2497
Objective 2.3815 2.3859 2.4431 2.4426
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ð745x4=ðx2x3ÞÞ
2
þ 16:9 � 106

� �1=2

110:0x3
6

� 1 � 0

ð745x5=ðx2x3ÞÞ
2
þ 157:5 � 106

� �1=2

85:0x3
7

� 1 � 0

x2x3

40
� 1 � 0

5x2

x1

� 1 � 0

x1

12x2

� 1 � 0

1:5x6 þ 1:9

x4

� 1 � 0

1:1x7 þ 1:9

x5

� 1 � 0

where 2.6� x1� 3.6, 0.7� x2� 0.8, 17� x3� 28, 7.3� x4� 8.3, 7.8� x5� 8.3, 2.9�

x6� 3.9 and 5.0� x7� 5.5.

A detailed description of this single objective problem with 11 behavioural constraints is

outlined in Rao [14]. Li and Papalambros [15] used the global optimization knowledge to

solve this example. Kuang et al. [16] solved the same using the Taguchi method. With a

civilization size of 100 for 200 time steps, the best, average and worst objective values

obtained after 10 runs are [3008.08, 3012.12, 3028.28]. The number of function evaluations

for the best objective function obtained is 19,154, with the corresponding variable values

[3.506122, 0.700006, 17, 7.549126, 7.859330, 3.365576, 5.289773] and the constraint

values of [�0.075548, �0.199413, �0.456175, �0.899442, �0.013213, �0.001740,

�0.702497, �0.001738, �0.582608, �0.079580, �0.017887]. Table III gives the compar-

ison of results with the other methods. Although it appears that the present algorithm

produced the poorest result, it may be worth noting that it did produce a strictly feasible solu-

tion whereas there are some constraint violations in the other results. The fifth and eleventh

constraints are slightly violated in the results of [14], while the sixth and eleventh constraints

in [15] are also violated due to the allowable tolerances used. There is a significant violation

of the sixth constraint in the results of [16].

4.4 Pressure Vessel Design

The last example is the design of a cylindrical vessel that has both ends capped by hemisphe-

rical heads as shown in Figure 5. The objective is to minimize the total cost comprising of

TABLE III Comparison of Results for Speed Reducer Design.

Rao [14] Li and Papalambros [15] Kuang et al. [16] Present

x1 3.5 3.5 3.6 3.506122
x2 0.7 0.7 0.7 0.700006
x3 17 17 17 17
x4 7.3 7.299999 7.3 7.549126
x5 7.3 7.715317 7.8 7.859330
x6 3.35 3.350541 3.4 3.365576
x7 5.29 5.286654 5.0 5.289773
Objective 2985.22 2994.4 2876.22 3008.08
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material, forming and welding costs. The four design variables are x1 (thickness Ts of the

shell), x2 (thickness Th of the head), x3 (inner radius R) and x4 (length L of the cylindrical

section of the vessel, not including the head). x1 and x2 are to be in integral multiples of

0.0625 inch which are the available thicknesses of rolled steel plates. The radius x3 and

the length x4 are continuous variables.

Minimize f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3 þ 3:1661x2

1x4 þ 19:84x2
1x3

subject to �x1 þ 0:0193x3 � 0

� x2 þ 0:00954x3 � 0

� px2
3x4 �

4

3
px3

3 þ 1;296;000 � 0

x4 � 240 � 0

and x1¼ 0.0625n1, x2¼ 0.0625n2 where 1� n1� 99, 1� n2� 9, 10.0� x3� 200.0 and

10.0� x4� 200.0, and where n1 and n2 are integers.

This problem has been solved by Kannan and Kramer [17] using an augmented Lagran-

gian multiplier approach. Cao and Wu [18] applied an evolutionary programming model.

Deb [19] solved the above problem using a genetic adaptive search (GeneAs) and Coello

[20] used a genetic algorithm with self adaptive penalties for handling constraints.

With a civilization size of 100 over 200 time steps, the best, average and worst objective

values obtained are [6171.00, 6335.05, 6453.65]. The solution with the best objective value

was obtained in 12,630 function evaluations. The variable values for this solution are

[0.8125, 0.4375, 41.9768, 182.2845] with constraint values of [�0.0023, �0.0370,

�23420.5966, �57.7155]. Table IV shows the comparison of results for this example.

The result obtained by the present algorithm is the best.

FIGURE 5 Centre and end section of the pressure vessel.

TABLE IV Comparison of Results for Pressure Vessel Design.

Kannan and
Kramer [17]

Cao and
Wu [18] Deb [19] Coello [20] Present

x1 1.125 1.000 0.9375 0.8125 0.8125
x2 0.625 0.625 0.5000 0.4375 0.4375
x3 58.291 51.1958 48.3290 40.3239 41.9768
x4 43.690 60.7821 112.6790 200.0000 182.2845
Objective 7198.042 7108.616 6410.381 6228.744 6171.000
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5 CONCLUDING REMARKS

In this paper an optimization algorithm has been introduced that is based on a socio-

behavioural concept of society and civilization. The results obtained for all the examples

illustrate the capabilities of the proposed optimization algorithm. The concept of societies

being formed among individuals is based on parametric spacing rather than on individual

experiences over time (belief space), which is usually seen among other cultural algorithms.

It is also quite different from evolutionary algorithms, where only the better performing

individuals are given more chances to mate and generate children. The proposed algorithm

improves the performance of all individuals in every society either through an intra- or

inter-society information exchange. The use of Pareto ranking to deal with constraints

reduces the number of additional inputs=parameters required for constraint handling, as

well as providing an intelligent constraint information sharing which leads to reasonably

fast convergence. Although the number of variables and types of problems solved in this

work are limited and hence cannot substantiate the range or scope of application of the

algorithm, the authors believe the algorithm’s working principles and features are appealing

and its effectiveness=efficiency can be further improved with future development work and

experimentation.
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