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Abstract

In this paper, several variation operators based on Pareto efficiency, extracted

from Differential Evolution, Estimation of Distribution Algorithms, Evolution

Strategies and Evolutionary Programming, are compared in order to determine

whether or not they increase the performance of the non-Pareto based versions.

Firstly, we compare the selected variation operators in pairs, each operator

with a modification of itself, in which we remove those elements related to the

Pareto efficiency. Then, in a second experiment we compare among the selec-

ted operators, the variation operators used in the NSGA-II algorithm and the

ones presented by the authors, PBCO and RBMO. In all the experiments the

variation operators are incorporated in a well-known algorithm usually consi-

dered as a reference for making the comparisons, the NSGA-II algorithm. The

experiments show that the Pareto based variation operators selected from the

literature do not usually present a better behavior than their non-Pareto based

versions; and none of them presents a better performance than the one reached

by the variation operators defined by the authors, which were entirely built

around the Pareto information of the individuals. These facts suggest that

more effort should be placed in the design of variation operators devoted to
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multi-objective algorithms in order to achieve superior results to those obtained

by means of general variation operators.

Keywords: Evolutionary Computation, Metaheuristics, Multi-objective

Optimization.

1. Introduction

Evolutionary Algorithms, EAs, can be considered the most adequate me-

thods for solving complex Multi-Objective Optimization Problems (MOOPs).

The use of EAs for solving MOOPs was first hinted by Rosenberg in his PhD

in the late 1960s [36], but it was not until 1984 that Schaffer implemented the

Vector Evaluated Genetic Algorithm (VEGA) for his PhD thesis [37], the first

actual implementation of what has been called a Multi-Objective Evolutionary

Algorithm (MOEA). Since then, several different MOEAs have appeared. An

extensive review on this matter can be obtained from [14, 55, 43]. For a general

vision in this field the reader is referred to these classical books: [24, 23, 33, 21]

and the survey [7].

In this work, we will study whether the use of variation operators that make

use of the information on the quality of the solutions can lead, in general, to

more efficient algorithms evaluated in terms of some quality measures of the

efficient solution set found. As we have just stated, a significant number of

papers have been devoted to the development of MOEAs since the publication

of VEGA in 1984. Among all the MOEAs in the literature, NSGA-II [19] is

worth highlighting because ten years after its publication it still serves as a

basis for new developments and as a reference algorithm to be compared with

new ones. It is for this reason that we have considered it as a candidate for

developing our work.

Furthermore, we have selected several variation operators from the literature

that explicitly use, in their functioning, information about the quality of the

solution, in terms of Pareto optimality, to be altered. These selected opera-

tors to be incorporated come from the Differential Evolution (DE), Estimation
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of Distribution Algorithms (EDA), Evolution Strategies (ES) and Evolutionary

Programming (EP) fields as well as from the ones proposed by the authors in

[3, 32].

Practically none of the original works where the selected operators were pre-

sented [27, 48, 47], try to deeply verify if the operator proposed really represents

an improvement with respect to other operators with similar characteristics but

without using the information on Pareto efficiency or Pareto optimality. The

only exception is [27], who compared their proposals DS, DC and DSC with

NSDE [26], a previous version from the same authors that did not use the

multi-objective characteristics of the problem in the design of the DE opera-

tor. More specifically, the developments made by their authors in the selected

works are the following: In [48], the algorithm was compared with SPEA [57]

providing means and variances of the generational distance [14, pp. 256-257],

between the populations obtained and PF ∗, but no detailed statistical analysis

of the results was carried out. In [27], as we have previously said, they compared

the three versions they proposed with the basic NSDE, and also with NSGA-

II, using the measures Generational Distance (GD) and Inverse Generational

Distance (IGD),[14, p. 257]. The authors concluded that all the DE, including

the basic version, outperformed NSGA-II and there were always some of their

proposals that outperformed the basic version. Among the three, the ones that

stood out were those that used a component which tried to reinforce the di-

rectional spread, DS and DSC. The conclusions of the authors were obtained

in view of the evolution plots of the measures GD and IGD in the different

problems, and there was no statistical study. Finally, in PDE-PEDA, [47], the

authors compared their proposal with a basic DE algorithm, supposedly similar

to NSDE, and also with NSGA-II. For a certain set of test problems and with

only 10 executions for each problem, they concluded, in view of the values of

the means and variances of GD and spread, that the algorithm they proposed

outperformed the two others.

As [22] stated, since in the majority of the situations the comparison of

the behavior of the algorithms cannot be accomplished by means of theoretical
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results, we have to focus our efforts on the analysis of empirical data obtained

from the experiments carried out. Only a small set of works use statistical

procedures in order to compare results, although their use has grown recently

and it is being suggested as a need for many reviewers. Considering all these

facts, in this work we propose a more rigorous comparison of the selected o-

perators in order to study the possible increment in the performance of the

operators when taking into account the Pareto information. We also consider

the comparison among all the selected operators, those defined by the authors

in [3, 32] and those from the algorithm NSGA-II.

The paper is organized as follows: In the next section we will briefly present

the definitions and notations on Multi-Objective Problems and Evolutionary

Algorithms that we will need later. In the third section, the selected variation

operators are shown. Later, in Section 4, we display the basic elements needed

for the computational experiment carried out in Section 5 for the comparison

among the different implementations. Finally, in Section 6, the conclusions and

further research are commented on.

2. Multi-Objective Optimization and Evolutionary Algorithms

The aim of Multi-Objective Optimization is to optimize a set of objective

functions which may generally be of a conflicting nature. Hence, the term

“optimize” means to find a solution satisfying the constraints, which would

give reasonable values of all objective functions to the decision maker. More

formally, Multi-Objective Optimization Problems, MOOPs, can be defined in

the following way:

min f (x ) = (f1(x ), . . . , fm(x )),

s.t. x = (x1, . . . , xn) ∈ D ⊂ Rn.

Contrary to single objective optimization, in multi-objective optimization

it is usually impossible to find one optimal solution. Instead, algorithms for

optimizing multi-objective problems try to find a family of points known as

the Pareto optimal set. These points verify that there is no different feasible
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solution which strictly improves one component of the objective function vector

without worsening at least one of the remaining ones.

A more formal definition of Pareto optimality or Pareto efficiency is the

following:

Definition 1. If, given a solution y, there exists another solution x such that

∀j = 1, . . . ,m fj(x) ≤ fj(y) and ∃j ∈ {1, . . . ,m} such that fj(x) < fj(y),

then we will say that solution x dominates solution y (denoted by x ≺ y), and,

obviously, solution y will never be sensibly selected as the solution to the problem.

If fj(x) ≤ fj(y), ∀j, we will say that solution x weakly dominates solution y

and will be denoted by x � y.

Definition 2. A solution x ∈ D is said to be Pareto optimal or efficient if and

only if @y ∈ D such that y ≺ x.

Definition 3. The real Pareto optimal set will be denoted with P true. The

image of P true in the objective function space is called Pareto front and it will

be denoted by PF true.

As we have stated in Section 1, we have selected NSGA-II in order to develop

new implementations by incorporating the variation operators we have chosen.

NSGA-II is based on the original version of the Non-dominated Sorting Genetic

Algorithm, NSGA, presented in [40]. This second version was proposed with

the aim of reducing the computational complexity of the non-dominated sorting,

and incorporating the concept of elitism which was supposed to speed up the

performance of the algorithm. The main differences between these two versions

are the fast non-dominated sorting approach, the estimation of the density of

solutions around a particular point of the population and the crowding compari-

son operator, thus solving the main criticisms NSGA received. The pseudo-code

of NSGA-II, extracted from [16, pp. 234-235], is shown in Fig. 1.

The crossover and mutation operators that NSGA-II uses are the Simulated

Binary Crossover [17] and the Polynomial Mutation operator [18]. They will be

briefly explained in Section 3. For more specific details, readers are encouraged
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Step 0: A Random population P 0 of size N is created and evaluated. Then
the crowded tournament selection operator is used for obtaining a sample
from P 0. The individuals of this sample are recombined and mutated to
create an offspring population Q0 of size N . t = 0.

Step 1: Let Rt = P t ∪Qt. Obtain the domination fronts Fi, i = 1, 2, . . . [16,
pp. 40-44].

Step 2: Set the new population P t+1 := ∅ and i = 1. Until |P t+1|+ |Fi| < N
do P t+1 := P t+1 ∪ Fi and i := i+ 1.

Step 3: Calculate the crowding distance [16, p. 236] of the individuals in Fi
and include in P t+1 the (N − |P t+1|) ones with the greatest value.

Step 4: Create offspring population Qt+1 from P t+1 by using the crowded
tournament selection, crossover and mutation operators. t := t+ 1 and go
to Step 1.

Figure 1: Pseudo-code of NSGA-II.

to refer to the original study [19] or the books [16, pp. 233-241] and [14, pp.

91-94].

3. The Variation operators

In this section we briefly present the different variation operators we have

considered. We will carry out a short description of them and we will make

reference to the original papers in order to obtain a more detailed description.

In order to select the operators, we have taken into consideration the fo-

llowing facts: First of all, they take explicitly into consideration the quality of

the solutions, measured in terms of Pareto efficiency; secondly, the algorithms in

which the operators were involved in should be, as far as possible, in the frame-

work of the algorithm NSGA-II; and thirdly, the computational requirements

of the operators should be comparable. The second requirement means all the

operators being compared under similar conditions to the ones that the authors

established in their original papers; this fact should guarantee as good perfor-

mance as the one that their authors claimed. The third element also tries to

establish a fair comparison by ensuring that all the algorithms have similar com-

plexities. In the particular case of the EDA algorithms, we found several works
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that finally were not included in our study since they use very sophisticated

and elaborated mathematical and statistical tools such as Bayesian networks,

principal component analysis, splines,Voronoi diagrams, etc. [35, 54, 6, 53, 28]

and their computational requirements are superior to the other algorithms con-

sidered.

The complexity of one iteration of all the NSGA-II “variations” that we will

propose in Section 4.4 will maintain a similar order as the original NSGA-II,

i.e., O(m·N2). This complexity is because of the non-dominated sorting process

[16, pp.42-43]. The EDA and PBV versions will include additional terms. EDA

has the term n · N · logN , as a consequence of sorting the n components of

the solutions in the population of size N and PBV has the term n ·N2 due to

the calculation of the mean and standard deviation of the distances between

solutions. In both cases, it could mean a slight increment due to the factor n

instead of m; however, the order of the number of variables and objectives in the

majority of the multi-objective optimization problems can be considered equal.

In the following five subsections, we will briefly present the original varia-

tion operators used by NSGA-II and the different variation operators we have

selected: Two variation operators based on DE, one based on EDAs, one based

on Gaussian/Cauchy variation and the ones proposed by the authors.

In the definition of the operators we will use a ranking function, denoted

by r(·), which corresponds with the ranking based on Pareto layers proposed

in [23, p. 201]. This function takes as ranking the Pareto layer in which the

solution is placed, i.e., given an individual x (t) ∈ P t belonging to the ith layer,

then r(x (t)) = i.

3.1. The original operators of NSGA-II

As we mentioned at the end of Section 2, the crossover and mutation ope-

rators NSGA-II implements are the Simulated Binary Crossover and the Poly-

nomial Mutation operators.

SBX: Simulated Binary Crossover [17]: This operator simulates the behavior of

the single-point crossover operator on binary strings. Given x (1,t),x (2,t)
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to be recombined, it generates the ith component, i = 1, . . . , n, of the

offsprings as follows:

x
(1,t+1)
i = 0.5 ·

[
(1 + βi) · x(1,t)i + (1− βi) · x(2,t)i

]
,

x
(2,t+1)
i = 0.5 ·

[
(1− βi) · x(1,t)i + (1 + βi) · x(2,t)i

]
,

where

βi =

 (2 · u)
1

ηc+1 , if u ≤ 0.5,(
1

2·(1−u)

) 1
ηc+1

, otherwise,

and u is a random number in [0, 1]. The parameter ηc determines how

well spread the children will be from their parents.

PMO: Polynomial Mutation operator [18]: This mutation operator uses a po-

lynomial distribution in the following way:

x
(t+1)
i = x

(t)
i +

(
x
(U)
i − x(L)i

)
· δi,

i = 1, . . . , n where x
(U)
i and x

(L)
i are the upper and lower bounds, respec-

tively, for component xi,

δi =

 (2 · u)1/(ηm+1) − 1, if u < 0.5,

1− [2 · (1− u)]1/(ηm+1), if u ≥ 0.5,

u is a random number in [0, 1] and ηm is the mutation distribution index.

We have considered the value of ηc and ηm equal to 20 as in the original

version of NSGA-II in [19].

3.2. The Differential Evolution operators

Differential Evolution (DE) was originally developed for single-objective op-

timization in continuous search spaces in [41] by Storn and Price and it has

shown good convergence properties for single-objective optimization problems.

An updated survey about DE is provided in [15]. DE performs variation based

on the location of the solutions in the population instead of using a probabi-

lity density function as other evolutionary methods usually do. With regard

to MOOPs, [9] proposes the first attempt at extending DE for multi-objective
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problems and [2, 1] are algorithms usually commented on in the literature. In

these proposals the information on the efficiency of the solutions is not explicitly

used in the description of their variation operators, but to conform the set of

individuals which are involved in the reproduction process. On reviewing the

literature we can find some papers that use the information on the efficiency of

the solutions in the variation process [48, 27, 5, 11]. We have chosen two of them

to be included in our study. The first one, MODE, was originally presented in

[48], extended later in [49] and applied in an interesting work in the context of

the printed circuit board assembly industry in [50]. This algorithm is a slight

variation of NSGA-II, in which, apparently, the parent population is always the

whole population. They also include an additional parameter, σcrowd, to reduce

the fitness assignment of very similar individuals. In our implementation we

have intentionally omitted this last parameter in order to ensure that the core

of all versions is as similar as possible. The second selected paper is [27]. It

proposes three NSGA-II versions that use DE variation operators. We have

selected the one their authors named NSDE-DCS, where DCS stands for “Di-

rectional Convergence and Spread”, because in their study it shows equal to or

better performance than the other two. We will now briefly present both ope-

rators. The solution quality information used by these two operators consists

of selecting the different solutions for building the differential and/or perturba-

tion vectors among those that fullfil certain efficiency relations related with the

solutions to be varied.

MODE: This mutation operator consists of two components: the differential

and the perturbation vectors. The differential part is the vector defined

between the individual x (best,t) and the individual to be mutated x (i,t).

Individual x (best,t) is a randomly selected individual from the set of non-

dominated individuals of the parent population (i.e., individuals for which

r(x ) = 1) that dominate x (i,t) (if r(x (i,t)) = 1, then the differential part

is 0 ). On the other hand, the perturbation vectors are defined by ran-

domly choosing pairs of individuals from the parent population. Given an
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individual x (i,t) to be altered, the new individual is obtained according

to:

x (i,t+1) = x (i,t)+

F ·
∑K
k=1(x (ika,t) − x (ikb ,t)) + Ix (i,t) · γ · (x (best,t) − x (i,t)),

(1)

where Ix (i,t) = 1 if r(x (i,t)) 6= 1 and 0 otherwise, γ ∈ [0, 1] represents the

greediness of the operator, K is the number of perturbation vector pairs, F

is the factor scale of the perturbation, and x (ika,t) and x (ikb ,t) are randomly

selected distinct individuals from the parent population, which may be

different for each mutated individual. The values for the parameters were

set to K = 2, γ = 0.7 and F = 0.5 as the authors proposed in their original

paper [48]. After the mutation phase, a crossover operator is applied using

the following expression:

x
(i,t+1)
j =

 x
(i,t+1)
j , if uj ≤ CR or j = ji,

x
(i,t)
j , otherwise.

(2)

In this expression, uj is a random uniform value in the interval [0, 1] and

CR ∈ [0, 1] is the crossover parameter which has been fixed to 0.3, as also

proposed in [48]. The ji value is a randomly chosen index component in

{1, 2, . . . , n} that ensures that at least one component of x (i,t) is changed.

DCS: This second operator was introduced in [27]. In order to apply this opera-

tor, three individuals have to be selected in the following way: Select x (ia,t)

and x (ib,t) at random such that they belong to the same Pareto layer,

(r(x (ia,t)) = r(x (ib,t))). Then, select another solution x (ic,t) such that it

belongs to a higher layer than the solution to be mutated (r(x (ic,t)) <

r(x (ia,t))). Furthermore, it has to hold that x (ia,t) 6= x (ib,t) 6= x (ic,t) 6=

x (i,t).

With the selected individuals, individual x (i,t) is mutated according to the
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following equation:

x (i,t+1) = x (i,t) + K · (x (ic,t) − x (i,t))

+ F · (x (ia,t) − x (ib,t)),
(3)

where as before, F andK are scale factors fixed to 0.8 and 0.4, respectively,

as the original authors use in [27]. If r(x (i,t)) = 1 then x (ic,t) is not selected

and the term K · (x (ic,t) − x (i,t)) is not applied. After the mutation, a

crossover operator is applied in the same way as shown in (2).

3.3. The Estimation of Distribution Algorithm operators

The Estimation of Distribution Algorithms, EDAs, originally proposed in

[4, 34] for the discrete case and extended for continuous variables in [39], are

a relatively new adopted technique derived from evolutionary algorithms, the

main difference between them being that a distribution on the space of solutions

is evolved instead of a population in the space of solutions; the usual crossover

and mutation operators are substituted by the sampling of a distribution pre-

viously learned from a set of selected individuals. A complete revision of the

field can be obtained from [29, 30]. As in the case of DE, EDAs were originally

developed for single objective optimization but later on they were proposed for

the multi-objective case [45, 44, 35, 54, 6, 53, 47, 28], etc. A special mention of

[28] should be made. Such paper shows an EDA based on Bayesian networks,

whose main novelty is that it incorporates into the model the variables as well

as the information of the objective functions, i.e., the quality of the solutions.

However, in spite of this, we have not considered it due to its high computational

requirements. Among the remaining alternatives, we have chosen the one by

Wang et al. [47] to be included in our study because of its simplicity and

similar computational requirements to those of the other variation operators

considered. The PDE-PEDA algorithm proposed in [47] follows the scheme

of NSGA-II, with a variation operator based on EDAs. More specifically, it

presents an EDA variation operator which is hybridized with a standard DE

variation operator. With a certain probability pr, the EDA variation is used
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and with a probability 1−pr, DE is adopted instead. Probability pr is adjusted

using the following process:

p0r = pmax
r ,

pt+1
r = pmin

r + β · (ptr − pmin
r ).

The following values are fixed in the paper: pmin
r = 0.2, pmax

r = 0.9, β = 0.95.

As in the first DE operator, MODE, the set of parents to be altered is

the current population. After obtaining a random uniform value in (0,1), if it

is greater than pr, individual x (i,t) is mutated according to the following DE

scheme:

x (i,t+1) = x (ia,t) + F · (x (ib,t) − x (ic,t)),

where x (ia,t) 6= x (ib,t) 6= x (ic,t) 6= x (i,t). Then, the crossover operation is

applied according to (2). In the paper, the values of the parameters were taken

as F = 0.3 and CR = 0.3.

When the random value is less than or equal to pr, an EDA variation opera-

tor is applied. The authors proposed building a histogram as the probabilistic

distribution model because it is the most straightforward method for estimating

the probabilistic density. In particular, they use a fixed-height histogram (FHH)

[46]. For each component xi, its search space [x
(L)
i , x

(U)
i ] is divided into H

bins (subintervals), each bin having the same height and, therefore, each bin

containing the same number of individuals. As a consequence, dense regions

have narrower bins than the others. The histogram of each component is built

using the information of the efficient solutions of the current population (set

of parents). Once the histograms are built, and in order to obtain a value

for component xi, first, a bin, hs, s = 1, . . . ,H, is selected with a probability

1/H and then a random value is obtained in the bin according to a uniform

distribution. In the implementation, we have considered the number of bins, H,

equal to 20, as the authors did in [47].

Given that all the other variation operators are not hybridized versions and,

in order to obtain a fair comparison among the different variation operators, only

the EDA part of this variation operator will be initially taken into consideration
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in the comparisons.

3.4. The Gaussian/Cauchy operators

Gaussian and Cauchy mutation operators are variation operators widely used

in Evolution Strategies (ES) and Evolutionary Programming (EP), in both the

single and the multi-objective cases. Furthermore, in several papers they are

used together in order to evolve solutions in EAs [10, 51, 20, 12]. However, unlike

the other variation operators, we do not modify any of the algorithms proposed;

instead, we design a variation operator based on their ideas. We do this because

the algorithms we found which use these operators are not variations of NSGA-

II, as happens to the other algorithms. So we propose a variation operator which

combines a usual ES crossover and a mutation process which depends on the

origin of the parents of the individual. If any of the parents are efficient, then

the Gaussian mutation is used (exploitation). Otherwise, we use the Cauchy

mutation. The underlying idea is similar to the one proposed in [52, 12], but

unlike them we do not apply both mutation operators one after the other. The

crossover operator that we use is one of a local type with intermediate recombi-

nation for the strategy parameters, σ, and discrete recombination for variables,

x , [21, p. 81]. In this case, given two individuals (x (1,t),σ(1,t)), (x (2,t),σ(2,t))

to be recombined, the operator generates the ith component, i = 1, . . . , n, of

the offspring as follows:

x
(t+1)
i = (x

(1,t)
i + x

(2,t)
i )/2, intermediate recombination,

σ
(t+1)
i = σ

(1,t)
i or σ

(2,t)
i , discrete recombination.

We then carry out the mutation process whose mechanism is the following:

σ
(1 2,t+1)
i = σ

(t+1)
i · e(τ ′·N(0,1)+τ ·Ni(0,1)),

x
(1 2,t+1)
i = x

(t+1)
i + σ

(1 2,t+1)
i ·Ni(0, 1), if r(x (1,t)) = 1 or r(x (2,t)) = 1,

σ
(1 2,t+1)
i · Ci(0, 1), otherwise,

where N(0, 1) and Ni(0, 1) stand for a random number drawn from a Gaussian

distribution with zero mean and standard deviation 1, Ci(0, 1) denotes a random
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value from a Cauchy distribution centred at 0 with a scale parameter equal to

1. τ and τ ′ represent a kind of learning rate and they are fixed to 1/
√

2 ·
√
n

and 1/
√

2 · n, respectively, according to [38]. Furthermore, a boundary rule is

applied to prevent standard deviations from being very close to zero: if σ
(t)
i <

εi ⇒ σ
(t)
i = εi. We have established εi = 0.001, i = 1, . . . , n.

3.5. Our operators

Finally, we shall comment on the operators we propose as substitutes for

the original ones of NSGA-II. They are a crossover operator, named PBCO,

and a mutation operator, named RBMO. Both were proposed in [3, 32]. They

are devoted to both exploitation and exploration, depending on the quality of

the solution. The main idea of the operators is to use good parents (efficient

ones) to improve the quality of the offspring (exploitation) and to use not so

good parents (non-efficient ones) to explore the whole space (exploration). The

outlines of these Pareto-based operators are the following.

RBMO: Given a solution x (t) to be mutated, its components are mutated with

a certain mutation probability according to the expression:

x
(t+1)
i = x

(t)
i + 2 · δ(t,r)(x(U)

i − x(L)i ) · (u− 0.5),

i = 1, . . . , n, where u is a random number in [0, 1], δ(t,r) defines the

maximal amplitude of the mutation based on the iteration t and the rank-

ing r of the solution x (t) according to the following expression:

δ(t,r) =

 2 · ε(t) + 10−4 · [1− ε(t)], if rtmax = 1,

ε(t) + [1− ε(t)] · λ(r), if rtmax ≥ 2,

where

ε(t) = 0.25 ·
(
tmax − t
tmax

)2

and

λ(r) =

(
1− e−β·(r−1)

1− e−β·(rtmax−1)

)
with tmax the maximum number of iterations, rtmax the maximal ranking

among the elements of the current population and β = 0.1.
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PBCO: This is a uniform crossover operator which has a different capacity of

variation depending on the quality of the solution and the distance between

the parents. First of all, the mean distance and standard deviation be-

tween all pairs of efficient solutions in the current population is calculated,

d(eff,t) and σ(eff,t), respectively. Given x (1,t) and x (2,t) to be recombined,

we define ∆i = |x(1,t)i − x(2,t)i | and ξhi = h · I[ui<0.75] + (3− h) · I[ui≥0.75],

where I is the indicator function and ui is a random value in (0, 1). Then,

the ith component, i = 1, . . . , n, of the offsprings, x (1,t+1) and x (2,t+1),

are obtained depending on the quality of the parents:

• If r(x (1,t)) 6= 1 and r(x (2,t)) 6= 1, the components x
(h,t+1)
i , h = 1, 2

are obtained by generating two values in:[
(x

(1,t)
i + x

(2,t)
i )

2
±∆i · fNeff

]
.

• If r(x (1,t)) = r(x (2,t)) = 1, the components are randomly obtained

in: [
x
(ξhi ,t)
i ± 3

4
·∆i · f (eff,t)

]
, h = 1, 2.

• If only r(x (1,t)) = 1, for instance, then, the components of the first

solution are randomly sampled in:[
x
(ξ1i ,t)
i ± 3

4
·∆i · f (eff,t)

]
,

and for the second in:[
x
(ξ2i ,t)
i ± 3

4
·∆i · fNeff

]
.

f (eff,t) and fNeff are correction factors which increase or decrease the

amplitude of the intervals in which the components are sampled depending

on the distance between the parents in relation with the mean, d(eff,t),

and standard deviation, σ(eff,t), of the efficient solutions in the current

population (see [3] for more details).

15



4. Methodology

In this section we present the necessary elements used in the experiments we

have carried out: The test problem suite, the measure used for carrying out the

comparisons, the parameter setting of the algorithms and the decision making

process.

4.1. Test problems

In order to guarantee that the proposed algorithms will confront efficient

solution sets of different characteristics, we have used a wide set of test problems

proposed in [25]. The set of test problems we have selected is wider than those

used in the papers from where we have taken the different operators, with the

aim of being able to accomplish a more detailed study.

A short description of the test suite used is shown in Table 1, which has

been obtained from the work mentioned. In all of these test problems the

Pareto optimal set is known.

4.2. Measure for comparing the populations

In order to compare the performance of the different implementations we

have selected the Hypervolume Difference (HD). This measure is based on the

widely renowned hypervolume indicator or S measure [56], which is the only

indicator that holds the properties of a metric and the only one to be strictly

Pareto monotonic [58]. Given P ∗ and PF ∗ the set of non-dominated solutions

resulting from the execution of an optimization algorithm and its image in the

objective space, respectively, the hypervolume measure calculates the volume

covered by the hypercube formed by the vectors of PF ∗ (considering that all

the objectives are to be minimized) and a reference point (one at least weakly

dominated by every member in P ∗). To obtain the value of HD, the difference

between the hypervolume of a reference set contained in PF true and the hyper-

volume of PF ∗ is calculated. [42] provides reference sets for all the problems

considered. In the experiments carried out, for each problem and number of ite-

rations, the reference point is placed by obtaining the worst objective function
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Table 1: Properties of the test functions. S: Separable; NS: Nonseparable; U: Unimodal; M:
Multimodal; D: Deceptive.

Test Objective No. of Total no. Separability

problem functions variables of variables and modality Geometry

1. S-ZDT1 f1 1 30 S, U convex

f2 29 S, U

2. S-ZDT2 f1 1 30 S, U concave

f2 29 S, U

3. S-ZDT4 f1 1 30 S, U convex

f2 29 S, M

4. R-ZDT4 f1:2 10 10 NS, M convex

5. S-ZDT6 f1 1 30 S, M concave

f2 29 S, M

6. OKA2 f1 1 3 S, U concave

f2 3 NS, M

7. SYMPART f1:2 30 30 NS, M concave

8. S-DTLZ2 f1:3 10 10 S, U concave

9. R-DTLZ2 f1:3 10 10 NS, M concave

10. S-DTLZ3 f1:3 10 10 S, M concave

11. WFG1 f1:3 24 24 S, U mixed

12. WFG8 f1:3 24 24 NS, U concave

13. WFG9 f1:3 24 24 NS, M, D concave

value among all the P ∗ populations obtained and then all data are normalized

so as to obtain the value of HD.

4.3. Parameter setting

Since our experiment is based on variations of the classical NSGA-II, to carry

out the experiments later shown, we have considered a usual fixed population

size equal to 100 individuals as in the original paper of NSGA-II, [19]. For

the parameters used in the different variation operators we have considered

the values proposed by their authors in the corresponding papers, they are

shown in Table 2. The initial values of the variables for all implementations are

obtained from a uniform distribution in (x
(L)
i , x

(U)
i ) and the initial values for

the σi parameters of the Gaussian/Cauchy implementations are obtained from

a uniform distribution in (0, (x
(U)
i −x(L)i )/

√
12). For all the variation operators,
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if any of the individuals obtained is not feasible, another one is generated in the

same way.

Table 2: Parameters of the algorithms.

NSGA-II ηc = 20, ηm = 20, pr = 0.9, pm = 1/n

DE operator of MODE F = 0.5, γ = 0.7, K = 2, CR = 0.3

DE operator of NSE-DCS F = 0.8, K = 0.4, CR = 0.3

EDA operator of PDE-PEDA H = 20

Gaussian/Cauchy operator εi = 0.001

4.4. The decision making process

In this section we present the decision making process accomplished for de-

ciding which operator presents better results than the others. We will use the

names shown in column 2 of Table 3 to identify the variations of the NSGA-

II that we have developed when introducing the different operators previously

mentioned. Since in the first experiment we test whether the use of the Pareto

information improves the performance of the variation operators or not, in the

third column we present the name of the version when the Pareto elements are

not considered. The way in which the non-Pareto versions of the operators are

accomplished is the following:

• DE1: In this case, all the solutions are mutated as if they were efficient,

i.e., no differential part is considered (DE1-nPb, non-Pareto based, in

Table 3).

• DE2: In this case, the three solutions are selected at random, i.e., there

is no selection based on the Pareto layers (DE2-nPb).

• EDA: The histogram of each component is built using the information of

solutions of the current population instead of using only the information

of the efficient ones (EDA-nPb).

• GC: A value from a uniform distribution in (0,1) is drawn. Then, if it

is less than 0.5 the Gaussian mutation operator is used; otherwise the
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Cauchy mutation operator is (GC-nPb).

It is worth mentioning that, after these modifications, some of the non-Pareto

versions become almost random search procedures. Particularly, DE1-nPb and

EDA-nPb do not have parent selection for reproduction based on the quality of

the solutions and then, they do not use Pareto information in their functioning,

except for the final survival selection process. But, surprisingly, one of them

has a better performance than its original version, as we will show in the first

experiment. There is no version of our Pareto Based Variation (PBV) operators

because they are totally built around the Pareto efficiency or Pareto ranking

information and if we remove these elements the operators cannot be defined.

Table 3: List of variations of NSGA-II implemented with and without their Pareto elements

Variation operators used Name of version Name of modified version
SBX and PMO NSGA-II /
PBCO and RBMO PBV /
DE operator of MODE DE1 DE1-nPb
DE operator of NSE-DCS DE2 DE2-nPb
EDA operator of PDE-PEDA EDA EDA-nPb
Gaussian/Cauchy operator GC GC-nPb

In all the experiments carried out the aim is to compare the performance

of the operators for solving MOOPs. The decision rule for determining which

operator is better than the others is a very complicated problem which can

be tackled in several ways. One possibility is to perform a statistical test to

compare the means or the medians of the measure selected; another is to count

the number of times that each operator outperforms the others (with respect to

the measure selected) and to determine whether those counts can be considered

statistically equivalent or not. Both methodologies present advantages and dis-

advantages: In the first case, a few of very large or very small values can distort

the results, even using a test for the medians; in the second case, we cannot know

to what extent one operator is better than the other. In view of this, and ta-

king into account the advantages and disadvantages of those methodologies, we
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finally opted for the second alternative, and we calculated the number of times

that each algorithm is the best one, with respect to HD. This index intends to

summarize the performance of each algorithm with regard to its peers. We then

performed statistical tests with these values. However, the results obtained did

not differ much from comparing the means or the medians.

With all these, for obtaining the information with which we made the com-

parisons, the process was the following. For each version of Table 3, once we

fixed the problem number (P1, P2, . . . , P13) and the number of iterations (100,

1000, 3000), we executed the algorithm 50 times, starting from 50 different ini-

tial populations. After the evolution process, we obtained, for each version of

Table 3, 50 final populations for each problem and number of iterations. We

then calculated the values of measure HD on the final efficient solution sets

obtained.

As we have previously mentioned we carried out three experiments. In the

first experiment we contrasted the implementations in pairs: the original form

with its non-Pareto version. In a similar way as in [31] we calculated the “per-

formance index” as the number of times that each version is better than the

other with respect to HD, taking into account that for HD, the smaller, the

better. Since trying to understand all this information can be unmanageable,

and according to [31], this information is summarized per problem and per num-

ber of iterations. In both cases, and with a significance level α = 0.05, we set

the hypothesis test of a proportion, [8], H0 : p = 0.5 versus H1 : p 6= 0.5,

where p is the probability that the original version is better than or equal to the

non-Pareto one. If the null hypothesis was not rejected, we can say that both

versions are equivalent. As we will show in Section 5, depending on the sample

size, the acceptance region of the test will be expressed in terms of the number

of times that the original version is equal to or better than the non-Pareto one.

In the second experiment we considered the selected versions, DE1, DE2,

EDA and GC together with the original NSGA-II and PBV. In a similar way to

the first experiment, for each problem and number of iterations we calculated

the performance index of each algorithm as the number of times that each
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algorithm presents the best value of the HD measure. After obtaining these

values, we carried out the multiple comparison test for proportions, [8], in order

to decide if the obtained values of the performance index could all be considered

statistically equivalent or not. As it will be shown in Section 5, since the multiple

comparisons of the values always rejected the null hypothesis, we compared

these values in pairs performing the χ2 goodness-of-fit test with the multiple-

comparison correction of Bonferroni, [8], with a global significance level equal

to 0.05.

5. Results of the experiments

In this section, we present the results of the three experiments that we carried

out. The first one was devoted to studying whether the use of the information

of the quality of the solutions, measured in terms of Pareto efficiency or Pareto

layers to which the solutions belong to, as Goldberg suggested in [23, p. 201],

really improves the behavior of the same operator from which we have removed

its Pareto elements. In the second experiment, we studied the behavior of all

the operators we have described in sections 3.1 to 3.5, both included. In the

third one we performed two comparisons including the complete version of the

EDA operator [47].

5.1. Experiment 1: Pareto based operators versus non-Pareto based operators

In this first experiment, we compared the selected operators in pairs: in their

original form and in an equivalent one but without the Pareto information, so

that we could study the possible increment in the performance of the operators

when taking into account the Pareto information.

As we have mentioned in Section 4.4, the information of the performance

index is summarized per number of iterations and per problem. In Table 4, we

show the results when we fix the number of iterations and sum up the values of

the performance index for all the problems, obtaining only one value per number

of iterations; in this case, the sample size is 13×50=650. With a sample size

equal to 650 and a significance level α = 0.05, the acceptance region of the
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hypothesis test of a proportion, expressed in terms of the number of times that

the original version is better than or equal to the non-Pareto one, proves to be

[301, 349]. If we fix the problem number and summarize the results per number

of iterations (see Table 5), the sample size is 3×50=150, and the acceptance

region is [63, 87].

Table 4: Value of the performance index per number of iterations. We show in boldface the
value of the performance index of the best algorithm.

Number of iterations

Algorithm 100 1000 3000

DE1 449 366 359

DE1-nPb 201 284 291

DE2 227 175 167

DE2-nPb 423 475 483

EDA 163 175 202

EDA-nPb 487 475 448

GC 289 266 253

GC -nPb 361 384 397

Table 5: Value of the performance index per problem. We show in boldface the value of the
performance index of the best algorithm.

Problem number

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

DE1 102 98 104 94 150 75 95 69 80 85 81 70 71

DE1-nPb 48 52 46 56 0 75 55 81 70 65 69 80 79

DE2 8 9 47 9 5 59 4 2 94 138 71 63 60

DE2-nPb 142 141 103 141 145 91 146 148 56 12 79 87 90

EDA 150 42 0 10 0 51 0 1 18 0 78 73 117

EDA-nPb 0 108 150 140 150 99 150 149 132 150 72 73 33

GC 56 47 63 46 59 73 21 62 73 78 77 79 74

GC -nPb 94 103 87 104 91 77 129 88 77 72 73 71 76

So, for example, if we pay attention to Table 5 and the algorithms DE1 and

DE1-nPb, in problem P9, out of the 150 populations obtained, version DE1 is
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80 times better than or equal to DE1-nPb, and version DE1-nPb is 70 times

better than DE1. If the number of times that the original version is equal to

or better than the non-Pareto one falls in the range [63, 87], we cannot reject

the null hypothesis, which means that both versions are equivalent. If we reject

the null hypothesis, if the performance index of the original version is greater

than or equal to 88, we will say that the original version is the best one; and

if the performance index is smaller than or equal to 62, we will say that the

non-Pareto one is the best. In the previous example, since 80 ∈ [63, 87] we then

say that both versions are equivalent.

Next, we will comment on the results obtained:

DE1 vs DE1-nPB: For this operator, paying attention to the summary per

iteration number (Table 4), version DE1 seems to be clearly better. But

the superiority decreases when the number of iterations increases, being

less accentuated for 1000 and 3000 iterations. If we analyze the results

per problem, (Table 5), for those with two objective functions (P1 to

P7), version DE1 appears to be the best: it outperforms DE1-nPb in 6

problems. For problems with three objective functions (P8 to P13), both

operators show an equivalent behavior. In summary, we can say that

DE1 behaves better than DE1-nPb. The tendency of both versions to

present a similar performance level when iterations increase makes sense

taking into account the base algorithm, NSGA-II, since when more itera-

tions are run, the number of efficient solutions tends to increase and then

both implementations tend to be equivalent because of the definition of

the modified version DE1-nPb. It also makes sense for the differences to

appear only in problems with two objective functions since in problems

with three, the number of efficient solutions increases and then, again,

both implementations become equivalent. It seems as if the inclusion

of the differential part that guides the search towards better solutions,

γ · (x (best,t) − x (i,t)) in Eq. 1, provides a small advantage that disappears

when the number of iterations increases, thus the information provided by
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the two differential vectors F ·
∑K
k=1(x (ika,t)−x (ikb ,t)) seems to be enough.

DE2 vs DE2-nPb: As it can be observed in Table 4, version DE2-nPb

appears to be better than DE2. This situation is slightly more pronounced

when iterations increase. In Table 5, we can see that in problems with two

objective functions version DE2-nPb always presents a better behavior. In

problems with three objective functions, none of the versions seem to be

clearly better than the other; DE2 is the best in problems 9 and 10 and

DE2-nPb is the best for problems 8 and 13. In the remaining cases, both

versions are equivalent. Therefore, in spite of the promising ideas on which

the operator is based, to maintain differentials adapted for generating vec-

tors which point towards the Pareto-optimal set, K · (x (ic,t) − x (i,t)) in

Eq. 3, and for generating a diverse set of solutions, F · (x (ia,t) − x (ib,t)),

we can conclude that DE2-nPb is preferred rather than DE2. We believe

that the problem is not in the basic ideas, but in the design of the ope-

rator. (x (ic,t) − x (i,t)) could be considered as an improvement direction

but only if the solutions are close enough. Otherwise, it is a “common”

differential vector (in which case, it does not add any information) and

therefore it uses less information in its functioning. A similar situation can

be found for the spread device when both solutions from the same layer

are not close. In this case, the differential vector does not guarantee that

the perturbation tends to generate the spread values well. Furthermore,

the differential part in charge of guiding towards the Pareto-optimal set is

not applied if the solution to be varied is efficient. So, when the number of

iterations as well as the number of efficient solutions increases, this part is

not used. On the other hand, the modified version always uses two pairs

of differential vectors. In our opinion, the operator could be improved if

it took into consideration the distance between solutions.

EDA vs EDA-nPb: In Table 4 we can observe that the number of times in

which EDA-nPb is better than EDA it is always greater than 349 although

this amount slightly decreases with the number of iterations. If we analyze
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the results per problem (see Table 5), EDA-nPb shows a better behavior

in the majority of the problems regardless of the number of objective

functions. Only in 2 out of 13 is EDA the best, in another 2 both versions

are equivalent and in the remaining 9 problems EDA-nPb is the best.

GC vs GC-nPb: With regard to the number of iterations, GC-nPb exhibits

the best performance which increases with the number of iterations as it

can be observed in Table 4. If we analyze the results per problem (see

Table 5), in those with two objectives, version GC-nPb appears to be be-

tter than or similar to GC. For problems with three objective functions,

it can be observed that both versions are equivalent. Therefore, we can

select the GC-nPb version as the best one.

In view of these comments and contrary to what could be expected, the

Pareto based versions of the operators are not always clearly superior to the

non-Pareto based ones. In particular, DE1 is better than DE1-nPb, but they

tend to be equivalent when iterations increase. Version DE2-nPb is better than

DE2, especially for problems with two objectives. With regard to EDA, EDA-

nPb is clearly better than EDA. And finally for GC, we have noticed a slight

superiority of GC-nPb.

5.2. Experiment 2: Comparison among Pareto based operators

For the second experiment, we consider the original proposed versions, DE1,

DE2, EDA and GC together with the original NSGA-II and PBV. The values

of the performance index appear, summarized per problem, in the top half of

Table 6; and per number of iterations, in the top half of Table 7. For example,

in Table 6, the column that corresponds to 1000 iterations means that out of the

650 executions (50 initial populations × 13 problems) 56 times the best value of

HD was obtained with algorithm DE1, 10 times with algorithm DE2, 117 times

with algorithm EDA, and so on. After obtaining these values, we carried out the

multiple comparison test for proportions, previously mentioned in Section 4.4,

in order to decide whether the obtained values of the performance index can all
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be considered statistically equivalent or not. But since the multiple comparison

test for proportions always rejected the null hypothesis, we compared these

values in pairs using a χ2 goodness-of-fit test with the multiple-comparison

correction of Bonferroni and a global significance level equal to 0.05. The results

of the statistical tests are shown by means of the letters “a”, “b” and so on,

which appear in some rows of the bottom half of the tables. For instance,

in Table 6, considering the column that corresponds to 1000 iterations, the

performance index values obtained with the algorithms DE1 and NSGA-II can

be considered equivalent and so, the letter “a” appears in the bottom half in

these algorithms. Also, the values obtained with the algorithms DE2 and GC

can be considered equivalent, so the letter “b” points it out in the bottom half of

the table. However, the pairs DE1/NSGA and GC/DE2 cannot be considered

equivalent, and that is why we have used different letters.

Table 6: Value of the performance index per number of iterations. The letters “a” and “b”
show the values of the performance index that can be considered equivalent after applying the
statistical tests.

Number of iterations
Algorithm 100 1000 3000

DE1 38 56 84
DE2 36 10 3
EDA 123 117 83
GC 6 13 8
NSGA-II 41 49 56
PBV 406 405 416

Best PBV PBV PBV
EDA EDA DE1a

NSGA-IIa DE1a EDAa

DE1a NSGA-IIa NSGA-IIa

DE2a GCb GCb

Worst GC DE2b DE2b

In view of Table 6, in which we present the summary per iterations, we

can observe that, in general, the best behavior corresponds to PBV followed by

EDA. Then, we can consider as equivalent to the algorithms DE1 and NSGA-II

and both are equivalent to EDA when the number of iterations increases. In
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Table 7: Value of the performance index per problem. The letters “a”, “b” and so on show the
values of the performance index that can be considered equivalent after applying the statistical
tests

Problem number

Algorithm P1 P2 P3 P4 P5 P6 P7

DE1 0 0 0 66 57 23 27

DE2 0 0 3 2 0 17 25

EDA 0 0 0 2 0 54 0

GC 0 0 0 0 0 27 0

NSGA-II 0 0 0 12 0 26 98

PBV 150 150 147 68 93 3 0

Best PBV PBV PBV PBVa PBV EDA NSGA

DE1a DE1a DE2a DE1a DE1 GCa DE1a

DE2a DE2a DE1a NSGAb DE2a NSGAa DE2a

EDAa EDAa EDAa DE2b,c EDAa DE1a EDAb

GCa GCa GCa EDAb,c GCa DE2a GCb

Worst NSGAa NSGAa NSGAa GCc NSGAa PBV PBVb

Algorithm P8 P9 P10 P11 P12 P13

DE1 0 4 0 0 0 1

DE2 0 1 0 0 0 1

EDA 0 0 6 100 23 138

GC 0 0 0 0 0 0

NSGA-II 0 10 0 0 0 0

PBV 150 135 144 50 127 10

Best PBV PBV PBV EDA PBV EDA

DE1a NSGAa EDAa PBV EDA PBVa

DE2a DE1a,b DE1a DE1a DE1a DE1a,b

EDAa DE2a,b DE2a DE2a DE2a DE2a,b

GCa EDAb GCa GCa GCa GCb

Worst NSGAa GCb NSGAa NSGAa NSGAa NSGAb

the last positions, we find DE2 and GC.

If we look at Table 7, where the information appears summarized per pro-

blem, PBV is the version that appears more times as the best one, in 9 out

of the 13 problems. Furthermore, when PBV is not the best option, it is the

second best in 2 out of 4 remaining problems and it is the worst option in only 2

problems (P6 and P7, both problems with two objectives). On the other hand,
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EDA appears as the best one in 3 out of 13 problems and as the second best in

6 problems. Among the remaining operators, we cannot establish a clear order,

except for GC which presents the worst results, being the one that occupies the

two top positions fewer times.

To conclude this part of the study and confirm or refute the superiority of

PBV, we compare, in an isolated form, the two algorithms that can be considered

as the best: PBV against EDA-nPb. We must mention that we take EDA-nPb

instead of EDA since in the first experiment it presented a better behavior than

EDA. The procedure was the same as in the first experiment. In Tables 8 and 9,

we present the values of the performance index for HD summarized per number

of iterations and per problem, respectively. In Table 8, we can observe that PBV

always shows a better performance than EDA-nPb and the difference increases

with the number of iterations. With respect to Table 9, we can observe that,

globally, PBV is better than or equal to EDA-nPb in 10 out 13 problems and

worst in only 3, one with 2 objective functions and two with 3. So, we can say

that, although EDA-nPb has improved the results of EDA, PBV still presents

the best performance.

Table 8: Value of the performance index per number of iterations. We show in boldface the
value of the performance index of the best algorithm.

Number of iterations

Algorithm 100 1000 3000

PBV 461 486 540

EDA-nPb 164 286 110

Table 9: Value of the performance index per problem. We show in boldface the value of the
performance index of the best algorithm.

Problem number

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

PBV 150 150 116 113 150 49 150 149 150 102 48 127 33

EDA-nPb 0 0 34 37 0 101 0 1 0 48 102 23 117
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Figure 2: Evolution of the mean value of HD for 10 runs of the algorithms for problems 12
(left) and 5 (right).

In addition to the previous comments, we have also studied the convergence

speed. We are interested in knowing if any algorithm is able to reach good

solutions in the early stages of the run, even if it does not maintain its good

behavior later on. We are also interested in the opposite behavior, i.e., an

algorithm which starts with bad solutions but outperforms the others, as we

increase the number of iterations.

We have solved each problem 10 times with each algorithm, using 4500

iterations. We have calculated the mean value of HD for each intermediate

number of iterations 100, 400, 700,. . ., 4500 and so on, in order to guess how

HD evolves. As a first conclusion, we can state that the main decrease of the

mean value of HD takes place approximately in the first 500 iterations for all

the problems. Furthermore, the operator or operators which present a good HD

with a low number of iterations tend to maintain this good behavior during the

rest of the run. This happens in problems 1 to 3, 8 to 10, 12 and 13 (see left

handside of Fig. 2). In the other 5 problems, one algorithm starts as the best

one, but as the number of iterations increases, another algorithm surpasses it,

either at the early stages of the execution or later on (see right handside of Fig. 2

). Therefore, in general, we cannot say that any of the algorithms presents a

higher convergence speed than the others.

5.3. Experiment 3: Comparison between EDA-nPb, EDA-DE and PBV

As we stated before, the EDA version that we have used is not the original

one proposed by its authors in [47] but an EDA operator hybridized with a

DE operator. In the previous experiments, in order to perform a fair study,

we considered only the EDA part, since the other operators did not have these

characteristics. Also, in order to remain faithful to the original operator (called

EDA-DE), we compare it with respect to EDA and, afterwards, we also compare

it with PBV. The values of the parameters of EDA-DE are fixed to pmaxr = 0.9,

pminr = 0.2, β = 0.95, F = 0.3 and CR = 0.3 as its authors proposed in [47].
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The procedure was the same as in the first experiment. It can be observed

in the top half of Tables 10 and 11 that EDA-DE significantly outperforms

EDA. It is always better in the summary per iterations and it shows a better

performance index in 11 out of 13 of the problems; also, they are equivalent in the

remaining two problems. So, the hybridization in this way produces a significant

improvement. In view of these results, we wondered whether the improvements

would be enough to surpass the performance of the PBV operator or not. So,

we compared PBV against EDA-DE. In the bottom half of Tables 10 and 11,

we can see the results of this comparison. In the summary per iterations, PBV

always shows a higher performance index, although the value slightly decreases

with the number of iterations. In the summary per problem, we can see how

PBV presents better or equal results in 9 problems, and worse results in only

4 problems. So, although EDA-DE has increased the performance of EDA and

EDA-nPb, this is not enough to make it a better option than PBV.

Table 10: Value of the performance index per number of iterations. We show in boldface the
value of the performance index of the best algorithm.

Number of iterations

Algorithm 100 1000 3000

EDA-DE 521 568 574

EDA 129 82 76

PBV 473 397 402

EDA-DE 177 253 248

Table 11: Value of the performance index per problem. We show in boldface the value of
the performance index of the best algorithm.

Problem number

Algorithm P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

EDA-DE 150 148 150 140 150 90 150 150 144 147 88 76 80

EDA 0 2 0 10 0 60 0 0 6 3 62 74 70

PBV 112 145 150 104 77 43 50 150 148 124 17 138 14

EDA-DE 38 5 0 46 73 107 100 0 2 26 133 12 136
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6. Conclusions and further research

In order to show whether or not the use of Pareto based variation opera-

tors can improve the performance of Evolutionary Algorithms, in this work we

have presented a comparison amongst several implementations of a well-known

algorithm, NSGA-II, in which the original variation operators have been re-

placed by variation operators that take into consideration the multi-objective

nature of the problems to be solved. The considered variation operators come

from the Differential Evolution, Estimation of Distribution Algorithms, Evo-

lution Strategies and Evolutionary Programming fields, and also include two

operators proposed in previous works by the authors. We should also comment

that the operators we found in the literature, among which are those we have

selected for the paper, generally make minimal use of the information on the

quality of the solutions, a fact that presumably should be taken into account to

improve the behaviour of those operators.

The results of the experiments show that adopting variation operators which

use explicitly the multi-objective character of the problems does not guarantee

success, since, in general, the Pareto versions of the operators did not provide us

with better results. The only exceptions are the variation operators proposed by

the authors, which unlike the others,which are adaptations of similar operators,

have been built entirely and from the

beginning around Pareto elements.

So, in our personal opinion, in order to develop more efficient variation ope-

rators to be included in Multi-Objective Evolutionary Algorithms, additional

research should be done in this area. In the design of the operators, some

important elements should be taken into account. The operators should appro-

priately balance the capacities of exploration and exploitation in function of, for

instance, the quality of the solution (based on Pareto ranking or on any other

ranking or quality measure of the solution), its age (number of iterations that

this solution has been in the successive populations), and so on. The exploratory

capacity should be initially higher and also nearly independent of the quality of
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the solution, and it should give way to the capacity of exploitation as iterations

proceed. Also, when the number of iterations is high, we should stress exploita-

tion when we are working with good solutions and use the not so good solutions

for maintaining certain exploratory capacity. It is also important to take into

account the proximity of the solutions when, for example, performing crossover.

The ideas used in the operator MODE [27] are very interesting and promising.

However, since this operator does not take into account the distance between

solutions, in our opinion, the operator loses effectiveness. In view of the third

experiment, another possible area of research would be the hybridization of the

operators, combining operators which allocate both capacities, as for example

EDA-DE. This operator, as we have previously mentioned, combines an EDA

and a DE. The EDA part presents a higher exploratory capacity and tends to be

applied with a higher probability in the early stages of the algorithm. Later on,

DE is applied with a higher probability, which means that in the final stages,

when the solutions are very close, the capacity of exploitation increases. We are

convinced that working on considering some of the above ideas could lead to

the development of variation operators that are more efficient for multi-objective

optimization than the current ones.
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