
Parallelizing Tabu Search on a Cluster of
Heterogeneous Workstations

Ahmad Al-Yamani Sadiq M. Sait Habib Youssef

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

sadiq@ccse.kfupm.edu.sa

Hassan Barada

Etisalat College of Engineering, Sharjah, UAE

Abstract

In this paper, we present the parallelization of tabu search on a network

of workstations using PVM. Two parallelization strategies are integrated:

functional decomposition strategy and multi-search threads strategy. In ad-

dition, domain decomposition strategy is implemented probabilistically. The

performance of each strategy is observed and analyzed. The goal of paral-

lelization is to speedup the search in �nding better quality solutions. Obser-

vations support that both parallelization strategies are bene�cial, with func-

tional decomposition producing slightly better results. Experiments were

conducted for the VLSI cell placement, an NP-hard problem, and the ob-

jective was to achieve the best possible solution in terms of interconnection

length, timing performance (circuit speed), and area. The multiobjective na-

ture of this problem is addressed using a fuzzy goal-based cost computation.

Index Terms: Tabu Search, Parallel Tabu Search, Metaheuristic, Func-

tional Decomposition, Multi-Search Threads, Combinatorial Optimization,

VLSI, Standard Cell Design, Placement, Fuzzy Logic.



1 Introduction

Tabu Search (TS) belongs to the class of general iterative heuristics that are

used for solving hard combinatorial optimization problems. It is a general-

ization of local search that searches for the best move in the neighborhood of

the current solution. However, unlike local search, TS does not get trapped

in local optima because it also accepts bad moves if they are expected to

lead to unvisited solutions [1, 2].

Among the iterative stochastic heuristics applied to combinatorial opti-

mization problems are Simulated Annealing (SA) [3, 4, 5, 6], Genetic Algo-

rithm (GA) [7, 8], and Simulated Evolution (SE) [9, 10]. A common feature

of these stochastic iterative heuristics is that they are memoryless. They do

not have memory or use any memory structure to keep track of previously

visited solutions. On the other hand, TS, utilizes some memory to make de-

cisions at various stages of the search process [2, 11, 12]. Memory structures

are used to prevent reverses of recent moves by keeping their attributes in

a tabu list (also known as short-term memory) in order to prevent cycling

back to already visited solutions. Memory structures are also used (1) to

force new solutions to have di�erent features from previously visited ones

(diversi�cation) [13, 14]; (2) to force the new solution to have some features

that have been seen in recent good solutions (intensi�cation) [11, 15]. It is

up to the user to specify what is required from TS at various stages of the

search process.

Because of its search strategy the parallelization of TS can result in

improved solution quality and reduced execution time. Encouraging results

are obtained for computationally intensive tasks even with a small number

of workstations in a local area network.

In 'Distributed Computing', several interconnected computers work to-

gether to solve a large problem [16]. The bene�ts of creating a distributed

computing environment employing a network of workstations has been ad-

dressed and investigated. These bene�ts include: (i) cost e�ectiveness com-

pared to an expensive large multiprocessor supercomputer alternative [17],

(ii) the utilization of the abundant computation power of PCs and work-

stations that remain idle for a large fraction of time, (iii) the availability of

high speed transmission links that have capacities in the order of gigabits/sec

[18], etc., to name a few. Researchers from Oak Ridge National Laboratory,

the University of Tennessee, and Emory University, developed a Parallel

Virtual Machine (PVM) system that assists in the implementation of de-

veloped parallel algorithms to be executed on a network of heterogeneous

workstations. The algorithm is developed as a collection of communicating

tasks, where, message passing, format conversion, task scheduling, etc., are

handled by PVM [16, 19].

The paper is organized as follows. In the following section (Section 2)

we state the placement problem. Our method of estimating the cost with

respect to three objectives using fuzzy goal-based approach is explained in

Section 2.1. A brief description of tabu search is then presented in Section 3.

2



Various parallelization strategies proposed in the literature are reviewed

in Section 4. The proposed parallel tabu search algorithm is described in

Section 5. In this section we also discuss the application of the algorithm to

a network of heterogeneous machines. Experimental results, their analysis

and discussion are given in the �nal section.

2 VLSI Multi-Objective Cell Placement

The problem of cell placement can be de�ned as �nding suitable locations

for all cells in a rectangular layout surface. A suitable location is one that

optimizes some objectives like wire length, delay, and/or area. A semi-

formal de�nition of the VLSI Cell placement problem can be found in the

literature [3]. For the standard cell layout style assumed in this work, all

the cells are of equal height but vary in width. They must be arranged in

rows without overlapping (see Figure 1). Channels between the rows are of

variable height to allow routing of connections between cells [3, 20, 21].

Pad

Wasted space

Routing channel

Feedthrough cell

A

B

Figure 1: Con�guration of a VLSI standard cell layout.

2.1 Fuzzy Goal-Based Cost Computation

Cell placement is a hard combinatorial optimization problem with a number

of noisy objective functions. A solution is evaluated with respect to three

main objectives: wire length, critical path delay (timing performance), and

area, which is a function of cell delays and interconnection delays. Prior to

�nal layout, these criteria cannot be accurately measured. Further, it is un-

likely that a placement that optimizes all three objectives exists. Designers

usually have to make tradeo�s. To deal with such complex and imprecise

objectives, a fuzzy goal-directed search approach is applied [10]. Below we

briey summarize this approach.

Let there be � solutions generated by the algorithm. Assume that we are

optimizing a p-valued cost vector given by C(x) = (C1(x); C2(x); � � � ; Cp(x))

3



where x 2 �. Assume that a vector O = (O1; O2; � � � ; Op) gives lower

bound estimates on individual objectives such that Oi � Ci(x) 8i; 8x 2 �,

1 � i � p. Oi's, the lower bounds on each objective do not have to be

achievable in practice. Further, assume that there is a user speci�ed goal

vector G = (g1; g2; � � � ; gp) which indicates the relative acceptable limits for

each objective. This means that x is an acceptable solution if Ci(x) �

gi �Oi where 8i; gi > 1:0.

In the scheme used, the acceptable solution set is considered as a fuzzy

set [22, 23, 24]. For VLSI cell placement problem of minimizing three pa-

rameters, the following rule is used to determine the membership in the

fuzzy set acceptable solution.

Rule1: If a solution is within acceptable wire length AND within accept-

able delay AND within acceptable area, THEN it is an acceptable solution.

Using fuzzy algebraic notation, while adopting the AND-like ordered weighted

averaging operator of Yager [25], the above rule is expressed as follows,

�(x) = � �min(�1(x); �2(x); �3(x)) + (1� �)�
1

3

3X

i=1

�i(x) (1)

where, �(x) is the membership value for solution x in fuzzy set acceptable

solutions, and � is an averaging constant. �i for i = f1; 2; 3g represents

the membership values of solution x in the fuzzy sets within acceptable wire

length, within acceptable circuit delay, and within acceptable area respec-

tively. The solution x
� which results in the maximum value for Equation 1

is reported as the best solution found, i.e., x� = max�(x), 8x 2 
, where 


is the solution subspace searched by the algorithm. The membership func-

tion for a general objective `i' is a function of the cost Ci, the lower bound

Oi and goal gi. (see Figure 2). User preferences can be easily expressed in

goal vector G. For example, by decreasing the goal value gi, the subsequent

membership value �i(x) for objective i will decrease.

3 Tabu Search

TS starts with an initial solution s selected randomly or using any con-

structive algorithm. It then de�nes a subset V �(s), called candidate list,

of its neighborhood @(s). The algorithm selects the best solution in V
�(s)

(in terms of an evaluation function) call it s�, to be considered as the next

solution. If the short term memory does not de�ne the move leading to s�

as tabu, it is accepted as the new solution even if it is worse than the current

solution in terms of the evaluation function (see Equation 1). However, if

the move leading to s� is tabu, the solution is not accepted unless a certain

criteria, known as aspiration criteria is satis�ed. Aspiration criterion is used

to check whether the tabu solution is accepted or not [1].

4



µ

Ci/Oi

i
c

µ i
c
(x)

1.0

1.0

Ci(x)/Oi gi

Figure 2: The membership function within acceptable criterion i.

A move consists of the swapping of two cells; m pairs of cells are trial

swapped and the best swap among them is accepted. A compound move

can be made d times where each time m other pairs are tested, where d is

the desired move depth, and the best move is taken each time (steps 4 to 16

of Figure 3 are repeated d times). The algorithm checks if the move is tabu

by considering only the two cells that were swapped �rst in the compound

move. If the move is found tabu, the aspiration criterion is checked. In

this work, best cost aspiration criteria is used [11, 12], where a tabu move

is accepted if the cost is better than the best cost seen thus far. If the move

satis�es the aspiration criteria, it is accepted; else it is rejected, and the

process repeats. Tabu tenure i.e., number of iterations the move remains

tabu is a parameter of the circuit size. The basic description of TS is shown

in Figure 3 [1].

4 Literature Review

According to Crainic et. al taxonomy [26], a possible parallelization strategy

of tabu search is to distribute the computation that requires the most CPU

time on available machines (functional decomposition). For example, in the

case of VLSI cell placement this corresponds to the evaluation of a candidate

list of placement con�gurations. Another strategy is to perform many inde-

pendent searches (multi-search threads). A third strategy, is to decompose

the search space among processes (domain decomposition). Using a di�er-

ent taxonomy, Crainic et. al., classify TS along three dimensions. The �rst

dimension is control cardinality where the algorithm is either 1-control or

p-control. In a 1-control algorithm, one processor executes the search and

distributes numerically intensive tasks on other processors. In a p-control

5



Algorithm Tabu Search;

X : Set of feasible solutions.

s : Current solution.

s
� : Best admissible solution.

C : Objective function.

@(s) : Neighborhood of s 2 X.

V� : Sample of neighborhood solutions.

TL : Tabu list.

AL : Aspiration Level.

1. Start with an initial feasible solution s 2 X.

2. Initialize tabu lists and aspiration level.

3. For �xed number of iterationsDo

4. Generate neighbor solutionsV�
� @(s).

5. Find best s� 2V�.

6. If move s to s� is not in TL Then

7. Accept move and update best solution.

8. Update tabu list and aspiration level.

9. Increment iteration number.

10. Else

11. If C(s�) < AL Then

12. Accept move and update best solution.

13. Update tabu list and aspiration level.

14. Increment iteration number.

15. EndIf

16. EndIf

17. EndFor

End. (*Tabu Searcb *)

Figure 3: Algorithmic description of tabu search (TS).

algorithm, each processor is responsible for its own search and the com-

munication with other processors. The second dimension is Control and

communication type where the algorithm can follow a rigid synchroniza-

tion (RS), a knowledge synchronization (KS), a collegial (C), or a knowledge

collegial (KC) strategy. RS and KS correspond to synchronous operation

mode where the process is forced to exchange information at speci�c points;

C and KC correspond to asynchronous operation modes where communica-

tion occurs at regular intervals. Collegial approaches exchange more infor-

mation than non-collegial ones. The third dimension is search di�erenti-

ation where the algorithm can be single point single strategy (SPSS), single

point di�erent strategies (SPDS), multiple points single strategy (MPSS), or

multiple points di�erent strategies (MPDS) [26].

In [27], a mechanism for parallelizing tabu search by dividing neighbor-

hood examination among a number of slaves for solving ow shop sequencing

problem was presented. A master process is used to send an initial solution

to all slaves. At each iteration, each one of the slaves examines part of the

neighborhood and reports the best move to the master process. The master

process chooses the best move among all and sends it to all slaves as the

next move to be performed if it is not tabu. The process then continues for

a �xed number of iterations or until no improvement is observed for a given

number of iterations. The algorithm presented uses domain decomposition

6



strategy. It is a 1-control, RS, SPSS algorithm.

Garcia et. al [28] presented a parallel implementation of tabu search for

vehicle routing problem. In their work, a master process applies TS and calls

slaves which (with the master) investigate the neighborhood of the current

solution. Each process identi�es its best move and sends it to the master.

The master process selects a set of the best moves and broadcasts them to all

slaves. Processes exchange only sequence of moves rather than exchanging

complete solutions which causes redundant communication overhead. The

algorithm uses domain decomposition strategy. It is a 1-control, RS, SPSS

algorithm.

In [29, 30], evolution principles were included to improve parallel Tabu

Search. In the given strategy, short term memory tabu search was applied

on a set of machines. After a speci�c number of iterations, each machine

exchanges best solutions with its neighbors. At each machine, if the received

solution is better than the local best, it replaces it. The algorithm uses

multi-search threads strategy. It is a p-control, C, MPSS algorithm.

Niar and Freville [31] proposed a parallel TS algorithm for the 0-1 mul-

tidimensional knapsack problem. In their algorithm, they had a master

process that generates initial solutions for slaves. The initial solution for

process i is taken as its previous best solution except in two cases: (i) if

the quality of the best solution is less than a fraction � of the overall best

solution or, (ii) if the best solution of process i has not been modi�ed for a

given number of iterations. For each slave, the master generates a di�erent

strategy where the strategy is represented by the tabu list size, the number

of local iterations and the number of successive drops at each iteration. The

algorithm uses multi-search threads strategy. It is a p-control, RS, MPDS

algorithm.

In [32], a parallel tabu search algorithm for voltage and reactive power

control in power systems was presented. Two schemes were implemented in

that work. In the �rst one, the neighborhood was decomposed for parallel

processing at each iteration. This is a domain decomposition strategy. The

algorithm is 1-control RS SPSS search. In the second scheme, a multi-search

threads strategy is followed, where tabu search was replicated with various

tabu list sizes for di�erent processes. The algorithm is p-control, RS, SPDS

search.

In [33], TS was applied to quad-partitioning VLSI Macro-cell placement

problem. The objective was to minimize the interconnection length which in

turn minimizes the delay. The results showed that using fuzzy cost function

provided up to 43% improvements in the cost.

The work described in the paper reports a parallelization of TS algo-

rithm on a network of heterogeneous workstations using PVM [16]. The

problem tackled is the standard cell VLSI placement, a hard constrained

multiobective optimizatoin problem with an exponential search space.

7



5 Parallel Tabu Search for Standard-Cell Place-

ment

The proposed parallel Tabu search algorithm consists of three types of pro-

cesses: (i) a master process, (ii) Tabu Search Workers (TSWs), and (iii) Can-

didate list Workers (CLWs). The algorithm is parallelized on two levels

simultaneously. The upper one is at the TS process level where a master

starts a number of TSWs and provides each with the same initial solution

(multi-search threads). The lower level is the Candidate List construction

level (local neighborhood search) where each TSW starts a number of CLWs,

this is functional decomposition. The general structure of the proposed par-

allel algorithm is shown in Figure 4.

TS Master

TS Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

Candidate
List Worker

TS Worker TS Worker

Figure 4: General structure of tabu search parallel implementation.

The parallel search proceeds as follows. The master initiates a number

of TSWs to perform TS starting from the given initial solution. A TSW gets

all parameters and the initial solution from the master. It then performs a

diversi�cation step where each TSW diversi�es with respect to a di�erent

subset of cells so as to enforce that TSWs don't search in overlapping areas.

Diversi�cation is performed by moves done within the TSW range to a

speci�c depth such that a di�erent initial solution is used at each TSW.

Then each TSW starts a number of CLWs to investigate the neighborhood

of the current solution (initial solution after diversi�cation). It sends the

parameters and the initial solution to each CLW. It also gives each CLW a

range of cells to search the neighborhood with respect to those cells. For

every move it makes, the CLW has to choose one of the cells from its range

and the other cell from anywhere in the whole cell space. Therefore, the

probability that two CLWs perform the same move is equal to 1
(n�1)2

where

n is the number of cells. The probability that more than two CLWs select

the same two cells is 0. This means that the probability that k CLWs make

the same move is eliminated completely if k > 2.

Each CLW makes a compound move of a predetermined depth and keeps

computing the gain. If the current cost is improved before reaching the

8



Algorithm Parallel TS Master Process;

Ni : Number of iterations.

X : Set of feasible solutions.

bs : Current best solution.

bc : Current best cost.

TL : Tabu list.

Nw : Number of workers.

1. Start with an initial feasible solution bs 2 X.

2. Initialize TL and bc.

3. Spawn Nw TSW workers to perform Tabu Search.

4. Send(bs;TL; bc) to all TSWs.

5. For Ni Do

6. Wait for best cost from all workers.

7. Ask for bs and TL from the worker

that has the overall best.

8. Receive(bs;TL).

9. Update bc.

10. Send(AL; bs;TL; bc) to all workers except sender.

11. Increment iteration number.

12. EndFor

End. (*Parallel TS Master Process*)

Figure 5: Algorithmic description of master process of parallel TS.

maximum depth, the move is accepted without further investigation. After

�nding the compound move that improves the cost the most (or degrades

it the least), the CLW sends its best solution to its parent TSW. The TSW

selects the best solution from the CLW that achieves the maximum cost

improvement (or the least cost degradation). It then checks if the move is

tabu. If it is not, it accepts it. Otherwise, the cost of the new solution

is checked against the aspiration criterion and the process continues for a

number of local iterations. At the end of the local iteration count, each TSW

sends its best cost to the master process. The master gets the overall best

solution and broadcasts it to all TSWs and the process continues for a �xed

number of global iterations. The completion of all iterations by the TSWs

and selection of new current solution by the TS master is considered one

global iteration. The TS iterations executed by each TS worker are called

local iterations

The processes described in Figures 5, 6, and 7, work together to get

a high quality solution with minimum communication between them. A

TSW process and a CLW process exchange only the best solution between

them while the master and TSW exchange the best solution as well as the

associated tabu list.

The overall execution ow of the various processes is abstracted in Fig-

ure 8. The e�ect of the number of TSWs and CLWs on the quality of

solution and the execution time of the algorithm is discussed later in Sec-

tion 6. Although the proposed parallel algorithm has been applied to the

VLSI standard cell placement problem, it may very easily be applied to any

optimization problem where functional decomposition will be bene�cial.

9



Algorithm TSW;

GI : Number of global iterations.

LI : Number of local iterations.

cs : Current solution.

bs : Current best solution.

bsi : Best solution sent by CLW (i).

TL : Tabu list.

AL : Aspiration Level.

1. Receive(cs;TL) and a range from master.

2. For GI Do

3. Perform a diversi�cation step.

4. For LI Do

5. Send cs and a unique range of cells to each CLW.

6. Receive bsi from all CLWs.

7. Check if the best bsi is tabu.

8. if no, update cs to the best bsi.

9. if yes, check if it satis�es aspiration criterion.

10. if yes, update cs to the best bsi else cs is not changed.

11. EndFor

12. If the master asks for bs Then

13. Send(bs;TL) to master.

14. Else

15. Receive(bs;TL) from master.

16. cs = bs.

17. EndIf

18. EndFor

End. (*TSW*)

Figure 6: Algorithmic description of TSW.

Algorithm CLW;

LI : Number of local iterations.

cs : Current solution.

TL : Tabu list.

AL : Aspiration Level.

1. Receive(cs;TL) and a range of cells from TSW.

2. For LI Do

3. Try m random pairs of cells of which one has to belong to the range.

4. Perform best swap and update cs.

5. Send cs to TSW.

6. If the TSW asks for cs Then

7. Send(cs;TL) to TSW.

8. Else

9. Receive(cs;TL) from TSW.

10. EndIf

11. EndFor

End. (*CLW*)

Figure 7: Algorithmic description of CLW.

10



Initialize Data
Structures and Read

Initial Solution

Spawn TSWs and
pass the arguments to

them

Receive arguments
from TS Master

Receive Initial
Solution from TS

Master

Perform a
Diversification step

within its range

Spawn CLWs and
pass the arguments to

them

Send Curent Solution
to CLWs

Receive arguments
from TS Worker

Receive Initial
Solution from TSW

Investigate the
Neighberhood and
find the best move

within its range

Send best cost and
best solution if the

TSW asks for it

Get best cost from
all CLWs and best

solution as the

If the move is not
tabu or the aspiration
criterion is satisfied
accept it. Otherwise,

reject it

Send best cost and
best solution if the

TSM asks for it

Get best cost from
all TSWs and best

solution as the
overall best

Send Current
Solution to TSWs

Repeats for
No. of Local
Iterations

Repeats for
No. of Global
Iterations

Tabu Search Master

Tabu Search Worker

Candidate List Worker

Figure 8: A scenario of the master, the TSW and the CLW processes.

11



5.1 The Algorithm in a Heterogeneous Environment

Normally, a network of workstations is composed of heterogeneous machines.

Heterogeneity can be of various types such as the machine architecture, data

format, computational speed, network type, machine load, and network load.

PVM can take care of machine architecture heterogeneity and data format

conversion.

In our implementation of parallel tabu search, we account for speed and

load heterogeneity by letting the master receive the best cost from any TSW

that has �nished the local iterations. Once the number of TSWs that gave

their best cost to the master reaches half the total number of TSWs, the

master sends a message to all other TSWs forcing them to report whatever

best cost they have achieved. TSWs check for such a message in their bu�ers

periodically (every 10 iterations). Once they receive the message, they kill

the currently running CLWs and report to the master their best achieved

costs.

The same approach is followed in the communication between TSWs

and their own CLWs that check for a message from their parents frequently.

That message either kills them, if it is the TS master that is asking the TSW

to report, or asks them for their best achieved solutions if half of the CLWs

have reported their best. This approach is followed in order to account for

the heterogenity in workstation's speeds and and loads as well as the varying

network load.

Experiments are conducted on three di�erent speed levels of machines

and four di�erent architectures. These architectures are IPX/SPARC, Sparc-

Station 10, LX/SPARC and UltraSparc 1. All machines have the same

operating system (Solaris 2.5).

5.2 Classi�cation of the Proposed Algorithm

As mentioned earlier, the algorithm is parallelized on two levels simultane-

ously. The upper one is at the tabu search process level where a master

starts a number of TSWs and provides them with the same initial solu-

tion. This is a multi-search threads approach where each TSW performs its

own search. The lower level is the Candidate List construction level where

each TSW starts a number of CLWs.. This level belongs to the strategy of

functional decomposition because CLWs are spawned only to investigate the

neighborhood of the current solution.

The algorithm falls into p-control class at the higher parallelization level

because the search control is distributed among all TSWs. The lower level

parallelization belongs to the 1-control class because the TSW controls the

search done by its CLWs.

On the control and communication type dimension, the algorithm fol-

lows rigid synchronization because the master waits for its children or stops

them. It is a multiple points single strategy (MPSS) search on the search

di�erentiation dimension because TSWs diversify from the initial solution

12



at each global iteration using the diversi�cation scheme proposed by Kelly

et. al [13].

6 Experiments and Discussion

In this section, we present and discuss various experiments that are per-

formed using the proposed parallel tabu search algorithm for VLSI stan-

dard cell placement. In Sections 6.1 and 6.2, we study the e�ect of the de-

gree of low-level and high-level parallelization on the algorithm performance,

namely quality of best solution and speedup. The de�nition of speedup for

non-deterministic algorithms such as TS is di�erent from that used for deter-

ministic constructive algorithms. For this category of algorithms, speedup

is de�ned as follows

Speedup(n;x) =
t(1;x)

t(n;x)

(2)

where t(1;x) is the time needed to hit an x-quality solution using one CLW (or

TSW ) and t(n;x) is the time needed to hit the same solution quality using n

CLWs (or TSWs). Speedup(n;x) in this case can be greater than n because

investigating the neighborhood with n CLWs (or making n independent

searches) can cause the stochastic search to hit an x-quality solution more

than n times faster. In Section 6.3 we study the e�ect of diversi�cation

performed by TSWs by comparing the results obtained with and without

diversi�cation.

In our experiments, we used eight ISCAS-89 benchmark circuits. Table 1

shows the number of cells, the number of I/O (input/output) pins, the

number of rows, the layout height, the routing channel height, the optimum

wire length, the optimum delay, and the optimum area for all circuits used.

Circuit Layout Optimal Costs

Name Cells IOs Rows LH Avg. RCH Owl Odelay Oarea

highway 56 11 3 284 55.0 7156 3.91 512

fract 149 24 5 556 66.5 28207 7.97 784

c499 283 73 6 750 80.4 43583 8.17 1176

c532 395 43 7 703 49.5 64674 17.83 1152

c880 784 86 9 1034 64.0 123616 16.8 1824

c1355 1451 73 13 1557 66.9 273138 13.62 2304

struct 1952 64 15 2102 88.0 432096 13.54 3280

c3540 2243 72 17 2480 93.4 500157 23.26 3096

Table 1: Characteristics of circuits and layouts used. (LH = layout heights

and Avg. RCH = average routing channel height in microns).

13



6.1 E�ect of Degree of Low-level Parallelization

In this experiment, di�erent number of CLWs are tried, from 1 to 4, for each

circuit. The change in the best solution quality is monitored as the number

of CLWs is changed. All other algorithm parameters are �xed. The number

of TSWs is 4 in all experiments. Twelve machines are used as a parallel

virtual machine. The number of global iterations (GIs), number of local

iterations (LIs), the number of cells swaps per move the depth of compound

move (d), diversi�cation depth, and the T-tenure, for all the circuits, are

�xed as given in Table 2.

Name Cells GI LI m d Div Depth T Tenure

highway 56 500 37 7 3 7 7

fract 149 500 61 12 3 18 7

c499 283 160 70 17 4 70 8

c532 395 120 100 20 4 100 9

c880 784 120 200 28 5 200 9

c1355 1451 80 120 9 2 60 9

struct 1952 80 120 9 2 60 10

c3540 2243 80 120 9 2 60 10

Table 2: Parameters of experiments (GI = global iterations and LI = local

iterations).

Figure 9 shows the e�ect of changing the number of CLWs on the best

solution quality for 6 circuits. For most of the circuits, it is clear that in-

creasing the degree of low level parallelization is bene�cial. For highway, the

circuit size is small. That makes adding CLWs beyond 2 not useful. Using 4

CLWs gives bad solution quality. A reason for this is the restriction imposed

on choosing cells when more CLWs are used (as mentioned in Section 5).

The cost used here is the fuzzy cost mentioned in Section 1, based on the

optimum values shown in Table 1 for wire length, delay and area.

Figure 10 shows the time needed to achieve a speci�c solution quality

for all circuits. This quality is chosen according to the best quality achieved

by the worst run. Adding more CLWs resulted in reaching better solutions

in less time except for highway and c499 where increasing the number of

CLWs to more than 2 was counterproductive and was causing communica-

tion overhead more than speeding up the search.

Figure 11 shows the speedup achieved in reaching a speci�c solution

quality for all circuits. It is clear from the �gure that in most of the experi-

ments, as the number of CLWs increases from 1 to 4, the speedup increases.

The sharpness of the speedup increase depends on the circuit size and the

goodness of the initial solution. For c532, the initial solution is too far from

the best reached. As a result, increasing the number of CLWs results in a

sharper change in the speedup. For c1355, the circuit size is moderate and

14



Iterations

0 51 102 153 204 255 306 357 408 459

B
es

t C
os

t

1

1.3

1.6

1.9

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: highway

Iterations

0 17 34 51 68 85 102 119 136 153

B
es

t C
os

t

3.6

7.8

12

16.2

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: c499

(a) (b)

Iterations

0 13 26 39 52 65 78 91 104 117

B
es

t C
os

t

4.6

9.8

15

20.2

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: c532

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

1.5

4

6.5

9

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: c1355

(c) (d)

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

2.6

3.3

4

4.7

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: struct

Iterations

0 4 8 12 16 20 24 28 32

B
es

t C
os

t

6

6.5

7

7.5

1CLW 2CLWs 3CLWs 4CLWs

Best Cost vs. Iterations for Different CLWs
Circuit: c3540

(e) (f)

Figure 9: E�ect of number of CLWs on solution quality.

15



Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

20

40

60

80

100

120

140

160

Runtime Needed for a 1.4 Cost on
Different CLWs
Circuit: highway

Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

800

1000

1200

1400

1600

1800

2000

Runtime Needed for a 6.1 Cost on
Different CLWs
Circuit: c499

(a) (b)

Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

0

500

1000

1500

2000

2500

Runtime Needed for a 7.4 Cost on
Different CLWs
Circuit: c532

Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

0

1000

2000

3000

4000

5000

6000

7000

Runtime Needed for a 6.2 Cost on
Different CLWs
Circuit: c1355

(c) (d)

Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

0

5000

10000

15000

20000

Runtime Needed for a 3.7 Cost on
Different CLWs
Circuit: struct

Number of CLWs

1 2 3 4

T
im

e 
(s

ec
.)

5000

10000

15000

20000

25000

30000

Runtime Needed for a 6.6 Cost on
Different CLWs
Circuit: c3540

(e) (f)

Figure 10: Runtime needed to achieve a solution of cost less than x for

di�erent numbers of CLWs.

16



the initial solution is not that far from the best reached as in the case of

c532. Because of communication overhead, the rate of change in the speedup

goes down as the number of CLWs is increased. In all experiments except

highway and c499, the critical point, where the speedup starts to degrade,

is not reached but it is clear in some curves that it is being approached.

For highway and c499, the critical point occurred at 2 CLWs because the 2

circuits are small.

6.2 E�ect of Degree of High-level Parallelization

In this experiment, di�erent numbers of TSWs are tried, from 1 to 8, for

each circuit. The change in the best solution quality is monitored as the

number of TSWs is changed. The number of CLWs per TSW is �xed to 1

in all experiments. As mentioned earlier, 12 machines are used as a parallel

virtual machine with the same parameters as shown in Table 2.

Figure 12 shows the e�ect of changing the number of TSWs on the best

solution quality for all circuits. For c499 and c1355, it is clear that using

more TSWs gives better solution quality in all iterations. For highway, the

circuit size is small. This makes adding TSWs beyond 4 not useful. For c532,

best results are obtained with 4 TSWs. Increasing the number of TSWs to

8 did not lead to any noticeable improvement. Recall that no functional

decomposition is done (only 1 CLW per TSW). Relying on multi-thread

search alone may not always result in improvement of speedup.

Figure 13 shows the time needed to achieve a speci�c solution quality

for all circuits. This quality is chosen according to the best quality achieved

by the worst strategy. Adding more TSWs proved to be bene�cial with

respect to runtime except for highway and c532 where increasing the number

of TSWs to more than 4 was causing communication overhead more than

speeding up the search.

Figure 14 shows the speedup achieved in reaching a speci�c solution

quality for all circuits. For highway and c532, the critical point, occurred at

4 TSWs. Adding more TSWs degraded the speedup. For the other three

circuits, the critical point was approached but not reached.

In general, increasing the number of CLWs performed better than in-

creasing the number of TSWs, i.e., low-level parallelization seems to be

more bene�cial than high-level parallelization. This is due to the fact that

a larger number of CLWs leads to a greater functional decomposition of the

exploration of a solution neighborhood, which is the most time consuming

component in VLSI placement. Further, increasing the number of TSWs

meant more communication overhead. Therefore, too much increase in the

number of TSWs can be counter-productive (See Figure 14, (a) and (c)). Re-

call that the algorithm was run on a cluster of workstations on an Ethernet

segment and hence, inter-station communication can be very slow.

17



Number of CLWs

1 2 3 4

S
pe

ed
up

0

1

2

3

4

Speedup Achieved for a 1.4 Cost on
Diferent CLWs
Circuit: highway

Number of CLWs

1 2 3 4

S
pe

ed
up

1

2

3

Speedup Achieved for a 6.1 Cost on
Diferent CLWs
Circuit: c499

(a) (b)

Number of CLWs

1 2 3 4

S
pe

ed
up

0

1

2

3

4

5

6

7

Speedup Achieved for a 7.4 Cost on
Diferent CLWs
Circuit: c532

Number of CLWs

1 2 3 4

S
pe

ed
up

0

2

4

6

8

10

Speedu Achieved for a 6.2 Cost on
Diferent CLWs
Circuit: c1355

(c) (d)

Number of CLWs

1 2 3 4

S
pe

ed
up

0

2

4

6

8

10

12

14

Speedup Achieved for a 3.7 Cost on
Diferent CLWs
Circuit: struct

Number of CLWs

1 2 3 4

S
pe

ed
up

1

2

3

4

5

Speedu Achieved for a 6.6 Cost on
Diferent CLWs
Circuit: c3540

(e) (f)

Figure 11: Speedup achieved in reaching a solution of cost less than x for

di�erent numbers of CLWs.

18



Iterations

0 51 102 153 204 255 306 357 408 459

B
es

t C
os

t

1.1

1.4

1.7

2

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: highway

Iterations

0 17 34 51 68 85 102 119 136 153

B
es

t C
os

t

3.7

10.7

17.7

24.7

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: c499

(a) (b)

Iterations

0 13 26 39 52 65 78 91 104 117

B
es

t C
os

t

7

13

19

25

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: c532

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

5

6.5

8

9.5

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: c1355

(c) (d)

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

2.8

3.4

4

4.6

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: struct

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

6

6.5

7

7.5

1TSW 2TSWs 4TSWs 8TSWs

Best Cost vs. Iterations for Different TSWs
Circuit: c3540

(e) (f)

Figure 12: E�ect of number of TSWs on the solution quality.

19



Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

30

40

50

60

70

80

90

Runtime Needed for a 1.4 Cost on
Different TSWs
Circuit: highway

Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

400

500

600

700

800

900

1000

1100

Runtime Needed for an 8.4 Cost on
Different TSWs
Circuit: c499

(a) (b)

Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

900

1000

1100

1200

1300

1400

1500

1600

1700

Runtime Needed for a 10.0 Cost on
Different TSWs
Circuit: c532

Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

0

1000

2000

3000

4000

5000

6000

7000

Runtime Needed for a 7.9 Cost on
Different TSWs
Circuit: c1355

(c) (d)

Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

3500

4000

4500

5000

5500

6000

6500

7000

7500

Runtime Needed for a 4.3 Cost on
Different TSWs
Circuit: struct

Number of TSWs

1 2 4 8

T
im

e 
(s

ec
.)

5000

10000

15000

20000

25000

Runtime Needed for a 6.6 Cost on
Different TSWs
Circuit: c3540

(e) (f)

Figure 13: Runtime needed to achieve a solution of cost less than x for

di�erent numbers of TSWs.

20



Number of TSWs

1 2 4 8

S
pe

ed
up

1

2

3

Speedup Achieved for a 1.4 Cost on
Different TSWs
Circuit: highway

Number of TSWs

1 2 4 8

S
pe

ed
up

1

2

3

Speedup Achieved for an 8.4 Cost on
Different TSWs
Circuit: c499

(a) (b)

Number of TSWs

1 2 4 8

S
pe

ed
up

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Speedup Achieved for a 10.0 Cost on
Different TSWs
Circuit: c532

Number of TSWs

1 2 4 8

S
pe

ed
up

0

5

10

15

20

Speedup Achieved for a 7.9 Cost on
Different TSWs
Circuit: c1355

(c) (d)

Number of TSWs

1 2 4 8

S
pe

ed
up

1

2

Speedup Achieved for a 4.3 Cost on
Different TSWs
Circuit: struct

Number of TSWs

1 2 4 8

S
pe

ed
up

1

2

3

4

5

Speedup Achieved for a 6.6 Cost on
Different TSWs
Circuit: c3540

(e) (f)

Figure 14: Speedup achieved in reaching a solution of cost less than x for

di�erent numbers of TSWs.

21



6.3 E�ect of Diversi�cation

In this experiment, we try to see the e�ect of the diversi�cation step per-

formed by the TSWs at the beginning of each global iteration. As mentioned

earlier, the diversi�cation step is performed to make every TSW investigate

a di�erent region of the search space.

Each TSW performs a number of successive moves up to a prede�ned

diversi�cation depth (see Table 2) on the solution received from the master

TS process. At each move, the TSW tries m di�erent swaps and picks the

most improving (or least degrading) one. One of the cells to be swapped

has to be from the range belonging to the TSW.

Figure 15 shows a comparison between two runs of four TSWs and one

CLW per TSW. In one run, diversi�cation is done to the diversi�cation depth

mentioned in Table 2. In the other run, no diversi�cation is performed.

It is clear from the �gure, that the diversi�ed run outperforms the non-

diversi�ed run signi�cantly. For struct, the non-diversi�ed run outperforms

the diversi�ed run in the early iterations because it is more greedy. However,

in the long term, the diversi�ed run always performs better.

The message conveyed in Figure 15 is that some diversi�cation is al-

ways useful, and too much diversi�cation without enough local investigation

might mislead the search by making it jump from place to another without

enough investigation any where. The only way to decide how much local

investigation versus diversi�cation is enough is through experiments.

Figure 16 shows the results of an experiment where the number of global

iterations is decreased as the number of local iterations is increased for all

circuits. For GI and LI refer to Figure 6. GI refers to the number of diver-

si�cation steps, that is, the number of \distinct" solution sub-spaces inves-

tigated. On the other hand LI refers to the number of iterations executed

in the particular sub-space. As we increase the number of global iterations

and decrease the number of local iterations, we make more diversi�cation

and less local investigation. It is clear from the �gure that no general con-

clusion can be made about the best number of global iterations versus local

iterations. It all depends on the problem instance itself. This experiment is

used as a guide for the most suitable number of local and global iterations

that should be used to continue searching for the best achievable solution

and to achieve the highest speed.

6.4 Accounting for Workstations Heterogeneity & Network

Load

In this experiment, we try to see the e�ect of accounting for speed and

load heterogeneity of various machines by performing two runs. In the �rst

one (heterogeneous run), we run the algorithm while accounting for speed

and load heterogeneity by making the master ask for best solutions from all

TSWs once half of them complete all assigned iterations, and report their

best to their parent. TSWs do the same by asking their CLWs to sub-

mit their best solutions once half of them report their best to the parent.

22



Iterations
0 51 102 153 204 255 306 357 408 459

B
es

t C
os

t

1.2

1.6

2

2.4

Div No_div

Diversified and Undiversified Runs
Circuit: highway

Iterations

0 17 34 51 68 85 102 119 136 153

B
es

t C
os

t

6

9

12

15

Div No_div

Diversified and Undiversified Runs
Circuit: c499

(a) (b)

Iterations

0 13 26 39 52 65 78 91 104 117

B
es

t C
os

t

8

16

24

32

Div No_div

Diversified and Undiversified Runs
Circuit: c532

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

5.5

7

8.5

10

Div No_div

Diversified vs. Undiversified Runs
Circuit: c1355

(c) (d)

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

3.1

3.6

4.1

4.6

Div No_div

Diversified and Undiversified Runs
Circuit: struct

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

6

6.5

7

7.5

Div No_div

Diversified and Undiversified Runs
Circuit: c3540

(e) (f)

Figure 15: E�ect of diversi�cation.

23



Iterations

0 3 6 9 12 15 18 21 24

B
es

t C
os

t

1.2

1.4

1.6

1.81.8

37 LI 74 LI 148 LI 185 LI 370 LI

Best Cost for Different Local Iterations
Circuit: highway

Iterations

0 3 6 9 12 15 18

B
es

t C
os

t

2

6

10

14

70 LI 140 LI 280 LI 560 LI

Best Cost for Different Local Iterations
Circuit: c499

(a) (b)

Iterations

0 2 4 6 8 10 12 14

B
es

t C
os

t

10

14

18

22

100 LI 200 LI 400 LI 800 LI

Best Cost for Different Local Iterations
Circuit: c532

Iterations

0 1 2 3 4 5 6 7 8 9

B
es

t C
os

t

5.75

6.25

6.75

7.25

120 LI 240 LI 480 LI 960 LI

Best Cost for Different Local Iterations
Circuit: c1355

(c) (d)

Iterations

0 1 2 3 4 5 6 7 8 9

B
es

t C
os

t

3.2

3.7

4.2

4.7

120 LI 240 LI 480 LI 960 LI

Best Cost for Different Local Iterations
Circuit: struct

Iterations

0 1 2 3 4 5 6 7 8 9

B
es

t C
os

t

6.3

6.7

7.1

7.5

120 LI 240 LI 480 LI 960 LI

Best Cost for Different Local Iterations
Circuit: c3540

(e) (f)

Figure 16: Local versus global iterations.

24



This is a knowledge collegial mode of operation with respect to the control

and communication dimension. In the second run (homogeneous run), each

parent waits for all its child processes to �nish and return their new best.

In all experiments we used twelve machines to make the Parallel Virtual

Machine. These machines include seven high-speed machines (UltraSparc

1), 3 medium-speed machines (SparcStation 10), and 2 low-speed machines

(LX/SPARC), all running the same operating system (Solaris 2.5) and in-

terconnected by a 10BaseT Ethernet segment.

PVM takes care of distributing processes between machines. In both

runs, we use 4 TSWs and 4 CLWs per TSW. The run that does not account

for heterogeneity is supposed to give better solutions because the parent

waits for all of its children to give their best solutions and does not force

any one to stop searching because others have �nished. However, since

the number of global iterations is maintained the same for both cases, the

heterogeneous run-time is expected to be far less than the homogeneous

runtime.

Figure 17 shows the best quality of solution achieved versus global iter-

ations for the homogeneous and heterogeneous runs. Except for one circuit

(c499), we observed no noticeable di�erence in solution quality. For c499,

there is a di�erence in solution quality but at the expense of larger runtime.

Table 3 shows the runtime needed for heterogeneous and homogeneous

runs. The table clearly indicates that for all test cases the parallel imple-

mentation that accounts for heterogeneity results in a reduction of execution

by a factor of 1.4 to almost 2.00 with respect to the homogeneous implemen-

tation. Figure 18 provides more accurate comparison between the homoge-

neous and heterogeneous implementations. It tracks the best cost achieved

versus run time in seconds.

Circuit Hom. Runtime Het. Runtime Improvement

highway 2316 1631 1.42

fract 11194 5626 1.99

c499 5722 3060 1.87

c532 8615 4839 1.78

c880 32361 19550 1.66

c1355 42560 27822 1.53

struct 76954 43332 1.78

Table 3: Runtime of homogeneous and heterogeneous runs in seconds.

Figure 18 shows that towards the end of the experiment, the heteroge-

neous run is doing either better than or at least as good as the homoge-

neous run, but never performs worse. For some circuits like highway, c532

and c1355, the heterogeneous run keeps performing better than the homoge-

neous run throughout the execution. For c499, the heterogeneous run starts

by performing worse and afterwards it outperforms the homogeneous run.

25



Iterations

0 51 102 153 204 255 306 357 408 459

B
es

t C
os

t

1

1.2

1.4

1.6

1.8

22

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: Highway

Iterations

0 17 34 51 68 85 102 119 136 153

B
es

t C
os

t

0

5

10

15

20

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: c499

(a) (b)

Iterations

0 13 26 39 52 65 78 91 104 117

B
es

t C
os

t

6

7

8

9

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: c532

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

1

3

5

7

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: c1355

(c) (d)

Iterations

0 9 18 27 36 45 54 63 72

B
es

t C
os

t

2.5

3

3.5

4

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: struct

Iterations

0 51 102 153 204 255 306 357 408 459

B
es

t C
os

t

1

3

5

7

9

10

Het Hom

Heterogeneous and Homogeneous Runs
Circuit: fract

(e) (f)

Figure 17: Heterogeneous versus homogeneous runs.

26



Time (sec.)

10 180 350 520 690 860 1030 1200 1370 1540

B
es

t C
os

t

1.2

1.5

1.8

2.1

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: highway

Time (sec.)
15 585 1155 1725 2295 2865 3435 4005 4575 5145

B
es

t C
os

t

1

7

13

19

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: fract

(a) (b)

Time (sec.)

20 340 660 980 1300 1620 1940 2260 2580 2900

B
es

t C
os

t

6

9

12

15

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c499

Time (sec.)

25 525 1025 1525 2025 2525 3025 3525 4025 4525

B
es

t C
os

t

6

7

8

9

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c532

(c) (d)

Time (sec.)

35 2835 5635 8435 11235 14035 16835 19635 22435 25235

B
es

t C
os

t

1.7

3.7

5.7

7.7

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: c1355

Time (sec.)
40 4400 8760 13120 17480 21840 26200 30560 34920 39280

B
es

t C
os

t

3

3.4

3.8

4.2

Het Hom

Best Cost vs. Runtime for Heterogeneous
and Homogeneous Runs
Circuit: struct

(e) (f)

Figure 18: Best cost versus runtime for heterogeneous and homogeneous

runs.

27



In another experiment, we tried to determine if it is useful (or not) to

include slow machines in the parallel virtual machine, because the master

keeps stopping them once the other machines report their best solutions.

To see the contribution of the slow machines in our strategy, we conducted

an experiment where one high-speed, one medium-speed, and one low-speed

machine are used as a parallel virtual machine. A single TSW is spawned

on each machine with one CLW per TSW. Once a TSW reports its best

solution to the master, the master asks all others to stop and report their

best solutions to it. By monitoring the number of solutions reported by each

TSW within various cost ranges, we can tell which machine is contributing

more to the search with useful results. Figure 19 shows the results of the

experiment ran on c499 for 500 global iterations. The results show that the

contributions of the three machines are nearly equal in all cost ranges. This

behavior is attributed to the non-deterministic nature of the search and to

the synchronization step performed by the master process at the end of each

global iteration.

Cost Range

[1,3) [5,7) [9,11) [13,15) [17,19) [21,23)

N
um

be
r 

of
 S

ol
ut

io
ns

0

50

100

150

200

250

300

350

400

High Speed Medium Speed Low Speed

Number of Solutions vs. Cost Range for
Different Machine Speeds
Circuit: c499

Figure 19: Number of solutions provided by machines of di�erent speeds

within various solution ranges.

7 Summary and Conclusion

In this paper, we presented the parallelization of tabu search and its imple-

mentation using PVM on a network of 12 heterogeneous SUN workstations.

These workstations di�er in speed and architecture: they are IPX/SPARC,

SparcStation 10, LX/SPARC and UltraSparc 1, all running Solaris 2.5. Two

parallelization strategies, functional decomposition and multi-search threads

28



strategy are integrated. Domain decomposition strategy is also implemented

probabilistically. Experiments were conducted on several real instances of

the VLSI cell placement problem.

The goal of parallelization is to speedup the search and to improve so-

lution quality. Observations support that both parallelization strategies are

bene�cial, especially for large test cases, with functional decomposition pro-

ducing slightly better results. Below we summarize our observations from

extensive experiments carried out on circuits of various sizes.

� For most test circuits, increasing the degree of low level paralleliza-

tion (functional decomposition) was bene�cial and was dependent on

the size of the circuit. Functional decomposition seems to be more

bene�cial for bigger circuits which have larger local and global search

spaces.

� In order to achieve a speci�c solution quality, for all circuits, adding

more CLWs resulted in reaching better solutions in less time. For

small circuits, increasing the number of CLWs to more than 2 made

the communication overhead o�set the gain in speed.

� For large circuits, using more TSWs (instantiations of more search

threads) resulted in improved solution quality in all runs, and resulted

also in lower run-time requirement for achieving the same quality of

solution. That is, high level parallelism is bene�cial for large circuits.

However, in general the most e�ective strategy seems to be a mix of

high and low level parallelization. Low level or high level paralleliza-

tion alone is not as e�ective.

� Speedup and load heterogeneity are taken into account by making the

master ask for best solutions from all TSWs once half of them have

completed all iterations. All solutions then report their best to the

master. This resulted in higher speedup.

� An interesting observation is that all machines (independent of their

speeds/architecture) contribute nearly equally to the search process.

This is attributed to the non-deterministic implementation and diver-

si�cation step of TS, as well as the global synchronization step of the

algorithm.

Acknowledgment: The authors would like to thank King Fahd University

of Petroleum and Minerals for all the support provided. Hassan R. Barada

would also like to thank Etisalat College of Engineering, P.O. Box 980,

Sharjah, UAE, for support.

29



References

[1] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms and their

Applications in Engineering. IEEE Computer Society Press, 1999.

[2] F. Glover, E. Taillard, and D. de Werra. A user's guide to tabu search. Annals
of Operations Research, 41:3{28, 1993.

[3] Sadiq M. Sait and Habib Youssef. VLSI Design Automation: Theory and

Practice. McGraw-Hill Book Co., Europe, 1995 (also co-published by IEEE
press).

[4] C. Sechen and A. L. Sangiovanni-Vincentelli. Timberwolf3.2: A new stan-
dard cell placement and global routing package. Proceedings of 23rd Design

Automation Conference, pages 432{439, 1986.

[5] A. Casotto, F. Romeo, and A. L. Sangiovanni-Vincentelli. A parallel simulated
annealing algorithm for the placement of macro-cells. IEEE Transactions on

Computer Aided Design, CAD-6(5):838{847, September 1987.

[6] S. A. Kravitz and R. A. Rutenbar. Placement by simulated annealing of a mul-
tiprocessor. IEEE Transactions on Computer-Aided Design, CAD-6(4):534{
549, July 1987.

[7] J. P. Cohoon and W. D. Paris. Genetic placement. IEEE Transactions on

Computer-Aided Design, CAD-6:956{964, November 1987.

[8] K. Shahookar and P. Mazumder. A genetic approach to standard cell placement
using meta-genetic parameter optimization. IEEE Transactions on Computer

Aided Design, 9(5):500{511, May 1990.

[9] R. Kling and P. Bannerjee. ESP: A new standard cell placement package using
simulated evolution. Proceedings of 24th Design Automation Conference, pages
60{66, 1987.

[10] Sadiq M. Sait, Habib Youssef, and Ali Hussain. Fuzzy simulated evolution
algorithm for multiobjective optimization of VLSI placement. In Proceedings

of IEEE International Congress on Evolutionary Computation, Washington

D.C., pages 91{97, July 1999.

[11] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
USA, 1997.

[12] F. Glover. Tabu search fundamentals and uses. Technical report, Graduate
School of Business Administration, University of Colorado at Boudler, June
1995.

[13] J. P. Kelly, M. Laguna, and F. Glover. A study of diversi�cation strategies for
the quadratic assignment problem. Computers Ops Research, 21(8):885{893,
1994.

[14] R. H�ubscher and F. Glover. Applying tabu search with inuential diver-
si�cation to multiprocessor scheduling. Computers & Operations Research,
21(8):877{884, 1994.

[15] F. Glover. Tabu search: A tutorial. Technical report, Graduate School of
Business Administration, University of Colorado at Boudler, February 1990.

30



[16] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. PVM Parallel Virtual Machine: A Users' Guide and

Tutorial for Networked Parallel Computing. The MIT Press, Cambridge, Mas-
sachusetts, London, England, 1994.

[17] M. Lewis and R. Cline. PVM communication performance in a switched FDDI
heterogeneous distributed computing environment. In IEEE Workshop on

Advances in Parallel and Distributed Systems, pages 13{19, October 1993.

[18] P. Crandall, E. Sumithasri, and M. Clement. Performance comparison of desk-
top multiprocessing and workstation cluster computing. In 5th IEEE Inter-

national Symposium on High Performance Distributed Computing, pages 272{
281, August 1996.

[19] G. Geist and V. Sunderam. The PVM system: Supercomputer level concurrent
computation on a heterogeneous network of workstations. In 6th Distributed

Memory Computing Conference, pages 258{261, May 1991.

[20] E. Horvath, R. Shankar, and A. Pandya. A parallel algorithm for standard
cell placement. In Seattle International Joint Conference on Neural Networks,
pages 896{897, July 1991.

[21] P. Cheung, C. Yeung, S. Tse, C. Yuen, and W. Ko. A new optimization cost
model for VLSI standard cell placement. In IEEE International Symposium

on Circuits and Systems, pages 1708{1711, June 1997.

[22] L. A. Zadeh. Fuzzy Sets. Information Contr., 8:338{353, 1965.

[23] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Transaction Systems Man. Cybern., SMC-3(1):28{44,
1973.

[24] L. A. Zadeh. The concept of a linguistic variable and its application to ap-
proximate reasoning. Information Sciences, 8:199{249, 1975.

[25] Ronald Yager. On ordered weighted averaging aggregation operators in mul-
ticriteria decisionmaking. IEEE Transactions Systems, man, and Cybernetics,
18(1):183{190, January 1988.

[26] T. Crainic, M. Toulouse, and M. Gendreau. Towards a Taxonomy of Parallel
Tabu Search Heuristics. INFORMS Journal of Computing, 9(1):61{72, 1997.

[27] E. Taillard. Some eÆcient heuristic methods for the ow shop sequencing
problem. European Journal of Operational Research, 417:65{74, 1990.

[28] Bruno-Laurent Garica, Jean-Yves Potvin, and Jean-Marc Rousseau. A parallel
implementation of the tabu search heuristic for vehicle routing problems with
time window constraints. Computers & Operations Research, 21(9):1025{1033,
November 1994.

[29] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro. Improving search
by incorporating evolution principles in parallel tabu search. In Proc. of the

�rst IEEE Conference on Evolutionary Computation- ICEC'94, pages 823{
828, June 1994.

[30] I. De Falco, R. Del Balio, and E. Tarantino. An e�ective parallel heuristic
algorithm for the mapping problem. In Proc. of Australian New Zealand Intel-

ligent Information Systems Conference- ANZIIS'94, pages 160{164, November
1994.

31



[31] Smail Niar and Arnaud Freville, editors. A Parallel Tabu Search Algorithm

For The 0-1 Multidimensional Knapsack Problem. 11th International Parallel
Processing Symposium, Apr. 1997.

[32] H. Mori and T. Hayashim. New parallel tabu search for voltage and reactive
power control in power systems. In Proc. of the 1998 IEEE International

Symposium on Circuits and Systems- ISCAS'98, pages 431{434, May 1998.

[33] Carol A. Mackey and Jo Dale Carothers. Performance-driven macrocell place-
ment. In IEEE Fifteenth Annual International Phoenix Conference on Com-

puters and Communications, pages 427{433, March 1996.

32


