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ABSTRACT

The increasing awareness of the importance of the wider
objectives of traffic management and control has led to

the work described in this paper. The aim of the study of

which this is a part is to develop a flexible signal
controller which may be configured so that it embodies
the objectives appropriate for the situation in which it is
to be used. This paper describes the investigation made
into the feasibility of optimising a prototype fuzzy logic
signal controller with respect to several criteria
simultaneously. The controller’s sensitivity to changes in
the membership function parameters was demonstrated
and it was not possible to minimise simultaneously even
the limited set of performance measures explored (travel
times and emissions). These results indicate that a
multiobjective genetic algorithm (MOGA) optimisation
technique is appropriate for further research.

OUTLINE

The first section of this paper describes the context in
which this study is being carried out. There follows a
brief introduction to fuzzy logic and an outline of the
prototype traffic signal controller used in this study. The
use of Genetic Algorithms for optimisation problems is
then described. The evaluation of traffic controllers using
microscopic simulation and an emission model is then
outlined. Having introduced the main components of the
experiment, the study and its outcome are described.

BACKGROUND
New objectives of traffic signal control

The constant rise of car ownership, increasing
congestion in cities, with concomitant increase in
atmospheric pollution, the environmental impact of
building new roads in an attempt to relieve congestion
and many other factors have contributed to an awareness
that it may be necessary to discourage people from using
their car in order to limit the amount of traffic on the
roads, as well as encouraging drivers to use certain
routes, diverting them from areas which are prone to
congestion, or which are heavily used by pedestrians.
The advent of these new perspectives on urban traffic
management and control has challenged the assumption
that the main measure for judging the efficacy of a

traffic signal control system is the extent to which it
reduces vehicular delay and stops.

The Urban Traffic Management and Control (UTMC)
initiative, launched in 1997 by the Department of the
Environment Transport and the Regions, together with
the Traffic Director for London, recognises and
responds to these changing objectives (Routledge et al
(1)). Flexibility and inter-operability are seen as key
features of modern UTMC systems which can thus
“achieve a wider range of transport and environmental
objectives”.

Delphi study

As the preliminary part of the policy-sensitive traffic
signal control project, the Transport Operations
Research Group (TORG) carried out a Delphi study
amongst the UK transport community with the aim of
ascertaining the range of objectives that could pertain
to various scenarios, such as an isolated intersection, or
an urban network. The first round questionnaire asked
respondents to vote for given objectives, while the
second gave the opportunity to discuss the respondent’s
chosen objectives in more detail. Detailed results from
the two rounds are given in Sayers et al (2), but the
general outcome was that it was unrealistic to try to
reach consensus on the objectives of traffic signal
control and their relative priorities, since every
installation may have different constraints and
requirements and these may vary over time. The study
served to highlight the fact that one of the most
important features of a traffic signal control strategy is
flexibility.

FUZZY LOGIC IN TRAFFIC SIGNAL CONTROL
Introduction

Since the seminal work of Pappis and Mamdani (3)
describing a fuzzy controller for traffic signals, there
have been many interesting applications of fuzzy logic
control to traffic signals. A fuller discussion of these can
be found in Sayers (4). Previous experience in TORG of
developing a fuzzy logic traffic signal control system for
an isolated intersection (Sayers et al (5)) demonstrated
its potential to provide the required flexibility.



The heart of a fuzzy logic control system is a set of rules
which describe the relationship between the inputs and
the output in qualitative “natural language” terms. As in
a knowledge-based expert system, these rules provide an
casily understood scheme for explaining the input/
output mapping. In contrast to expert systems, however,
a fuzzy logic rulebase can be relatively simple and
concise, due to the mapping of the individual discrete
input and output values onto user-defined fuzzy sets.

The simple building blocks of a fuzzy control system are
fuzzy sets, which capture the significant categories of
input and output values, and rulebases, which describe
the relationship between inputs and output. These can be
used to build a model which implements the desired non-
linear mapping, and avoids unwanted “steps” in the
output values caused by the simple use of thresholds in
the input values. A thorough introduction to fuzzy
control can be found in Lee (6).

Prototype controller

The signal control methodology described in Lee et al (7)
was chosen as a starting point. This controller employs a
competitive technique in which a weight for each phase
(or signal group) at the junction is derived each second
by means of several fuzzy control modules. The weights
are derived from count data supplied by inductive loop
detectors on the junction approaches, signal timing data
and data relating to neighbouring junctions which signal
the expected arrival of a platoon from upstream junctions
and the possibility of spillback at downstream junctions.
These weights are combined to give a weight for each
possible stage, including the current one, and are used as
a basis for the decision to change stage or retain the
current stage.

Optimisation of Fuzzy Logic Controllers

One criticism often levelled at the principle of fuzzy logic
control is the subjectivity of the fuzzy set definitions and
the rulebases. These are the fundamental building blocks
of a fuzzy logic control system and as such determine its
performance. Much work has been carried out on the
derivation and optimisation of these components, some
details of which are discussed in (4).

There are two main candidates for optimisation in a
classic fuzzy logic control system. These are the fuzzy set
definitions (membership functions) for the input and/or
output variables, and the rulebase, which constitutes the
mapping between combinations of input variables and the
output. These two components are related and changes to
either (or both) can have a profound effect on the
operation of the control system. There has been much
work on the optimisation of fuzzy logic systems, looking
at both rulebases and membership functions, with
promising results.

GENETIC ALGORITHMS FOR OPTIMISATION
Introduction

The most appropriate optimisation method for a given
problem depends to a large extent on the nature of the
search space, in terms of its size and complexity. For the
problem under consideration, an enumerative method
was not viable due to the number of possible solutions,
bearing in mind that in the simplified controller under
test there were four different input variables whose
membership function definitions could be varied
simultancously. The shape of the search space was not
known in advance, although it was likely that it had
many peaks of different forms and sizes. In this context,
a classical hill-climbing algorithm was not suitable due
to its tendency to stop at local maxima.

In the light of these difficulties, the optimisation method
of Genetic Algorithms (GAs) was adopted. This method
has its roots in a simulation of the natural selection
process, working on a population of possible solutions in
parallel, combining them to produce successive
generations and eventually (hopefully) converging on a
group of near-optimal solutions. The technique has a
stochastic clement in that it makes small random
changes (mutations) and also in the generation of the
initial population. However, it is also directed in that
solutions which perform better (have a higher fitness)
are more likely to produce offspring to take part in the
next generation. A full explanation of GAs in all their
diverse forms is found in Goldberg (8).

Multiobjective Genetic Algorithms

The goal of the project is to optimise the signal
controller with respect to a number of diverse criteria,
and the Delphi study showed that the relative weights
of these criteria could not be determined in advance.
An appropriate technique for such multiple objective
optimisation is the recently developed Multiobjective
Genetic Algorithm (MOGA) which permits a range of
optimal candidate solutions to be found, rather than
imposing an arbitrary weighting of the various criteria
to be optimised to lead to a single solution (Fonseca
and Fleming (9)). Each optimal solution reflects a
different trade-off between the desired objectives. This
allows a set of solutions to be found, each of which is
optimal with respect to some criteria, with a trade-off
against the others. When implementing the controller,
the solution that matches most closely the desired
objectives for each implementation can be chosen from
the optimal set.

The MOGA uses the Pareto ranking method to rank the
solutions of each generation by the number of other
solutions which dominate them and this ranking is then



used to determine the fitness (and thus expected number
of offspring) of each solution.

EVALUATION OF A
CONTROLLER

TRAFFIC  SIGNAL

Introduction

The evaluation of a vehicle-responsive traffic signal
controller is not a simple matter, due to its dynamic and
adaptive nature. Its response to the approaching traffic
affects the subsequent flow of traffic which in turn affects
the operation of the controller, and the control of the
signal for each approach is determined not only by the
traffic it controls, but also by the traffic on opposing
approaches. These factors mean that the only realistic
way to test the controller is using microscopic simulation
which models a junction with a given topology and other
parameters such as input flows, turning movements,
traffic mix and desired speeds. The simulator used in this
case is VISSIM.

Traffic Simulations

VISSIM. The VISSIM (standing for Verkehr in Stidten
Simulation) microscopic simulator is a discrete,
stochastic, time step based (1s) microscopic model with
driver-vehicle-units as single entities. The model
contains a psycho-physical car following model for
longitudinal vehicle movement and a rule-based
algorithm for lateral movements (Fellendorf (10)). The
model parameters have been calibrated through image
processing (Hoyer and Fellendorf (11)). The simulator
uses a DDE (Dynamic Data Interface) to exchange
information with the signal controller. Every second data
from vehicle detectors are passed to the controller which
then sends back signal setting for the coming second.

Data about each simulation run may be stored in files for
later analysis. The types of data that can be stored
include:

¢ vehicle position, speed and acceleration at each time
step of each vehicle;

travel times;

signal changes;

list of vehicles as they were generated; and

saturation flow.

These output files can be processed to give various
performance measures relating to each simulation run.

Emissions. Emissions are not calculated within VISSIM,
so some further processing is required to obtain these
data. In order to calculate the emissions from the vehicles
as they travel through the simulated network, the
emissions factors from the MODEM computer
programme can be used in conjunction with the VISSIM
output file which gives the speed and acceleration of each
vehicle at each second during the simulation. The

MODEM programme was developed from data collected
during the DRIVE V1053 project “Modelling of
emission as and fuel consumption in urban areas” from
typical urban driving and is available in the UK from
TRL. It calculates the exhaust emissions from a number
of vehicle categories, based on the second by second
speced of the vehicle. The pollutants calculated are
carbon monoxide (CO), hydrocarbons (HC), oxides of
nitrogen (NO,) and carbon dioxide (CO;). The
consumption of fuel is also calculated.

OPTIMISING THE CONTROLLER
Introduction

Before embarking on a MOGA which would be time-
consuming to carry out due to the large number of
simulation runs required in the evaluation stage, it was
thought prudent to determine the controller’s sensitivity
to changes in its membership function parameters.

In the first instance the membership functions alone
were optimised. A number of constraints were imposed
in order to preserve the transparent and meaningful
nature of the fuzzy control system.

Constraints on Membership Functions
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Figure 1. Illustration of fuzzy sets

The first constraint was to retain the ordering of the
fuzzy sets over the range of cach variable. In the
example illustrated in Figure 1, where the input variable
x has five input sets called “VLow’, ‘Low’, ‘Medium’,
‘High’, and °‘VHigh’, corresponding to consecutive
overlapping sections of the input range, then it is not
permitted to alter their definitions so that the set “High’
corresponds to lower values of the variable than the set
‘Low’. This would make the resulting system rather
counter-intuitive!

The second constraint was that the sets should be
triangular and the bases of one set should be at the same
points as the apexes of the two neighbouring sets. This
had the effect of ensuring that neighbouring scts
overlapped at a degree of membership of 0.5 and that for



any input value, the sum of its degrees of membership
was always 1, giving an even coverage of the input
ranges.

The number of sets could not be altered as this would
affect the rulebase, either losing rules or requiring new
ones. The minimum distance between the bases of any
fuzzy set was set to 1.

Taking these constraints into account, the position and
width of the base of each set could be altered, and the
position of the apex could be anywhere between the base
points, resulting in skewed sets.

Method

Introduction. In order to do test the controller’s
sensitivity to changes in the fuzzy set membership
function parameters, 50 simulation runs were performed
using different sets of randomly genecrated parameters.
The results of these simulation runs were then analysed
to determine whether altering the membership function
parameters had much impact on the behaviour of the
controller and if so, which output variables should be
used as the performance criteria. If all output variables
were strongly correlated, then a single criteria
optimisation would suffice. A Pareto ranking of the
results from the initial 50 runs using the most suitable
criteria was performed.

The network layout. A left-hand drive test network was
encoded in VISSIM, in which a central junction with
four approaches was controlled by the fuzzy logic
controller. At the periphery of each approach a fixed time
junction regulated the flow of vehicles to the central
junction, giving a more realistic platoon-like input flow
than a simple random generation of vehicles. At the
central junction all turning movements were allowed on
all approaches, with two lane approaches flaring to three
at the junction, giving a short lane for right-turners. The
left hand lane of each approach was shared by vehicles
turning left and vehicles going straight on, and the
middle lane was for straight on only.

The stage scheme. Each approach was controlled by two
independent phases; one for straight on and left turns,
and one for right turns. This gave a total of eight phases,
which may be combined in eight different stages, where
each stage combines two non-conflicting phases. A
transition was defined for each possible pair of stages, so
that whichever stage was currently green, any of the
others may be switched next, giving a high degree of
flexibility to the controller.

Modelled traffic. Each of the fifty simulation runs
carried out had the same characteristics. The traffic flow
was constant, and the same on each approach. Each
approach of the central junction received 1200 vehicles

per hour, of which 15% turned left and 5% turned right.
There were no heavy goods vehicles, buses or trams,
because the current version of MODEM does not have
emission factors for large diesel engines. The traffic mix
was mostly MODEM type 1 vehicles (type ECE 15.03,
engine size < 1.41).

Output. The travel times for each of the 12 turning
movements in the main junction were collected, second-
by-second, and the average, maximum and standard
deviation of the travel times for each turning movement
were calculated. In addition, the overall mean travel
time for each simulation run was calculated. The total
emissions of CO, CO,, NOx, HC and fuel consumption
were calculated from the VISSIM file giving details of
each vehicle’s speed and acceleration at each second
during the simulation.

RESULTS
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Figure 2. Matrix of scatter plots showing correlations
between emissions and fuel consumption

A scatter plot matrix (shown in Figure 2) of the
emissions and fuel consumption from the 50 runs
showed that they were all strongly correlated except for
NOx. A scatter plot matrix of the travel times showed
that the travel times for each straight-on direction was
representative of the three turning movements on the
same approach. Thus the variables that were chosen for
the Pareto ranking were CO, NOx, and the average
travel times for the 4 straight-on streams at the central
junction.

A Parcto ranking was performed by comparing the
values for each of the criteria across all pairs of
solutions. If all of the values for solution x were less
than or equal to the values for solution y, and at least
one of them was less that its equivalent value in y, then
solution x was said to dominate solution y. The highest
rank was awarded to the solution which was dominated
by the least number of other solutions. There may be



several solutions with the same rank. A solution with a
low rank is better than one with a high rank.

The values for the chosen criteria across the 50 test
solutions were ranked using this method. Figure 3 is a
scatter plot of travel time for one straight-on stream
against the Parcto rank of each solution. The plot shows
that the rank does not depend on any one variable but on
a combination, since the solution with second-highest
travel time is given rank 1.
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Figure 3. Scatter plot of travel time versus Pareto rank.

CONCLUSIONS

The controller’s sensitivity to changes in the membership
function parameters has been demonstrated. In addition,
it has not been possible to minimise simultaneously even
the limited set of performance measures explored. These
results indicate that a multiobjective optimisation
technique is appropriate.

FURTHER WORK

A MOGA will be implemented fully. The solutions of
successive generations will be evaluated using different
simulation parameters such as traffic flow patterns and
traffic mix. Pedestrian delay will also be included in the
evaluation criteria.
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