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ABSTRACT 
 
Multi-objective evolutionary algorithms (MOEAs) have 
been proved successfully in many different applications. 
Over 900 publications [4] have since proposed various 
MOEA implementations and applications. However, there 
is still a significant lack of studies on metrics for MOEA 
comparison. In this paper, we propose a new visualization 
technique that will provide better analysis of the non-
dominated solutions for any number of objectives. 


 


1. INTRODUCTION 
 
Real world problems often require the simultaneous 
optimization of multiple, possibly conflicting objectives. 
Typically, such a problem does not admit a single optimal 
solution, but rather a set of solutions known as Pareto-
optimal, or non-dominated. This non-dominated set 
describes the trade-offs in the problem, and may help the 
designer understand the options available and select final 
solution for implementation. 


Evolutionary algorithms are stochastic methods for 
search and optimization inspired by the process of natural 
selection. They offer greater flexibility in the handling of 
multiple objectives than conventional optimization 
methods. The growing interest devoted by the scientific 
community to evolutionary algorithms for multi-objective 
optimization has led to an increasing number of different 
approaches being proposed in the literature. Such 
techniques have been demonstrated on several practical 
engineering applications, and their power and usefulness is 
recognized. Detailed summaries of the state-of-the-art in 
MOEA were discussed in [5,7,11,15,17]. Unfortunately, 
there is a serious lack of quantitative methods to describe 
their performance. 


The aim of this paper is to propose a new visualization 
technique to analyze the final non-dominated set of 
solutions, which in turn can assist in the comparison 


process. Section 2 give a brief background information on 
why such a visualization technique is useful and essential. 
The proposed technique will be described in Section 3. 
Sections 4 and 5 discuss experimental results and 
observations, followed by our conclusions in Section 6. 
 


2. BACKGROUND 
 
The conventional way of comparing non-dominated set of 
solutions is through visual comparison in the objective 
space. This method is simple and straightforward. The 
criterion is to have solutions close to the true Pareto front 
and must be well distributed over the Pareto frontier. 
However, this method is limited to maximum three 
objectives. Following, various performance metrics were 
proposed and quite a few of them were designed upon the 
basic criterion of a good MOEA. 


Some of the infamous metrics proposed were diversity 
[6], attainment surface [9], attainment surface sampling 
[12], generational distance [18], spacing [18], error ratio 
[18], maximum Pareto front error [18], overall 
nondominated vector generation and ratio [18], size of the 
dominated space [19], coverage of two sets [19], coverage 
difference of two sets [19] etc.. Detailed summaries of the 
metrics were discussed in [2,7,13,14]. 


Currently, all the proposed metrics have their 
limitations. The main problem is the lack of decision 
maker preferences in the comparison, hence causing 
difficulty in some cases of comparison. Hansen & 
Jaszkiewicz [10] have proposed a formal framework for 
evaluating the quality of the non-dominated set. However, 
the proposed metrics only emphasized on the distance 
between competing non-dominated sets or distance 
between competing non-dominated sets and a reference 
set. In addition, there were quite a few settings that users 
need to determine for e.g. the choice of the set of utility 
function, the choice of probability distribution of the 
utility functions and utility functions’ scaling. 


The common way of proving the creditability of a new 
proposed performance metric is always limited to two or 







three objectives problem. A common practice of proofing 
is to display those competing non-dominated solutions in 
objective space and show the metric report results. 
However, it is difficult to provide any evidence that a 
particular metric works for a two objectives problem will 
also work for problems with more than three objectives. 


In the following section, a new visualization technique 
based on distance and distribution will be proposed to 
assist in the comparison process. This technique is not 
meant to replace any existing metrics but may be used to 
visualize the comparison process for problems with any 
number of objectives. 
 


3. PROPOSAL 
 
Instead of plotting the non-dominated solutions in the 
objective space (which is only limited to three objectives), 
we proposed to plot the non-dominated solutions against 
their distance to the approximate Pareto front [1] and their 
distance between each other. Here we called it the 
Distance & Distribution (DD) chart. The DD chart 
consists of three elements namely the approximate Pareto 
front, distance measure and distribution measure. 


Approximate Pareto front can be easily generated by 
two methods. First method is to have an archive to store all 
the best-found non-dominated solutions. Second method is 
to use all the non-dominated solutions found by the 
competing algorithms and use it as an approximate true 
Pareto front. 


Distance measure is simply the normalized Euclidean 
distance of each solution to the nearest approximate Pareto 
front solution. This measure is similar to generational 
distance metric except that it is measuring the individual 
distance rather than the overall average distance. A zero 
value indicate that the solution is Pareto-optimal and any 
values above zero indicates that the solution deviates from 
the approximate Pareto front. 


Distribution measure is simply the normalized 
Euclidean distance between each solution and taking into 
consideration the distance between the boundary solutions 
and the approximate Pareto front. This measure is similar 
to diversity metric except that it is measuring the 
individual gap distance rather than the overall average gap 
distance. Thus, a low performance measure characterizes 
an algorithm with a good distribution capacity. 


The computation for distance measure is 
straightforward. As for the distribution measure, it will get 
complicated when the number of objectives is more than 
two. In this case, Deb [7] proposed to use the non-
dominated solutions to construct a higher-dimensional 
surface by employing the so-called triangularization 
method. As several distance measures can be associated 
with such a triangularized surface, the average distance of 
all edges can be used as the gap distance. Note that this 
method is extremely computationally expensive. Hence, 


we propose another method to compute distribution 
measure that is applicable to any number of objectives. 
This method is not accurate but it can still serve as a rough 
estimation for the distribution measure. First, the non-
dominated solutions found must be sorted. It is 
recommended to sort based on the first objective, for e.g. 
if the first objective is to minimize then the solutions 
should be sorted in ascending order based on the first 
objective value. Now regardless of how many objectives, 
the two-boundary gap distance calculation is simply the 
normalized Euclidean distance between the first and last 
non-dominated solution and the first and last solution of 
the approximate Pareto front respectively. For example, 
the two-boundary gap distances (g1 and g4) can be 
calculated based on the distance between the first solution 
found and the first solution of the approximate Pareto front 
as shown in Fig. 1. In Fig. 1, circle represents the non-
dominated solutions found, square represents the 
approximate Pareto front, d1 to d3 represents the distance 
measure and g1 to g4 represents the distribution measure. 


The number of non-dominated solutions required for 
the DD chart is about 10 to 100. Although, the amount of 
the competing non-dominated solutions does not need to 
be the same, but they should not be different by more than 
50%. 


Our proposal is to view the distance and distribution 
measure of each non-dominated solutions found by an 
algorithm. Using one simple line chart to plot the non-
dominated solutions against its distance and another line 
chart to plot the non-dominated solutions against its 
distribution measures. The distance chart will not only 
provide information on the overall distance of the 
solutions to the approximate front but will also reveal the 
maximum Pareto front error. As for the distribution chart, 
it can reveal the coverage of the non-dominated solutions 
in the objective space. 
 


4. SIMULATIONS 
 
Here we will illustrate the visualization technique for 
distance and distribution measures. In all the past 
publications, the visual comparison technique has been 
applied to view the objective space of the problem and that 
severely limit the technique to only a maximum of three 
objectives problem. 


The experiment setup is to use from our previous 
studies but now with a different view. The two algorithms 
used are the multi-objective evolutionary algorithm 
toolbox (MOEA_NUS) [16] and (1+1)-Pareto Archived 
Evolution Strategy (PAES) [12]. Though, MOEA_NUS 
and PAES are of different nature as MOEA_NUS is 
population-based and PAES is not. This might not be a 
fair comparison, but the focus of this experiment is to 
demonstrate the new visualization technique rather than 
debating on the validity of the comparison. 
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Fig. 1. An Example Plot              Fig. 2. Result of a single run 
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     Fig. 3. Distance chart of a single run  Fig. 4. Distribution chart of a single run 
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     Fig. 5. Distance chart of MOEA_NUS (10 runs)       Fig. 6. Distribution chart of MOEA_NUS (10 runs) 
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   Fig. 7. Distance chart of PAES (10 runs)  Fig. 8. Distribution chart of PAES (10 runs) 







      For MOEA_NUS, the population size is set to 100 and 
generation size to 250. It is using tournament selection, 
one-point crossover with a rate of 0.9 and using classical 
mutation with a rate of 1/l (where l is the string length for 
binary-coded chromosome). As for PAES, the iteration is 
set to 25000; depth of 4 and archive size of 100. We used 
30 bits to represent each decision variable. 


The two-objectives minimization test problem [8] 
illustrated here is: 


f1(x) = 1 – exp(−∑ −=
n
i i nx1


2)/1( ), (1a) 


f2(x) = 1 – exp(−∑ +=
n
i i nx1


2)/1( ), (1b) 


where,   -4.0 ≤ xi ≤ 4.0, n = 1,2,3 


 
4.1. Single Run 
 
This is to illustrate the result of a single run though it does 
not have any statistical significant. The result plotted in the 
objective space is shown in Fig. 2. Fig. 3 and 4 shows the 
distance and distribution charts respectively. 


Based on Fig. 2, it is clear that solutions found by 
PAES are Pareto-optimal but not well distributed. As for 
the solutions found by MOEA_NUS, it is better distributed 
but not all the solutions are Pareto-optimal as compared 
with PAES. In Fig. 3, we can confirm that all PAES 
solutions are indeed Pareto-optimal. As for MOEA_NUS, 
the center portion of the solutions are Pareto-optimal and 
the boundary solutions deviate from the approximate 
Pareto front. In Fig. 4, there are two very high ‘spike’ in 
the distribution measure for PAES solutions. The first 
‘spike’ on the left shows that the solutions are ‘far away’ 
from the left boundary of the approximate Pareto front. 
The second ‘spike’ simply indicates that there is a break in 
the continuity of the solutions. Note that the second ‘spike’ 
is common if the true Pareto front is disconnected. 
 
4.2. Multiple Runs 
 
In order to have any statistical significant, multiple runs of 
each algorithm is required. Here each algorithm execute 
10 times on the test problem. Fig. 5 and 6 shows the 
distance and distribution charts of MOEA_NUS and Fig. 7 
and 8 shows the distance and distribution charts of PAES. 


Fig. 5 again shows that the center portion of the 
solutions found by MOEA_NUS is close to Pareto-
optimal. Fig. 6 shows that the extent of the solutions does 
not span widely enough. In general, MOEA_NUS 
performance is considered quite consistent based on the 
results on single and multiple runs. Thus, DD chart can 
also be used to detect any performance inconsistency. 


Fig. 7 shows that on average, solutions found by 
MOEA_NUS are closer to the approximate Pareto front 
than PAES. Fig. 8 indicates that there is a break in 
continuity among the solutions. However, this might be 
true for the case of a disconnected true Pareto front but 
based on Fig. 6 it can be shown that the true Pareto front is 
not disconnected. 
 


5. OBSERVATIONS 
 
In the previous section, we have done a simple single run 
and a multiple runs simulation in order to illustrate the 
capability of DD chart. The distance chart is 
straightforward and easy to analyze but the distribution 
chart is not. Care must be under taken when analyzing the 
distribution chart as the true Pareto front might be 
disconnected and not well distributed. One of the possible 
solutions is to plot the DD chart for the approximate 
Pareto front. Then user may have an idea what the best 
result should look like. However, the approximate Pareto 
front solutions must be reduced to almost the same number 
as the competing non-dominated solutions. 


Another noticeable problem is the result range of 
distance and distribution measures [3]. Without any 
knowledge of the range, it is almost impossible to 
determine if the results can be considered similar. For 
example, if two result values are 20 and 80, so if the range 
is from 0 to 100 then we can determine that the differences 
between these two results are significant. However, if the 
range is from zero to infinity, then the differences between 
these two results can be considered as unnoticeable. 


This visualization technique is not limited to only 
distance and distribution measures and in fact it can be 
extended to any performance metrics that is suitable. More 
works are still needed for handling disconnected Pareto 
front and more accurate distribution measure calculation 
for three or more objectives. 
 


6. CONCLUSIONS 
 
In this paper, a novel and simple visualization technique 
has been proposed. This technique can reveal the coverage 
of the non-dominated solutions in the objective space with 
no limitations on the number of objectives. It can also be 
used to validate the analysis by any performance metrics. 
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