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Abstract  
This paper looks into the application of Pareto-based Genetic Algorithm (GA) in obtaining the 
minimum time motion planning for an industrial robot. A common practice in multiobjective 
optimisation GAs for minimum time motion planning is to apply classical aggregation 
approach to the objective formulation while in this study, Pareto-ranking method is used. A 
suitable objective vector is organised to include the total travel time and the two joint 
constraints: velocity and acceleration limits. The objective is to obtain a optimal motion with 
minimum travel time and within the kinematics limitations. The optimisation process involves 
first producing a fixed number of joint displacements using the genetic operators, and then 
scaling the travel time such that it is not violating the kinematics constraints. The feasibility of 
this method is shown by simulation results with an RTX SCARA robot. Cubic spline functions 
are used in the construction of the joint trajectory. 

1. Introduction 
Minimum time motion planning for a industrial manipulator is an important subject 
in the area of robotics. However, most multiobjective optimisation GAs used in 
minimum time motion planning apply classical aggregation approach to the objective 
formulation (see for e.g., [8, 9, 11]). This paper is intended to develop a Pareto-based 
multiobjective genetic algorithm, which has recently being proposed [4, 5], for the 
minimum time motion planning of an RTX robot (with six joints). The travel 
distance and kinematics characteristics of each joint are varied. Thus, to obtain a 
feasible minimum motion time, the combination of the kinematics characteristics for 
their joints such as velocities, accelerations and jerks have to be optimised. The 
objective vector in this project includes the total travel time, the criticality to joint 
velocity and acceleration limits. The GA motion planning is using the cubic spline 
theory [7] to construct the joint trajectories. The method allows manipulator motion 
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time, velocity, acceleration and jerk to be scaled such that the kinematics constraints 
are met. Note that the path planning is carried out in joint space and only kinematics 
constraints (joint velocities, accelerations and jerks) are considered in this study. 
This paper is organised as follows: Section 2 explains the application of cubic spline 
joint trajectories and the time scaling method. Section 3 incorporates the parameters 
obtained in Section 2, i.e. optimal motion time, the criticality to velocity and 
acceleration limits, into the objective function formulation. Section 4 gives the 
Pareto-based GA motion planning. Section 5 shows the results when applying this 
method. Section 6 gives the discussions and conclusions. 

2. Cubic Spline Joint Trajectories and Time Scaling 
Method 
Each joint trajectory is fitted to a number of joint displacements at a sequence of 
time instants by using piecewise cubic polynomials. Let t1 < t2 < t3 < t4 <...<tn-2 < tn-1 < tn be an 
ordered time sequence and the position (or knot) of the jth joint at time t = ti is θji(ti). 
Thus, the vector of knots for the jth joint along the path is given as 
[θj1(t1),θj2(t1),...,θjn (tn)]. The interval time is defined as h t ti i i= −+1  (i n = 1,2,..., -1) 
whereas the velocity and acceleration of joint j at knot i are denoted as vji and wji 
respectively. The cubic spline joint trajectories allow the joint velocities, 
accelerations and jerks to be evaluated at every instant of motion time [7]. Every 
initial motion time will be tested such that it is optimal and the motion will not 
violate the kinematics constraints. The intervals must be scaled up or down 
depending on the scaling factor in (2.4). The knot velocities, accelerations and jerks 
should be compared with their own limits to obtain the time-optimal path satisfying 
the joint constraints. Let the absolute values of the jth joint velocity, acceleration and 
jerk limits denoted as VCj, WCj, and JCj respectively. The scaling factor λ can be 
obtained as follows: 
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If the time interval hi is replaced by λhi  for i =1,2,..., n-1, then the velocity, 
acceleration and jerk will be replaced by factors of 1 1 1

2 3λ λ λ, , , respectively. These 

changes assure the satisfaction of constraints on velocities, accelerations and jerks 
[7]. 
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3. Objective Formulation 
The objective vector following from the definition of Pareto optimality [13] would 
look like this: 
 

Minimise: ( hi
i

n

=

−

∑
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1

, 1-λ1, 1-λ2)                                                                 (3.1) 

subjects to constraints: λ3 ≤ 1, 
 
where hi  is the time interval i, 1-λ1 is the criticality to the velocity constraints, 1-λ2  
is the criticality to acceleration constraints. The parameters: λ1, λ2 and λ3 are 
computed by equations (2.1), (2.2) and (2.3) respectively. Criticality is a 
measurement of a trajectory on how close it is to the joints’ velocity and acceleration 
limits. 

4. Pareto-based GA Motion Planning 
The schematic diagram for GA minimum time motion planning is illustrated as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Generate Initial Population 
From the knots vector described in Section 2, the path is encoded directly as string of 
floating point to be used by the GA as 

[θ 11, θ 12,..., θ 1n; θ 21, θ 22,...,θ 2n; ...; θ m1, θ m2,...,θ mn] 
The knot values of each joint are generated randomly using a transition scheme. The 
joint is restricted to move in only 5 directions from any knot. To create the initial 
population, two trajectories, one begins from start position and the other one begins 

Initialisation of parameters

Generate Initial Population 

Evaluate the Initial Population

do { 
Selection 
Recombination 
Update-generation 
Evaluate:  

 Pareto-Ranking 
 Fitness Assignment and Sharing 

Record the best-time trajectory 
}  
while (generation < maximum generation) 
Report. 
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from end position will be generated. The trajectories start from the end position will 
have higher tendency to move downward whereas the other one will have higher 
possibility to move upward. A valid trajectory will be created once they meet at a 
particular point. The travel time between intermediate knots is initially set to their 
lower bounds for each joint, according to the formula as follows: 
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and then the time scaling method will convert the time into a feasible one so that the 
trajectories will not exceed the limits on all the six joints 

4.2 Evaluate The Population 
All trajectories are ranked based on its total travel time, the criticality to the joints’ 
velocity and acceleration limits (see Section 3) based on Pareto ranking. According 
to the procedure proposed by [4], an individual in a population can be ranked by 
counting the number of individuals that dominate it. When all individuals are ranked, 
the fitness values will be assigned to them according to their rank. In this paper, the 
fitness assignment is done by interpolating a linear function [12] from the best 
individual (rank = 0) to the worst individual (rank<maxpop). Following that, same 
rank individuals will receive the same fitness values by averaging the total values 
assigned to them. Fitness sharing uses a sharing parameter h to control the extend of 
sharing, which is a measurement of the maximum distance between individuals that 
could form niches. It is computed as follows [4]:  
 

h = [ ( )( ) / ] /( )8 4 21 1 4C n n Nn
n n− ++                                                           (4.2) 

 
where n is the number of decision variables, and N is the population size. It is also 
known as smoothing parameter for the Epanechnikov kernel [10]. Each trajectory’s 
share count is set to zero initially, and then it is incremented by a certain amount for 
every trajectory in the population, including the trajectory itself. Raw fitness value is 
then recalculated by dividing the values with the total share count. The share count 
can be obtained by using the Epanechnikov kernel [4]. However, the calculation of 
Epanechnikov kernel function will require the inverse of the sample covariance 
matrix and also the determinant of the covariance matrix [10]. To avoid the problem 
of matrix singularity, an approximation is implemented and the share count function 
will look like the following [6]: 
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where d∗ is computed such that each decision variable xi is weighted by its variance. 
The variance is calculated as follows: 
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where N is the number of observations or in other word the population size and d∗ is 
computed as: 
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4.3 Selection Scheme And Mating Restriction 
Selection scheme is a process to determine the number of trials a particular 
individual is chosen for reproduction. The selection technique adopted in this project 
is based on stochastic universal sampling (SUS) introduced by [1]. This method uses 
a single spin and N equally spaced pointers, where N is the number of population 
size. Arbitrary recombining pairs of trajectories may produce new offspring that do 
not represent any niche [3]. It is therefore desirable to reduce crossover between 
trajectories of different niches. A simple mating restriction scheme is implemented 
by setting the mating parameter to be equalled to the sharing parameter [3]. The 
mating parameter is actually the measurement of maximum distance between 
individuals (trajectories) that allow them to be paired for recombination. Thus, if an 
individual (trajectory) is within a distance of mating parameter, then a mating 
companion is found and mating can be performed, otherwise another individual 
(trajectory) is tried. 

4.4 Genetic Recombination 
The selected trajectories will be paired up for crossover or recombination subject to 
their mating distance (i.e. mating restriction) and cross-over probability. A robot 
trajectory consists of joint angles that may produce large position jump in the 
offspring strings after conventional crossover. To tackle this problem, a customised 
genetic operator named as path redistribution and relaxation operator is used [9]. The 
technique involves fitting cubic splines onto the offspring’s knots with each time 
interval set to one. The path length is then computed as the Euclidean distance 
between the start and end knots along the splines. Each joint knots are then 
‘redistributed’ evenly over these splines at equal intervals. The paths are then relaxed 
by moving each knots with a small step towards the point that will bisect the line 
between its neighbouring knots. Single point cross-over is applied in this GA motion 
planning. A special purpose mutation operator [9] named as injection is implemented 
where a fixed number of new trajectories are injected into the population and 
randomly replace selected trajectory. The number of new trajectories is kept low but 
it has the effect of preventing premature convergence and creating new search space. 
After the recombination, the parent trajectory motion time is passed on to the child 
trajectory as the initial time. The child path together with the motion time will be 
tested by time scaling method to obtain an optimal motion which will not violate the 
kinematics constraints. The resulted optimal time and the criticality values to joint 
velocity and acceleration limits will be used to access the performance of the child 
trajectory. 
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5. Results 
The multiobjective optimisation GA incorporating all the techniques described in the 
sections above is implemented. In this simulation, the robot is assumed at rest 
initially, and comes to a full stop at the end of the time interval. In other words, at the 
initial time t = t1 and the terminal time t = tn, the joint velocity, and joint acceleration 
are given as: vj1 = 0 = vjn, and wj1 = 0 = wjn. The initial and final configurations of the 
path planning are shown in Table 1. The limits of the velocities, accelerations and 
jerks are given in Table 2 [2]. The path redistribution-relaxation operator is 
experimented with different population size, and 0.9 crossover probability [9]. The 
injection rate is 2.5% of the population size. The results for 100 generations with 
different population size are shown in Table 3. The motion profiles for 200 
population size are given in Figures 5.1-5.4. 
 

Table 1: Initial and final configurations for the path planning of RTX robot. 

 Column 
(m) 

Shoulder 
(rad) 

Elbow 
(rad) 

Yaw 
(rad) 

Pitch 
(rad) 

Roll 
(rad) 

Initial 
Configuration 

0.4 -π/6 -π/3 -π/2 0 -π/4 

Final 
Configuration 

0.8 π/6 π/3 π/2 -π/6 π/4 

 

Table 2: Velocity, acceleration and jerk constraints for RTX robot. 

 Column Shoulder Elbow Yaw Pitch Roll 
Velocity 0.1116 0.6154 1.2092 1.9715 1.3780 1.2412 
Acceleration 1.7755 6.2018 14.081 31.055 28.063 26.180 
Jerk 297.59 894.67 3718.9 3377.6 3933.1 4172.7 
Note: The zed velocity, acceleration, and jerk are in m/s, m/s2, and m/s3, respectively. The 
other joint angle velocities, accelerations and jerks are in rad/s, rad/s2, and rad/s3, respectively. 

 

Table 3: Results From GA Minimum Time Motion Planning 

Population Size Minimum Time(sec) 
100 3.9530 

200* 3.9335 
300 3.9049 

         * this is the population size chosen to generate the profiles below. 
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Figure 5.1: Position Profiles 
 

 
 

Figure 5.2: Velocity Profiles 



Published in Proceedings of the 4th International Conference Computer Integrated 
Manufacturing, 21-24 October, 1997, Singapore (ICCIM 97) (A. Sen, A.I. Sivakumar, R. Gay, 
Eds.), Vol.2, pp. 1338-1347, ISBN 981-3083-68-9, Springer.  
 

 
 

Figure 5.3: Acceleration Profiles 
 

 
 

Figure 5.4: Jerk Profiles 
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6. Discussions And Conclusions 
Pareto-based multiobjective GA involves ranking process of non-dominated solution 
to generate the joints trajectories using cubic spline function can produce a optimum 
path which results in minimum time. This result of minimum motion time improves 
as the population size increases. However the processing time in obtaining results 
also increases. Therefore an appropriate population size has to be selected to obtain a 
reasonably minimum motion time with acceptable length of processing time.  
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