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Abstract - A criticism of Evolutionary Algorithms 


(EAs) might be the lack of efficient and robust generic 


methods to handle constraints. The most widespread 


approach for constrained search problems is to use 


penalty methods. EAs have received increased interest 


during the last decade due to the ease of handling 


multiple objectives. A constrained optimization 


problem or an unconstrained multiobjective problem 


may in principle be two different ways to pose the same 


underlying problem. In this paper an alternative 


approach for the constrained optimization problem is 


presented. The method is a variant of a multiobjective 


real coded Genetic Algorithm (GA) inspired by the 


penalty approach. It is evaluated on six different 


constrained single objective problems found in the 


literature. The results show that the proposed method 


performs well in terms of efficiency, and that it is 


robust for a majority of the test problems. 


1 Introduction 


During the last decades Evolutionary Algorithms (EAs) 


have proved to become an important tool for difficult 


search and optimization problems. Most real-world 


problems are however constrained and a possible criticism 


of EAs has been the lack of efficient and generic constraint 


handling techniques. A comprehensive survey of existing 


constraint handling methods for EAs is done by Coello 


Coello in [1]. The frequently most used methods are based 


on various penalty functions for which some guidelines are 


given in [2]. Penalty methods are generic but may however 


distort the cost surface and introduce false optima. Most 


penalty methods also require additional parameters, which 


are problem-dependent and increase the complexity of the 


problem. 


 The constrained optimization problem may be handled 


as a multiobjective optimization problem as indicated by 


Coello Coello in [3], Michalewicz in [4] and Fonseca and 


Fleming in [5]. Furthermore, EAs based on non-dominated 


sorting for multiobjective problems have received 


increased interest during the past decade. Therefore it 


seems natural to look upon the constrained optimization 


problem as a multiobjective problem. Multiobjective 


approaches of constrained problems based on Shaffers 


VEGA [6] is found in [7] and [8]. Another interesting 


constraint handling method based on non-domination is 


presented by Deb et al. in [9]. To directly apply a 


multiobjective EA based on non-domination on a 


constrained optimization problem leads to a search of the 


best compromises of the objective value and constraint 


satisfaction. This whole set of solutions is usually not 


interesting since it is the optimal and feasible solution that 


is searched. Therefore it will not be efficient to directly 


apply a multiobjective EA on a constrained problem. Still 


the idea to handle the constrained problem with some 


variant of a multiobjective EA is interesting. 


 One of the most crucial steps in a multiobjective EA is 


how to rank individuals. In this paper an alternative 


ranking scheme for the constrained single objective 


problem is introduced. This ranking scheme is generic and 


no new parameters are introduced. The ideas of the 


ranking scheme are borrowed from the non-domination 


ranking for multiple objectives by Goldberg in [10] and 


penalty based methods for constrained problems.  


 The paper first defines the constrained optimization 


problem, and thereafter the proposed method is presented 


in more detail. Then the performance for a real coded 


Genetic Algorithm with the proposed ranking scheme 


implemented is tested on six different test problems used 


by Michalewicz in [11] and Deb in [12]. Finally, the result 


for this proposed method is compared to the result for 


other methods evaluated in [11] and [12].  


2 The constrained optimization problem 


In this section the constrained optimization problem and 


its terminology is defined. The constrained optimization 


problem or non-linear programming problem (NLP) with k


inequality constraints and m equality constraints is 


formulated as 
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x = [x1, x2,�, xn] is a vector of the n design variables such 


that nSx . The search space S is here defined as an 


n-dimensional rectangle by the upper and lower bounds for 


the design variables,    1...l u


i i ix x x i n . The feasible 


region SF  is the region of S for which the inequality 


and equality constraints are satisfied. The optimal solution 


is denoted x*. A constraint is said to be active at the point 


x
* if gi(x


*) = 0. By default all equality constraints are 


active at all points of the feasible space. Equality 


constraints may be transformed to inequality constraints 


[1] via 
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where  is a small tolerance. Since the algorithm that will 


be discussed does not use gradient information it does not 


matter if (2) is non-differentiable. 


3 The proposed EA approach for 


constrained optimization 


In this section the proposed ranking scheme is introduced. 


The non-dominated ranking by Goldberg [10] is used in a 


new way to formulate a scalar valued function that is used 


to rank individuals in the current population. Then 


selection, crossover, mutation and reinsertion are used in a 


standard manner for a real coded GA in this paper. This is 


described later since the focus for this section is to define 


the ranking scheme. 


 It is first assumed that all equality constraints are 


transformed by (2) so the problem is now 
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where p = k + m.


Now, the objective function is given index 1, f1(x) = f(x). 


Then the constraints gi(x) are reformulated into new 


objectives f1+i(x). These objectives are defined as 


pigf ii ...,,1,)(,0max)(1 xx    (4) 


A natural approach would be to apply a Pareto based 


multiobjective GA to solve the problem. This might not be 


the best idea since the Pareto optimal set with respect to 


the new objectives f1(x) to fp+1(x) is generally not the same 


as the optimal solution x
*. The idea here is to treat the 


objective f1(x) and the objectives f2(x) to fp+1(x) separately. 


The approach is based on the following criteria 


If no feasible individual exists in the current 


population, the search should be directed towards the 


feasible region. 


If a majority of the individuals in the current population 


are feasible, the search should be directed towards the 


unconstrained optimum. 


A feasible individual closer to the optimum is always 


better than a feasible individual further from the 


optimum. 


An infeasible individual might be a better individual 


than a feasible individual if the number of feasible 


individuals is high. 


From the above statements it is clear that the search 


direction should be dependent upon the number of feasible 


individuals in the current population. The reason for the 


fourth statement is that an infeasible individual with a 


good objective value (f1(x)) should not be rejected as it 


might guide the search towards the true optimum by 


improving the diversity of the population. 


 Now P is defined to be the population size and N the 


number of feasible solutions in the current population. xj is 


the jth individual in the current population. Then, rank1(xj)


is defined as the ranking according to the first objective 


f1(x). The best individual gets rank1 = 1.  


rank2(xj) is defined to be the non-dominated ranking 


with respect to f2(x) to fp+1(x) as defined by Goldberg [10]. 


In the ranking the first non-dominated individuals in the 


population receive rank2 = 1. Then these individuals are 


removed from the population and the ranking is repeated 


for the remaining individuals, but now the non-dominated 


individuals get rank2 = 2. This is repeated until all 


individuals in the current population have received a value 


for rank2. In [9] Deb shows a method with computational 


complexity O((p+1)P2) to perform the non-dominated 


ranking.  


 Now a new objective function ( )jx  is formulated as 
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Each individual is then ranked according to its value for 


Equation 5 and fitness is assigned in a regular manner. 


Note that if no feasible solution is present in the 


population (N = 0), the ranking according to the objective 


(rank1) becomes inactive and the population is ranked 


according to the constraints (rank2), i.e. the search is 


guided towards the feasible region. On the other hand, if 


all individuals are feasible (N = P), the population is 


ranked according to the objective (rank1), and the search is 


directed towards the unconstrained optimum. Among two 


feasible individuals, the most fit is the one with lower 


value for rank1 (the objective) since all feasible individuals 


receive rank2 = 1. All these observations are consistent 


with the previously listed criteria. 


 An interesting feature for the new ranking is that the 


search direction depends on the number of feasible 


solutions. If many feasible solutions exist, the search is 


directed towards the unconstrained optimal solution. If 


now it is assumed that the unconstrained optimum is 


located outside the feasible region, the population may 


tend to oscillate over the boundary to the feasible region. 


This variation of the search direction gives a positive 


effect of the diversity in the population.  


 Equation 5 has a similar structure as a penalty based 


approach but it should be pointed out that no parameter 


that requires problem dependent fine-tuning is introduced. 


The �weights� for the two objectives in Equation 5 only 


depend on the population size and the number of feasible 


individuals in the current population. 


 The new ranking procedure for a NLP problem is 


summarized below 


1. Reformulate the problem according to Equation 3 and 


Equation 4 


2. Rank the population with respect to the objective (f1(x)) 


and assign it to rank1


3. Rank the population with respect to the constraints 


(f2(x) to fp+1(x)) based on non-dominance according to 


Goldberg [10] and assign it to rank2


4. Calculate the objective ( )(x ) according to Equation 5 







5. Rank the population according to the single objective 


)(x


Until now, only the ranking has been described. This 


ranking scheme may be used with any type of GA. In the 


rest of this paper a real coded GA with the proposed 


ranking scheme is used. All the GA operations and 


parameters are chosen as simple as possible. Therefore a 


more advanced algorithm, such as an adaptive GA for 


example, might improve the results presented in this paper. 


Linear fitness assignment according to the ranking for the 


new objective (Equation 5) is used. The selective pressure 


is set to 1.9. The selection method is the roulette wheel 


selection. The number of selected individuals are defined 


by the generation gap that is set to 95%. Thus 95% of the 


population is selected for mating and the worst parents are 


replaced by all the offspring. Hence, an elitist GA is used. 


Blend crossover, BLX, see [13], is used with a probability 


equal to 1. The mutation operator by Mühlenbein and 


Schlierkamp-Voosen [14] which produces a small 


mutation step with high probability and a large step with 


small probability is used. The mutation probability is set to 


1/n where n is the number of design variables. The 


maximum mutation step is defined in the result section. 


4 An illustrative example 


In this section the ranking based on Equation 5 is 


discussed for a simple NLP problem. It should be clear 


that the purpose of this section is to show the important 


effects of the ranking and not to solve the simple NLP 


problem. First the result of an actual search is presented. 


Then the imposed search direction is discussed with the 


help of two hypothetical populations. 


 The problem is as follows. A quadratic function is to be 


minimized and the feasible solutions are constrained by 


three circles. The problem is stated as 


.73


,55


,5.1)1()1()(


,5.1)1()1()(


,5.1)3()(


)(


2


1


22


2


2


13


22


2


2


12


22


2


2


11


2


2


2


1


x


x


xxg


xxg


xxg


tosubject


xxfMinimize


x


x


x


x


  (6) 


For the unconstrained problem the optimal solution is x* = 


[0, 0]. For the constrained problem (6) the optimal solution 


is x
* = [0, 1.5]. The first constraint is active at the optimal 


solution. The population size is set to 10, the maximum 


number of generations is 50 and the maximum mutation 


step is set to 0.1 of the range for the design variables. The 


mutation probability is set to 0.2 in this case.  


The initial and the final generation are shown in Figure 1. 


The rank of the initial generation according to Equation 5 


is also given in the figure. 
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Figure 1: Initial generation (the smaller rings) and final 


generation (the �dot� near the optimum) shown in design variable 


space. The numbers indicate the rank according to Equation (5). 


The best individual in the initial generation correspond to 


ranking 1. Figure 1 shows clearly that the search direction 


is towards the feasible region in the initial generation. 


 Figure 2 shows the ratio of feasible solutions, the mean 


normalized Euclidian distance and the ratio between the 


true optimum and the best-found feasible objective value. 


To avoid premature convergence it is crucial to have 


sufficient diversity in the population. An indication of the 


diversity in the population is given by the distance 


between the members of the population. The distance 


between two individuals is calculated using the normalized 


Euclidian distance. The mean Euclidian distance is 


obtained by calculating the mean distance between all 


individuals in the population, and hence is a measure of 


the diversity in the population. 
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Figure 2: Search results for problem (6). 


The first feasible solution is found in generation 4. In the 


early generations (~ 5 to 10) the number of feasible 


individuals increases rapidly. In generations 13 to 24 all 


individuals are feasible and the improvement in the 







objective function is very small since the population has 


converged too fast. In generation 25 an infeasible 


individual is created by a mutation. This individual is 


better than all the feasible individuals in terms of the 


objective value, f(x). Due to the �weights� in Equation 5 


this infeasible individual becomes the best individual. The 


search is then directed out of the feasible region towards 


the unconstrained optimum and as a result better feasible 


solutions are found. To make this variation of the search 


direction more clear two populations with different ratio of 


feasible individuals are studied in Figure 3 and Figure 4. 
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Figure 3. Rank according to Equation 5 for a population with 


60% feasible individuals. 
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Figure 4. Rank according to Equation 5 for a population with 


20% feasible individuals. 


When the number of feasible individuals is high, the 


search is directed towards the unconstrained optimum as 


shown in Figure 3. In the later stage, when more infeasible 


individuals occur in the population the search is directed 


back to the feasible region again. This explains the 


oscillating behaviour of the ratio of feasible individuals for 


generation 26 to 50 in Figure 1. 


 This example shows the dynamic behaviour of the 


search direction. The oscillation of the search direction 


only occurs when at least one constraint is active at the 


optimum. The variation of the search direction has a 


positive effect for the population diversity. Thus, if 


mutation is used no special operation to preserve the 


diversity in the population is required for most cases. In 


the next section the method is evaluated using a set of 


selected test problems gathered from the literature. 


5 Constrained single objective test problems 


In [15], Michalewicz et al. present a test case generator to 


use in tests of algorithms for constrained optimization 


problems. This test case generator will probably be used in 


future research on constrained optimization problems. The 


results for different constraint handling methods are yet 


quite limited for this test case generator. Therefore a set of 


test problems for which there exists results for many 


different algorithms is here chosen instead. 


 It is always difficult to make fair comparisons between 


different EAs. Two different strategies may well have 


different optimal settings for the optimization algorithm 


parameters on the same problem. Another difficulty is to 


determine how to compare different algorithms. A naive 


but obvious way to compare algorithms is to compare the 


best solution found in the same number of function 


evaluations. A measure of the robustness of the algorithms 


is indicated by the spread of the best solutions found if the 


optimization is run several times independently. Here it is 


chosen to compare the results for the proposed ranking 


scheme with previously reported results for other EAs by 


other authors on a set of problems. Six test problems are 


selected. Problem #2 to #6 are found in [11] and problem 


#1 to #6 in [12]. A short summary of the test problems is 


given in Table 1. The size of the feasible region is 


estimated by the ratio ( ) of feasible solutions found in a 


random sampling of 106 solutions in the search space1. The 


six test problems are described in detail in the next 


subsections. 


Table 1: Summary of test problems. C corresponds to the number 


of constraints, A to the number of active constraints at the 


optimum and n is the number of design variables. 
Problem n Type of f  C A 


#1 5 quadratic 52.03% 6 2 


#2 13 quadratic 0.0111% 9 6 


#3 8 linear 0.0010% 6 6 


#4 7 polynomial 0.5121% 4 2 


#5 5 nonlinear 0.0000% 3 3 


#6 10 quadratic 0.0003% 8 6 


In [11], Michalewicz compares the performance of six 


different methods on the five problems #2 to #6. Most of 


the methods are based on penalty functions, The result 


here is compared to the result for the best method found in 


[11]. In [12], Deb proposes a special penalty based method 


                                                          
1 The ratio for problem #2 to problem #6 is presented in [11]. 







for which the following criteria are always enforced if a 


tournament selection operator is used: 


1. Any feasible solution is preferred to any infeasible 


solution. 


2. Among two feasible solutions, the one having better 


objective function value is preferred. 


3. Among two infeasible solutions, the one having smaller 


constraint violation is preferred. 


Deb tested his method on nine different problems of which 


test problem #1 to test problem #6 are a subset. The results 


obtained by the proposed method in this paper are 


compared to the results obtained by Deb on all these six 


test problems. Furthermore, Deb stated that �In all cases, 


the proposed approach has been able to repeatedly find 


solutions closer to the true optimum solution than that 


reported earlier�. Therefore a fair comparison to the 


results reported in [12] should give good indication of the 


performance of the method presented in this paper.  


 It is worth to notice that the effect of the ranking 


scheme introduced in this paper is similar to the above 


listed criteria only if there exist few feasible individuals in 


the current population. On the contrary, if there exist many 


feasible individuals, a good (in terms of the objective 


value) infeasible individual may well be preferred to a 


feasible individual if this is worse in terms of the objective 


value. 


5.1 Test problem 1 


This problem was first presented by Himmelblau in [16]. It 


has later been used by Coello Coello [1] and Deb [12] to 


evaluate the performance of various GAs for constrained 


optimization. The problem is stated as 
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The best-known solution to this problem [16] is x* = [78, 


33, 29.995, 45, 36.776] which gives f* = -30665.5. At this 


solution the constraints g2 and g5 are active [12]. 


5.2 Test problem 2 


The problem is stated as follows 
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The optimal objective value for this problem is f* = -15 for 


x* = [1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1]. At this solution all 


constraints except g4, g5 and g6 are active.  


5.3 Test problem 3 


The third test problem is 
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The optimum solution is x* = [579.3167, 1359.943, 


5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 


395.5979] which gives f* = 7049.330923. All six 


constraints are active at the optimal solution. 


5.4 Test problem 4 


This problem is stated as 
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The optimal solution is x
* = [2.330499, 1.951372, -


0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227] 


which gives f* = 680.6300573. The constraints g1 and g4


are active at the optimal solution. 







5.5 Test problem 5 


The fifth test problem is stated as 
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The optimal solution is x
* = [-1.717143, 1.595709, 


1.827247, -0.7636413, -0.7636450]. This gives f* = 


0.053950. Since all constraints are equality type, all 


constraints are active at the optimal solution. The equality 


constraints are transformed into inequality constraints by 


Equation 2 and the tolerance is set to  = 0.001 for the 


results presented in this paper.  


5.6 Test problem 6 


The last test problem is  
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The optimal solution is x* = [2.171996, 2.363683, 


8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 


9.828726, 8.280092, 8.375927] which gives f* = 


24.3062091. All constraints except g7 and g8 are active at 


the optimal solution. 


6 Results 


First some typical search results for the first three 


problems are presented in Figure 5 to Figure 7. These 


figures show the ratio of feasible solutions, the mean 


normalized Euclidian distance and the ratio between the 


optimal solution and the best-found feasible solution. The 


GA parameters used in this study is presented in Table 3 


for each problem. Then the result for this algorithm is 


compared to the best result reported in [11] and the result 


reported in [12]. 
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Figure 5: Typical result for problem #1. 
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Figure 6: Typical result for problem #2. 
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Figure 7: Typical result for problem #3. 


Clearly the easiest problem is the first test problem. Near 


optimal solutions are found in early generations. 


Surprisingly the most difficult problem of these three 


problems for this method is test problem #2. In [11] it was 


reported that this was one of the easiest problem and only 


a few of the methods studied had any difficulties on this 


problem. 







 The results for this algorithm are now compared to the 


best results for all tested methods in [11] and summarized 


in Table 2. The population size is 70 and the maximum 


number of generations is 5000, both in this study and for 


all algorithms tested in [11]. For this algorithm the 


maximum mutation step is set to 0.1 of the range for the 


design variables. The result from [11] presented in Table 2 


are the results for the method that found the best feasible 


solution. It should be mentioned that all the results in the 


coming tables correspond to feasible solutions. 


Table 2: Result for this algorithm compared to best result in [11]. 


The number of independent runs is 10. 
Problem Study Best Median Worst 


This study -14.680 -14.570 -12.419 #2


Best in [11] -15.000 -15.000 -15.000 


This study 7079.5 7107.0 7187.8 #3


Best in [11] 7378.0 8206.2 9653.0 


This study 680.636 680.640 680.646 #4


Best in [11] 680.642 680.718 680.955 


This study 0.313 0.534 0.602 #5


Best in [11] 0.054 0.064 0.577 


This study 24.519 24.600 24.735 #6


Best in [11] 25.486 26.905 42.358 


As can be seen from Table 2 this algorithm finds better 


results in problem #3, problem #4 and problem #6 than all 


methods tested in [11]. The variation is also much less on 


these problems. 


 In Table 4 the result for this algorithm is compared to 


the results by Deb in [12]. Table 3 shows the GA 


parameters used for the results in Table 4. 


Table 3: GA parameters used for the results presented in Table 4. 
Problem Study Pop size Max gen Max 


mutation step 


This study 50 1000 0.1 #1


[12] 50 5000 - 


This study 130 2000 0.1 #2


[12] 130 N/A - 


This study 80 4000 0.1 #3


[12] 80 4000 - 


This study 70 5000 0.02 #4


[12] 70 5000 - 


This study 50 7000 0.1 #5


[12] 50 7000 - 


This study 100 3500 0.02 #6


[12] 100 3500 - 


Table 4: Result for this algorithm compared to best result in [12]. 


The independent number of runs is 50. 
Problem Study Best Median Worst 


This study -30665.5 -30665.5 -30665.4 #1


[12] -30665.5 -30665.5 -29846.7 


This study -14.276 -13.224 -11.963 #2


[12] -15.000 -15.000 -13.000 


This study 7072.4 7100.2 7256.4 #3


[12] 7060.2 7220.0 10230.8 


This study 680.632 680.636 680.645 #4


[12] 680.634 680.642 680.651 


This study 0.44678 0.56967 0.83732 #5


[12] 0.05395 0.24129 0.50776 


This study 24.375 24.426 24.512 #6


[12] 24.372 24.409 25.075 


The best found result of the 50 independent runs for this 


method is almost similar to the result reported by Deb for 


problem #1, problem #3, problem #4 and problem #6. For 


these problems the variation in the best results found is 


less for the proposed method than that reported in [12]. 


For problem #2 and problem #5 the method presented by 


Deb performs better, both in terms of best-found solution 


and variation of the best-found solution. 


 It should be mentioned however, that the results 


presented by Deb are based on tournament selection with a 


niching method that required two extra parameters. 


Furthermore, the maximum number of generations for the 


results of test problem #2 in [12] is not known. Hence it is 


difficult to make a fair comparison of the results on this 


problem. 


7 Conclusions 


A general ranking scheme without problem specific extra 


parameters for constrained optimization problem has been 


presented. The performance for an algorithm with this 


ranking scheme has also been compared to the result of 


other algorithms on six problems previously used by other 


authors. The results encourage further research since the 


method performs better than many other algorithms for the 


tested constrained single objective problems. It is also 


shown that the robustness in terms of minimum spread in 


best found solutions, is better than one of the best methods 


on a majority of the six tested problems. It was only in the 


problem containing equality constraints (problem #5) that 


this method did not perform well. It could not match up to 


the results for the other algorithms on problem #2 either. 


The cause of this is an open question for further research. 


It should also be mentioned that no effort has been made 


to study the optimal parameter settings such as population 


size, generation gap, mutation probability, etc. The 


performance of this ranking scheme may well be better in 


a more advanced GA, for example an adaptive GA. 


 An obvious extension to the presented ranking scheme 


is to address constrained multiobjective problems as well.  


By redefining rank1 as the Pareto ranking presented by 


Fonseca and Fleming in [17], the presented ranking 


scheme could handle problems with multiple objectives. 


This is an area of ongoing research and the preliminary 


results are encouraging. 
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