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Abstract- This work concerns the comparison of evolu- proaches and to make proper comparisons.
tionary algorithms and standard optimization methods In section 2, we describe respectively the single-
on two circuit design problems: the parameter extrac- objective optimization problem concerning tparameter
tion of device circuit model and the multi-objective op- extraction of a Inductor device circuit modehe standard
timization of an Operational Transconductance Ampli- and evolutionary algorithms and metrics used, and the ex-
fier. We compare standard optimization techniques and perimental results obtained.
evolutionary algorithms in terms of quality of the solu- In section 3, we present the design of an analog circuit,
tions and computational effort, that is, objective func- the Operational Transconductance Amplifienodeled as
tion evaluations needed to compute them. The experi- multi-objective optimization problem. Analogously to the
mental results obtained show as standard techniques are Inductor device circuit, in this section we describe the algo-
robust with respect evolutionary algorithms, while the rithms and metrics used, and report comparisons among the
latter are more effective in terms of the standard met- various algorithms.
rics and function calls. In particular for the multiobjec- Finally, section 4 concludes the article with some general
tive problem, the observed Pareto front determined by remarks.
evolutionary algorithms has a better spread of solutions
with a larger number of nondominated solutions with 2 The inductor circuit
respect to the standard multi-objective techniques.

2.1 The problem of parameter extraction

1 Introduction Inductor devices hold a fundamental role in the radiofre-

. . guency field and it is important to develop models which
In this research work we compare experimentally the effect o .
. . ) .—._represent the intrinsic characteristics correctly at every
tiveness of evolutionary algorithms and standard optimiza-

tion techniques. As test bed we used t@wcuit Design working frequencies.

. . ST The best values for the model parameters are found

Problems parameter extraction of device circuit model an fitting the measured data as closelv as possible to the
optimization of a Operational Transconductance Ampln‘ler..y 9 . 0s€l as p .
. . . o ..U~ Simulated data in the sense of a suitable weightedetric

The first problem faced is a single-objective optimization X .
! L2 S and this process is usually performed as a sequence of

problem, the latter is a multi-objective optimization prob-"_~ "~~~ .
S . gptimizations, usually based on the Levenberg-Marquard

lem. Both problems are real world applications which have

been supplied b TMICROELECTRONICS algorithm, which require a good initial guess and yield only

Standard methods (or classical methods) are char Igpal minima (corresponding to different set of parameters).
qn this context two problems arise. First, get robust a

terized by an analytical condition or gradient-based (e.g., .. ..
: L €stimation for parameters when there are several measure-
non linear least squared methpehor approximation-based

(e.g.,direct and statistical methodisAll classical methods ment curves eg. d|fflerent.components of the ¥ matrix
find an individual solution in a single run for small signal analysis).This seems to be the case when

) X . . ... fitting compact models to MOS devices DC measurements
Evolutionary algorithms are stochastic optimizatio :
gﬁeserOO]. Second, how to choose the most convenient set

methods population-based inspired by natural selection a ? . N
. . . . : of parameter values to obtain the best approximation for the
to find several solutions in a single run, thus making them a

good alternative to standard methods Circuit model. Microelectronics industries develop many

: . circuit model to predict the behavior of this device. These
To assess the quality of experimental results has beén R

. . ) models have as target a circuit simulator $®ICE and
used a class of metrics to characterize the various ap-



their parameters are determined by a suitable optimization
algorithm. The inductor has the following structure:

Table 1: Preliminary results of parameter extraction.

TMG init. estim. | ADS | Opsim
Shape| Number ofturns | Outer dim. (um) RL 0.1548 147 | 021
Octag. 25 200.0 LL F§10;9) 20(52411 1167297 g-gg
- - oX . . .
W'dtth(é‘m) Spacg‘g lm) Cox1 (10-12) 5.19 078 | 0.05
- — — Rox2 17.67 8.87 | 0.0
SiO, Thick. (um) | Al Thick. (um) Cox2 (10~12) 537 0.27 0.04
1.8 3.0 Rb1 16.49 056 | 6.57
Cb1 (10712) 0.002 233 | 1.77
Although a circuit network may have any number of Rb2 0.6 0.58 | 0.03
ports, network parameters can be explained most easily by Cb2 (10~'2) 0.51 0.25 | 0.07
considering a network with only two ports, an input port K1 0.6 0.3 0.3
and an output port. To characterize the performance of such K2 0.87 144 | 1.42

a network, any of several parameter sets can be used, each of
which has certain advantages. Each parameter set is related ) ] o
to a set of four variables associated with the two-port modef-2 Uncertainty, Robustness, Confidence Limits

Two of these variables represent the excitation of the net"he Concept oﬂncertaintysummarizes various prob|em re-
work (independent variables), and the remaining two repréated to degree of model approximation, imprecisions on
sent the response of the network to the excitation (depeperforming calculations, statistical representation of data.
dent variables). If the network is excited by voltage sources A general practice is to include all sources of uncertainty
Vi and V3, the network currentd; and /> will be related nto the statistical representation of data and evaluate the
by the following equations (assuming the network behavegpustness of solution in terms of confident limits.
linearly): The term “robust” was coined in statistics by G.E.P. Box
in 1953. General, referring to a parameter extraction for
fitting a statistical model of data, it means “insensitive to
small departures” from the idealized assumptions for which
) . i the data model is optimized. The word “small” can have two
In this case, with port voltages selectedimgependent gifferent interpretations, both important: either fractionally
variablesand port currents taken apendent variables gma|l departures for all data points, or else fractionally large
the relating parameters are called short-circuit admittanggpartures for a small number of data points. It is the latter
parameters, oy-parameters In the absence of additional jnterpretation, leading to the notion of outlier points, that is
information, four measurements are required to determingnerally the most stressful for statistical procedures.
the four parameterg 1, y1.2, ¥2,1, y2,2. Each measurement | this work we used the M-estimate obtained by min-

is made with one port of the network excited by a voltagénizing the mean absolute deviation, rather than the mean
source while the other port is short circuited. For examplegqyare deviation.

Y21, the forward transadmittance, is the ratio of the current

L =y11Vi+y12Va
I =y2.1Vi + 422V 1)

at port 2 tq the voIFage at port 1 with port 2 short circuited, min Z lyi — y(x;)] 2)
as shown in equation 3. i
Iy Here the tails of the distribution, although exponentially de-

Y12 = -

i creasing, are asymptotically much larger than any corre-
V2:

0 (ouput short circuited) Sponding Gaussian

Preliminary investigations have been carried out with

commercial tools and in-hous&TMICROELECTRONICS Probly; —y(z;)} ~e 7 (3
optimization software and they have yielded different sets ofy ;. o geals out the outlier points to get the requested
parameters. These results are summarized in table 1. ng ustness

column shows the initial estimation computed by the ™G

fitting [Rinaudo98]. This fitting is based on a initial estima- : . . o
. regarding the precise meaning of these quantitative uncer-
tion of the parameter. " . : . .
X . tainties, and to give further information about how quantita-
Comparison of previous data (table 1) shows large var}: ) . . :
. . tive confidence limits on fitted parameters can be estimated.
ance of parameter extraction. Causes of these behavio

. . o 'ﬁ?rough the montecarlo simulation it is possible to repeat
could be non-homogeneous kind of variables; variables can . ) i

. . . . . virtually an experiment and to get a quality measure of fit-
converge with different speed rates; merit function of op-.

timization oni2 can find different balancing amon errors_ting robustness. The simulation starts with a initial fitting in
9 9 ‘order to identify a possible set of paramekerThis set of

first and second derivative do not lead the optimization in : ;
) : : arameter is used to synthesize a new surrogated set of data
useful regions. Previous remarks compel to consider t ; ; . ;
~ which are perturbed by a white noise. In this study the

quality of results is sense of robustness. < ) . 1
noise is a gaussian error with = 0 ando = 55 of data

The comparisons in this work want to be more explicit



magnitude. This process mimes artificially the statisticdNewton method. The structure of the nonlinear least-
properties of real data. Then the fitting is processed on thigjuares problenfi(z) = 3 ||F(x)|3 is exploited to enhance
surrogated data to get a new set of parameters. This kindefficiency. In particular, an approximate Gauss-Newton di-
artificial process is repeated many times to get a large clasetion, i.e., a solutior to min || Js+ F|| (whereJ is the Ja-

of parameter. Finally, classical statistics are performed arobian ofF') is used to help define the subspateSecond

this class of parameter set and confidence limit on paraméerivatives of the component function are not used. This

ters are calculated from these simulations. is a sophisticated routine and similar algorithms are imple-
mented in the commercial simulators used in the microelec-
2.3 Metrics tronics industry.

The set of data is a sequence of complex matrix representin L
the y-parameter of the circuit network: D“?RECT. The DIRECTmethod (DIR), which is a global

search method described in [Jones] and applies to Lipschitz

f f continuous functions and, after an initial implicit estimate of

Yyl = ( Yir Yi2 ) (4) the Lipschitz constant chooses the potentially optimal rect-
angles and resamples them along the their axis. Afterward

where the frequency cover the range frorh00 Mhz to 20 't.d.'V'deS Fhese rectgngles 'and procged by samplmg. and di
. o viding until a stop criterion is met. This method exploits the
Ghz. The behavior of circuit is represented by a complex . = . ) )
: : : ; estimation of Lipschitz constant to balance global and local
matrix function which has the frequengyas variable and

search and reaches quasi-global solution in large domain.
x as parameters.

f
Y21 Y22

Y(f,x) = ( y1.1(f,x)  y12(f,x) > 5) Snobfit. The Snobfitmethod (Snobfit) [Neumaier] pro-
T yea(fx) yeo(fx) duces a set of point for each step through successive di-
visions of the search region (branch) and builds local
In our work we used two metrics. The first one is relatedquadratic models. It combines local search using the best
to the robust estimation of parameter and compuisolute  points with trust regions method and global search explor-
Error Deviation ing regions not yet sampled.

9 9 Hybrid approach. The heuristic (HYB) combining few
AED(x) = / real(y; ;(f,x)) — real(y! )|+ df initial steps of DIRECT in order to obtain a reasonable ini-

( Z Z' (8154 )) ( ’J)| tial guess and subsequenttgOALATTAIN. The first step
detects a suitable region to start fgoalattain method, which
can uses this initial information to set up good constraint
system.

i=1j=1

2 2
+ [ 430 3 limag(yss(£,%0)  imagul )] { 4 (©)

i=1 j=1 2.4.2 Evolutionary Algorithms

A second class of comparison was performed minimizZ/Ve used three evolutionary algorithms, SGA (Simple Ge-
ing the maximum absolute deviation netic Algorithm), DE (Differential Evolution) and eGA (ex-
perimental Genetic Algorithm).
min{max [real(y; ;(f, %)) = real(y] ),
w, ) f SGA. SGA use a real coded string to represents the vari-
max [imag(yi,;(f,x)) — imag(y; ;)|} () ables. Simulated Binary Crossover (SBX), and polynomial
mutation were used to create offsprings, a tournament se-

This approach perform the best approximating parametgiction with elitism replace the old population with the new
for the problem. The solution are different compared witlpne.

the previous because the discrepancy of curve behaviors are

considered rather then the deviation point by point. DE. Differential Evolution (DE) was introduced by Storn

) and Price [Price]. DE works as follow: after a random ini-

2.4 Methodologies tialization the objective function is evaluated and the follow-

2.4.1 The classical algorithms ing steps are repeated until a termination condition is satis-
fied. Each individual is updated using a weighted difference

In order to compare the robustness of the sets of parametgfsa number of selected parent solutions. If the offspring

and also the computational effort the following four methyeplaces the parent only if it improves the fitness value, oth-

ods have been considered. erwise the parent is copied in the new population. Using
Storn and Price naming convention we udge@/rand-to-

LSQ. The functionL.sQNONLIN of MATLAB (LSQ) with  best/1/bin

the default option of large scale optimization, which uses

the subspace trust method based on the interior-reflective



Minimum, median and maximum of standard deviation values

Table 4: Comparisons on minmax metric among Evolution-

ary Algorithms and Classical Methods.
85T Method Best meang) Avg. Pop.
3t DE | 7.723358e-03| 7.726269e-03(2.73e-06) 7.752368e-03
25| SGA | 7.725642e-03| 7.733349e-03(1.85e-06) 7.897869e-03
o eGA | 7.729536e-03] 7.738457e-03(4.49e-05) 7.804943e-03
2?27 Snobfit | 7.729214e-03 n.a. n.a.
o 15| Direct | 3.163156e-01 na. na.
1l
05 SGA, eGA, DE versus DIRECT and Snobfit
ol 05 DIRECT —+—
‘ ‘ ‘ ‘ ‘ ‘ 045 | Snobit
DIRECT  LSQ DE SGA  eGA  Hybrid 04 | eGA
Algorithms c >§\ DE --#---
.% 0.35 \,
E L ;
Figure 1: This figure shows the comparison of robustness s 002': | | 0.025
among the methods on circuit parameters. < 002 I+
g o2y 0.015 |-: 1]
Table 3: Comparison on Absolute Error Deviation among 01t T e %000 2000
Evolutionary Algorithms and Classical Methods. 0.05 ek :
Method Best meang) Avg. Pop. oL - - %%Ooo
eGA | 1.936982| 1.997899(0.063871) 1.982449 Fitness Function Evaluations
Snobfit | 1.940544 n.a. n.a.
DE 1.960735| 1.985943(0.030405) 2.013328| Figure 2: This figure shows the performance of the methods
Direct | 2.006814 n.a. n.a. on minmax approximation.
SGA | 2.021452| 2.049886(0.022182) 2.284572

tion (o). The best result and average fitness function value

eGA. eGA works the same way it does DE, but instea@f population, averaged on 30 independent runs, are ob-
of using differences, it uses crossover. After performtained by eGA; while the best mean solution is obtained by
ing crossover between two individu& and P;, both off- DE.
springsO; andO, undergo crossover with the best individ- ~ The Table 4 shows a different task for the parameter ex-
ual found, but 0n|y one offsprings is kept per pair_ The ne\/t,raction. In this case the maximum absolute error on the
generated oﬁ‘springs are Copied in the new popu|ation’ thmmt of data set is minimized in order to determine the best
tournament selection with elitism is performed as usual. RPProximation for the circuit model. The evolutionary al-
is also present a polynomial mutation like SGA. gorithms and Snobfit have comparable results among them
and are better than DIRECT.

In Figure 2 is shown the convergence for the best approx-

) imation and in Figure 3 the convergence on minimizing the
These results shows the best values obtained after pghsolute error deviation metric.

forming 30 independent runs for each algorithms while the

Montecarlo simulation used 1000 synthetic data set creat : i
adding a gaussian error with — 0 ando — L of data %dOperatlonaI Transconductance Amplifier

magnitude in the initial data set. All methodlsO for the tWo3 1 The circuit design problem
circuit design problems tackled use as termination condition
the maximum number of objective function evaluations. If\ considerably time is spent on device sizing of the ana-
particular, for the inductor problem, the maximum numbelod circuit to satisfy the performance requirements. The
of function evaluationsT’,..., has been fixed to0%. main reason is the non-linear complex link between device
The LSQ method has larger confidence limits in théize and performances [Hjam]. To improve the efficiency of
Montecarlo simulation for the parameters estimated in Tdhe device design in the analog circuits, multiobjective ap-
ble 2 as we can see through the standard deviation of tREoach has been proposed as alternative to the functional
parameters. The most robust parameter are found by 10St approach. The multiobjective formulation avoid the
RECT algorithm but it has an error higher than the othefecessity of weighting different objectives in a single cost
algorithms. Resullts for the Montecarlo simulation are sunfunction which cannot phrase completely the analysis of the
marized in Figure 1, showing minimum, median and maxiProblem. In this study the optimization process is coupled to
mum of parameters standard deviation. a circuit simulator $PICE) in order to evaluate the circuit’s
In Table 3 the methods are compared on the minimizderformances [Phelps].
tion of the absolute error deviation in terms of best metric This case study proposes the MOS device sizing and the
value reached, mean solutiom¢an) and standard devia- Circuit net setting of an two-stage Operational Transconduc-

2.5 Results for the inductor



Table 2: Montecarlo simulation of the extraction parameter process. Synthetic sets has an additive Normal Error with mean
0 and standard deviation gf; of the range for each variables.

Mean STD
LSQ | DIR | HYB | SNO | eGA | SGA | DE | LSQ | DIR HYB SNO | eGA | SGA DE
RL 488 | 151| 1.03 | 1.03 | 1.03| 1.03 | 1.02| 250 | 0.15 0.16 | 0.018 | 0.030 | 0.028 | 0.030
LL (1079) 241 | 153 | 1.72 | 1.25 | 1.22 | 1.22 | 1.22 | 2.04 | 0.09 0.73 | 0.005| 0.012| 0.011 | 0.012
Rox1 8.24 | 854 | 867 | 581 | 453 | 538 | 9.23| 222 | 0.76 1.08 | 2.828 | 3.370| 3.216 | 2.028
Cox1 (107*?) | 0.38 | 0.25| 0.96 | 0.09 | 0.10 | 0.10 | 0.10 | 0.23 | 0.05 0.15 | 0.051| 0.001 | 0.001 | 0.008
Rox2 892 | 754 | 623 | 514 | 444 | 561 | 9.35| 1.78 | 0.38 3.63 | 3.137| 3.263 | 3.212 | 1.905
Cox2 (107'%) | 0.42 | 0.06 | 0.003 | 0.08 | 0.09 | 0.09 | 0.09 | 0.25 | 0.004| 0.02 | 0.025| 0.002 | 0.001 | 0.005
Rbl 2 066 | 239 | 462 | 0.13| 0.14 | 048 | 2.61 | 0.54 1.63 | 3.388| 0.318| 0.399 | 1.697
Ch1 (107'2) 0.76 | 092 | 0.26 | 048 | 0.01 | 0.01 | 0.18| 0.24 | 0.04 0.26 | 0.315| 0.081| 0.033| 0.310
Rb2 1.15| 2.73| 285 | 402 | 0.22 | 0.28 | 1.22| 2.01 | 0.42 2.15 | 3.471| 0.465| 0.542 | 2.617
Cb2 (1071?) 53 [ 093] 0.68 | 0.47 | 0.02 | 0.03 | 0.22| 0.27 | 0.42 0.23 | 0.336| 0.107 | 0.087 | 0.363
K1 496 | 0.35| 0.21 | 0.36 | 0.30| 0.30 | 0.32| 252 | 0.14 0.99 | 0.071| 0.057 | 0.043 | 0.044
K2 493 | 1.44 1 125 | 1.31| 1.31 | 1.27| 2.47 | 0.13 | 0.0002| 0.143| 0.090 | 0.063 | 0.055
SGA, eGA, DE versus DIRECT and Snobfit Table 5: Parameters' .
60— ‘ | Parameters] Ranges | Unit |
Snobfit ——x—— 2.04 ‘ 1 = -
¥ B O I
g w0l ) % 'y W5 7-20 m
I i9 L 0.525-0.875| um
L%J 30 & 1000( C 3.5 pF
§ w0l R 20-40 KQ
g 1 w4 7-20 @m
10 W2b =W2a 7-20 sm
. | ‘ ‘ | 1-15 LA
1 10 100 1000 10000
Fitness Function Evaluations
Table 6: Conflicting objectives for the problem.
Figure 3: This figure shows the comparison of performance ] Objectives \ Specifications\
among the methods on minimizing the absolute error devi- Power Consumption| minimize
ation. Total Width minimize
Unity Gain Frequency maximize
tance Amplifier (OTA). The OTA is a useful device and it's Gain at 100 Hz maximize
used with few other devices to realize filters, comparators, Phase Margin maximize

wave generator, converters, etc.

The parameters and its ranges are showed in Table
The “W” parameters refers to the MOS channel width, L is
referred to the MOS channel length, R (resistance) and C
(capacity) are referred to the circuit net parameters. Min-
imum performance specifications are formulated with the

5F’hase Margin: The phase margin is a quality measure
for the circuit because it is related to the parasitics
effects, like cross coupling, which cause the failure in
the attainment of the performance.

showed in Table 6. the design because it is related to the yield of the
o o manufacturing process. Generally, if it is possible
3.2 Objectives for the circuit performances increase the number of circuit per unit area than the

yield of the manufacturing process increase and the
ratio between number of functional failure and total
number of circuit per unit area decrease. In our case
we used an underestimation given by the sum of the
Low frequency gain: It is the gain at 100 Hz, that is the MOS widths.

base of the amplification range

Many important performance metrics are to be considered
in the OTA design. Those considered in this study are the
following:

Power Consumption: the power consumption is today
Unity Gain Frequency It's defined as the frequency range an important performance for all system in which the
where the amplifier has at least the unity gain power is supplied by a battery.



Table 7: Constraints of the objective performances.

possible to define the multiobjective optimality in terms of
expected efficiency. For every objectivérom the above

| Objectives | Specifications)  Unit_ | conditions we obtain estimates fail°c" in the form of an
Unity Gain Frequency > 31.221 Mhz upper bound®°“" > 0 and a lower bound<*®e™ > 0
Gain at 100 Hz > 64118 dB for Klower Anélogou_sly fou;"PP“" there Wilmze an uTJper
Phase Margin > 60 Degree ’ y ’ ¢

boundK ;""" > 0 and a lower bound¢ """ > 0.

The heuristic criterion leading to the choice of the op-
timal hyperrectangles in the multiobjective is motivated by
) ) ) ~ the potential increase of the expected efficiency.
The MODirect method is an extension to the multiobjectivgefinition 3.4 [Multiobjective Potential optimality]Given
case of the DIRECT algorithm [Jones]. The method is basgfle estimations of the upper bounds and the lower bounds
on three operations: Lipschitz constant estimation, choigg, the Lipschitz constant of every objectivén the cone

for potential optimality of domain subregions, domain subgentered inf(cz), the hyperrectangle? is said potentially
division. The choice for potential optimality is based OMpptimal if

the estimation of Lipschitz constant for the objective func-

3.3 MODirect

tion in a partition of the domain. This partition is build by k LA
hyperrectangles which are sampled in their centers in or- Z[Klf’wer]Q < Z[K,;OWTP (12)
der to evaluate the value of the objective function. There- i=1 i=1

fore the estimation of Lipschitz constant leads to a possiblsy

choice of the hyperrectangles in the partition for a further k k

sampling. In the main loop of the algorithm hyperrectan- Z[K?’per]? < Z[F?wer]? (13)

gles are selected for sampling if they have a large area, an i=1 i=1
high !_ips_chitz _constant estimation_, z_and a g_ood valu_e of thﬁoreover, letf™" and f™* be respectively the ideal and
functu_)n in the!r_ center. For_mally it is p_ossmle to give the, o dir points of the cone centered ji{cy). The choice of
I/cglr(i)s\:\klallr:eg definition for the single objective problem in Onehyperrectanglel:z leads to a non trivial improvement of ob-
Definition 3.1 [Potential optimality relative to the objec- Jective functions
tivei] LetS be the set of hyperrectangles generated by th
algorithm afterk iterations, and letf™*” and f™* be re-
spectively the ideal and nadir points of the cone centered-!
in f(cg). An hyperrectangle? € S with centercp and  Of
measurex(R) is said potentially partial optimal relative to ~ k
the i-th objective if there exists at least a Lipschitz constanz[fi(cfc) + KPP a(R))? < Z[f{"“”“’ — e[ fmaT))? (15)
Klower > 0 such that i=1 i=1

The above definition gives a heuristic rule to choose hy-
perrectangles which are potentially optimal in the sense of
either increasing the efficiency of the objective vector or
taking into account possible trade-off (the latter arises from
considering both lower and upper bounds for the Lipschitz
constant). Equations 14 and 15 can be interpreted as con-
trolling the clustering nearby the optimal points.

It must be remarked that the criterion for multiobjective
optimality uses thé, norm to synthetize the choice from
several estimations (see Eqns. 12, 13, 14, 15)./Im®rm

. N : . . used in this synthesis characterizes the expectation of the
This definition is easily extendible to the casewofariables. y p

. L . Pareto front in terms of convexity. Possibly, the magnitude
In order to obtain the heuristic which extends the abovgf « that is required can be related to a measure of the non-

definition to the multiobjective case, let us redefine th%onvexity of the Pareto front
ga;gt.?_optémzahltzyﬁ!n.general .tterr_ns of'imger)c-y ' " Afterwards the hyperrectangle will be subdivided in
*em';?n. ) ﬁ.[. '?e':]tﬁy cr e”to{]] th ecision vdeéc.;)r thirds along its widest sides based on a dominance sorting
fh < d IS € |::|en_ \tNI rtehspeé: o the coor;\éex )c(o Ih of function valuesf(c + de;) with respect their efficiency.
ere does not exist another decision vector SUCh ™ This strategy increases the attractiveness of searching near

that f(z*) — f(z) € D . . ; : ]
The ‘coneD is calledordering coneand if D — R the points with good function values into the large hyperrectan

- o . : les.
efficiency criterion produces a partial ordering for the Paretg
optimality cr|ter|9n. This ort;ierlng is used by the algorlthm3_4 Multiobjective Evolutionary Algorithms
as surrogate of linear ordering.

Remark 3.3 [Multiple estimation of the Lipschitz con- Two well-known multiobjective evolutionary algorithms
stants] Starting from the conditions 8 and 10 in 3.1 it is(MOEAs) [Deb01, CoelloEtAL] are compared, NSGA2

k
[fileg) = Ko a(R)> < Y [f77 —el /7)) (14)
i=1

fileg) = K™ a(R) < fi(cr) = K{”""a(R)  (8)
filcg) = KI""a(R) < fi™" — €| f"™|.VR €S  (9)
or a constantk;"”?*" > 0 such that
fileg) + K™ a(R) < fi(er) + K™ a(R) (10)
filep) + KPP a(R) < "7 — e[ 77| VR € S (11)

wheres ~ 10~* is a constant to control thelusteringdur-
ing the search [Jones].



and SPEA2 with the multiobjective Direct algorithm (MO-
Direct) in terms of hypervolume metric (see subsectio
3.4.1). Both evolutionary algorithms use the constraine
tournament selection to deal with unfeasible solution du
ing the optimization process. 0.1 | 1.030949e+08 1.019888e+08 6.40256e+07

NSGAZ2 [Deb02] is a elitist evolutionary algorithm with 04 | 1.048202e+0q 1.051418e+04
a fast nondominated sorting procedure and a density es-

timation of the solutions provided by the crowding dIS-O points which locate other tradeoff among these two ob-

tance. SPEAZ has a f't”‘?ss a§S|gnment.schen.1e bgsed 0 é five and the other (Area, Power consumption, phase mar-
P.areto dominance re lation with a densn){, estimation tec jin). It is easy to note as both MOEASs obtain wider pareto
hique based on thek*th nearest neighbour” [Zitzler]. fronts with respet MOdirect. In particular, for the Frequency
objective function, NSGA Il and SPEA 2 reached non dom-
inated solutions in the rang&® — —75, where MOdirect
The Hypervolume metri¢Zitzler98] compute the volume oObtain frequencies in the domain — 55. Analogously, for
covered by a set of non dominated elemeptsbtained by the Gain objective function, the multiobjective evolutionary
the algorithm at the end of the optimization process. It ig/gorithms outperform the deterministic optimization algo-
computed as follow: for each solutiane @ an hypercube rithm, MOdirect. Same conclusions can be reached ploting
v; is built between a reference poifit (in this studyw ~ any other pair of objective functions.

Table 8: Hypervolume metric.
o SPEAZ2 NSGA2 MO-Direct
"0.01 | 1.032791e+0§ 1.038449e+08

D

3.4.1 Hypervolume

is the axis origin) and the solution The union of all the It must be notice the different point distributions of the
hypercubes is Computed and its hyperv0|u[ffé/0 is: different algorithms. This phenomenon is related to the con-
vexity or nonconvexity of the multiobjective problem in dif-
HV = volume(Ug‘lvi) (16) ferent region of the domain which affects the optimization

strategie of the algorithms. It can be see a comparable result
A large value of HV is expected from a good algorithm, for NSGA2 and SPEA2 and a totally unlike result of MOdi-
however, Veldhuizen [Veldhui], report that a such metric isect. In fact, the potentially optimal criterion of MOdirect

not useful if the optimal Pareto front is not convex. (3.4) favours convex region of the domain and gives a low
priority to the nonconvex regions. This property can explain
3.5 Results for the OTA away the reduce value of the hypervolume. We surmise that

the results could be useful to characterize the particular so-

In this section, using the hypervolume metric, we providq;J : - e .
) . _ Iution sets of the Pareto optimal front which identifies a con-
a comparison of NSGA I, SPEA 2 and MOdirect to multl-vex region for the muItiobE)ective problem

pleobjective optimization of the Operational Transconduc-

tance Amplifier. Objective of our experimental protocol is .

to determine the algorithms that obtain large valugdf, 4 Conclusion

that is googl a_lgorlthms in ‘e”T‘ ofawell_—know_n m_etrl_c. In this article we compared evolutionary algorithms and
The optimization process is done with a circuit simula-

standard optimization methods facing single- and multi- ob-
tor (SPICE). NSGA2 and SPEA2 parameters are: Crossovef .. S s . .
- . . t f I . Th le-
probability p. = 0.9, mutation probabilityp,, = 1. Both §ctive optimization for circuit design problems. The single

o i objective optimization concerns parameter extraction of In-
I\/iIOnEgs tu?ie nssv)iihcrossozegfvghl'gdf% 'Fh 2 and grarl:18- ductor device circuit, while the multi-objective optimization
stan mutatio o € {0.01,0.1,0.4}. These parame- refers to determination of the approximate Pareto Front of

ter values have been obtained by a preliminary parametgroperational Transconductance Amplifier. Two real world

tuning (not shown due to space limit), the gaussian m.Ut%'pplications supplied b TMICROELECTRONICS Based
tion parametery, seems to be the most relevant controllin

lue. Obviousl d : tiation i nly on these circuit design problems and on the above re-
value. Jbviously, a more deep Investigation 1S necessary @, 1o statistical analysis, we can make the following state-

detect the “best” parameter values. Different performan Cents
_til_uglthg vaEIuehotrlare_trhepo_rtedt n te:jmigo%yg%efrvolut_me N Forthe parameter extraction of device circuit model, us-
eaal eat'.onsaCTaT)ang c:g;l Ssohpopes :s the M OuEn:sloonbta'ing a montecarlo simulation, the standard metbdBECT

VI uatl I. £V with y tvl\\;IOd' ¢ Best it % more robust than evolutionary algorithms. In terms of
a larger vaiue o with respec rect. Bests resullS o standard metrics (Absolute Error Deviation and mini-

are Obt?lnedeIj[hr d:b0.4. Ag.prox[mattl)vely, the :yptlervol—h mization of the maximum absolute deviation) and number

wggxa”usn% tSalérgA 2y MOdirectis about an order less t 3t function calls evolutionary algorithms are more effective
o ., ., _than standard optimization methods.

The chart in Figure 3.5 shows the results which iden- Moreover, for the multiobjective problem, the observed

tify the Pareto front between unity gain frequency and 931B4reto fronts determined by evolutionary algorithms have a

at 100 Hz (two objective functions to maximize). The UP"hetter spread of solutions with a larger number of nondomi-

per envelop of the point set approximates this tradeoft CUNEated solutions with respect to the standard multi-objective

anpl points out that thE)0 Hz gain decreases when the umtytechniques, Multi-Objective DIRECTMO-DIRECT).
gain frequency increase. The chart shows also a sparse S’ekinally, the experimental results obtained shows as evo-
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