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nearly entire set of Pareto solutions with almost the same
Abstract computational cost with that we need in a single scalar
The present paper describe an implementation obptimization. One possibility to meet this complicated
the adaptive range genetic algorithms (ARange GAs) imequirement is the use of genetic algorithms (GAs), be-
multi-objective optimization by using the data envelop-cause it can be considered as multi-point search. So that
ment analysis (DEA). ARange GAs is a new genetic searcBAs seems to be preferable in MO. A number of studies
algorithms which adapt the searching range according thave been done in using GAs in MO. Hafjglased
the optimization situation and make it possible to obtairweighted method to deal MO for structural system with
highly accurate results effectively. DEA is to measure thenix of continuous, integer and discrete design variables.
efficiency of decision making units, and it is used mainlyThere are several studies which tried to keep Pareto solu-
in the field of economy. When we combine both meth-+ion as rank 1 and try to keep rank 1 individuals in the
ods, we can obtain a great number of Pareto solutiongsgext generatiort>® The other is to divide population in a
that might give an important aspect of the design, withimumber of small grougs and try to maintain special char-
a single GAs process effectively. The purpose of this studgicteristics in each small groups. Tanffakombined these
is to verify the characteristics and effectiveness of théwo approaches and obtained relatively good results. We
proposed method through demonstrative examples.  have newly introduced a strategy for survival among phe-
. notype expression as something of game between indi-
Intr oductions viduals and developed a new methodofggnd we also
Recently, requirements of design become more antave extended and revised the method to consider envi-
more complicated and sophisticated and the customersnment and use adaptive range GA® give evolution
try to decide what they really need to buy from manyof the specie¥.
aspects. Thus, we need to satisfy multiple requirements In this study, we also try to keep Pareto solutions
to meet these purposes. In such cases, it is rational aadd try to give higher fitness function for the frontier of
natural to formulate the problem in the multi-objective Pareto solutions. We do not use ranking method like Gold-
optimization (MO). However, in MO, there usually exist berg or Fonseca, but to use DEA*'% DEA is an ap-
conflict among objective functions, so that the solutionproach comparing the efficiency of decision making units
cannot be determined uniquely. In general, we try to findDMU) by measuring their efficiency by ratio of weighted
a set of non-inferior solutions call Pareto solutions withsum of outputs and weighted sum of inputs. By using this
results of a number of scalar optimizations and try to givefficiency measure, we can calculate DMU efficiency with
the implicit desired preference with local information andin the range of [0,1] in continuous number. So that it might
approximation of a given Pareto solutions. However, thesbe suitable to use as fitness function in GAs.
processes are not that easy decision makings and we have  In this article, we demonstrate the proposed method
to do many try and errors before we finally satisfy withby using simple numerical examples, and try to figure
the results, and which cause the cost of MO verythigh out the characteristics and effectiveness of the proposed
When we try to think of the design as treasure huntmethod.
ing, these decision makings with local information seems . . .
to hunt treasure without a map. The map in MO might be Adaptive Range Genetidlgorithms
a set of Pareto solutions, so that we would like to obtf\in The ARange GAs is developed by one of the au-
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thor in order to treat continuous number effectively by >
using the same frame work of simple GAs. Details can be G = A / _ (max;—) 8)
seen in the Refs. (10,15&16). new 2log (LB)
If there are any explicit side constraints for each

Expression of continuous variables design variable, there are possibilities that the searching

From the second generation, we can calculate meaanges will break these constraints in the ARRange GAs.
(1) and standard deviatioo ] of each design variable As we do not want to pass these problems in the fitness
of the individuals who are remained after GAs processes$unction as penalty, we operate both LB and s as follow-
By using these values, we can determine some sort @fig and keep side constraints.
distribution like normal distribution normalized to have

X for upper bound
maximum value 1 as

2
N() = exp (~ (x )2/ 2/ 0?) (D). LB, o = X (—(”ppe” L) )
These distributions show situation of each generation and ' 20,
they adapt automatically to the best fitted searching range if LB, o >UB—margin then
in some generation. By using these distributions, continu- LB, =UB—margin and
ous variables are given as hne (),
s =/ _ (upper—p)’
 new At B T
\/ ( (UB—LB)c(p-)) | 2109 (LB, re.)
T -202n| LB+ —————"
om-1_1
-1 for lower bound
e R (1 — lower,)?
(UB-LB)(C(p)-2""Y LB, =exp| il
M+ \/ —Zcﬁln(UB—W) ). now = &P ( 20? )
forC(p) =21 if LB, > UB—margin then
LB, o, =UB—margin and
Wherep, is the chromosome for design variakl@nd (1, — lower )2 (4).

C(p) is the integer decoded by using gray codR() is O new = " Moy B )
the real number decoded frgmmis the number of bits, hnew
andUB andLB are system parameters. (See Fig. 1)
In this method, searching range will move accord-System parameters folARange GAs
ing to the valugu, (mean value of the previous genera- There are five system parameters for ARange GAs;
tion), thus we do not have to care on giving priori seUB, LB,g,, o and marginAnd we give default val-
boundaries. Moreover, if it comes close to convergenceajes by assuming that the searching range will have the
distribution becomes narrow and it will speed up converwidth of 10 as,UB, LB, g, , 0, _,margir}={0.99, 0.044,
gence. 2.0, 0.1, 0.2}. However, these values must have different
As the searching range will move according to thevalues according to the precision for each design vari-

mean values of the previous generation, there is a possbles.c__anda__ will especially play important roles in

bility to miss the maximum variables, which have ob—improvi"r]{ng accun}aécy. So that we give these values as,
tained during initial generation to previous generation, 0,..=0.. *w/10.0 5),
within the searching range. To avoid these situations, we 0,.,=0, . *w/10.0 (6),
make some efforts in the valae as following and keep where w represent the width of searching range and it
them in the searching range. will be given by upper and lower bound for each design
variables. If there are no side constraints, it can be deter-
A previous range mined by the initial given boundary.
10— — new range Expression of discete variables
uB \ In the conventional method, integer variable are
1 previous determined by
distribution DI(p)= X, . *C(p) ),
] e | wherex . is a priori set lower bound, as for discrete vari-
LB > ‘ T T able, they are
Xo 0 X1 2X3u X4 SXG X7 R(p') DC(g):Database[[C(p)]] . (8)'.
Fig. 1 Illustrative sketch of adaptive range expression of where Database[[k]] means number k-th discrete variable
continuous variables in the given set of discrete variables. In ARange GAs,
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lower upper; 29940 | | !
‘ searchingrange ‘
TR T N RN TN TN TN T T T T N TR W fitness
I T L LY L L L function
Xi,min I -2995.0 | _]
(a) normal case
lower, upper; ARange=2994.49
‘ searchingrange Azarm=2994.57
N e B | s ' -2996.0 L L L
0 250 500 750 1000
‘ —normal caze generation
X l-ii Fig.3 Convergence of Golinski's speed reducer (5 trials)
i,min
” out of bounceary Table 1 Comparison of the resultsin fitness function
(b) considerationof boundary - - & - _ - -
lower upper; it trial 1 triadl 2 triad 3 triad 4 trial 5
! hi 150 -2996.84 -3003.43 -2997.03-2998.37 -2998.07
‘ searchingrange ‘ 200 -2995.30 -2996.74 -2994.99 -2995.50 -2995.56
-+ 250 -2995.19 -2995.18 -2994.71-2994.98 -2994.82
+ 300 -2994.75 -2994.95 -2994.71-2994.90 -2994.82
’_ﬂormd cae | 350 -2994.56 -2994.64 -2994.56 -2994.72 -2994.65
* o8 max. 400 -2994.53 -2994.57 -2994.55 -2994.59 -2994.60
X I 450 -2994.51 -2994.54 -2994.53-2994.59 -2994.54
'vr_”'” ] 500 -2994.51 -2994.52 -2994.51 -2994.53 -2994.52
(c) keep maxi mumval ue ever dbtatined 550 -2994.50 -2994.51 -2994.50-2994.52 -2994.50

650 -2994.49 -2994.50 -2994.49 -2994.50 -2994.50

700 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49

X min IS determined by the situation of the optimization 750 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
usingu (Fig. 2), 800 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
X .= Int(u +0.5) - 2m* (9), 850 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49

if x . <lower then 900 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49

"~ x = lower, 950 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49

else ifxi;::]n+ 2™ -1 > uppey then

X .o=upper-2"+1.
Where Int(+) transforms real number to integer. To keepnethod.
maximum value within the searching range, »will be

1000-2994.49 -2994.49 -2994.49 -2994.49 -2994.49

Data EnvelopmentAnalysis

revised as,
if x > maxthen General Formulation of DEA
’ X . =max (10), Data envelopment analysis (DEA) is first formu-
else ifx _+2™1 < max lated by Charnes, Cooper and Rho@#slt provides a
x’imm =max - 2"+ 1. new definition of scalar efficiency of participating units,
' along with methods for objectively determining the
Demonstrative Example weights by reference to the observational data for the

In order to show the effectiveness of the ARangénultlple OUtpUtS and inpUtS that characterize such pro-
GAs, we applied the problem to the Golinski's speed regrams.
ducer which was app“ed in Azatm Here 0n|y the re- In order to calculate efﬁCiency of the UnitS, we
sults is shown in Fig. 3 and Table 1. Formulation can als€€d inputs and outputs data of all the units which we
be seen in Web Page (http://fmad-www.Iarc.nasa.gO\)NOU|d like to compare. The definition of efficiency is,

mdob/ mdo.test/class2prob4/descr.html). As you can see S
in Fig. 3 and Table 1, we have very good convergence _Zl Ui Yi
and we can obtain the results which have high accuracy. S (11)
After 750 generation, all 5 trials obtained the same re- z Vi X '
sults, which will proof the stability of the proposed i=1
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where
X=input data
y,= output data
v.=weight for input data
u=weight for output datg
m=number of input data
s= number of output data
6= efficiency (called D eff. from now).

When there are n decision making units (DMU), D eff of

unit “0” can be calculated by;
forunit "o", findu; oVjo such that

2 UoYoo

max 6= ———
V. X.
= jojo
subject to s
2 Uy,
|;1 <1 (k: 1,...,n) (12)
ng ViXik
ul 0 O (|:1, !S)
Vio 0 (j=1..m)

where subscript “0” is efficiency and weights for unit “0”

Output 2

IMOUE etficiency B0
| C. p OoP
D
A Frontier of efficiency
E
hd G
H
° °F .
B ® units
_ Output 1
o) > Input

Fig. 4 lllustrative explanation of DEA with
1 input and 2 outputs

given in Fig. 4, and whe® =1.0, it means the unit “0” is
located at the frontier of the efficiency.

Remarks

Many advantages are reported in the refs (11,12)
by using the results of DEA. However, we only need to
calculate efficiency in this study. So that we are loosing
many other advantages in DEA. Even though, we can

and “k” is data for unit “k”. Eq. (12) can be converted benefit some of the advantages;

into linear programming and by using dual method, it can

be rewritten as,

find 6,and A,such that
max 6,
subject to
X, — XA, 20
Y,—YA. <0
A,20
where
A, Lagrange multiplier
6: efficiency
Xk : Input data sets
Y - output data sets

(13)

Each data has its specific meaning, like the determined
weights mean that the weight which give highest effi-
ciency, Lagrange multipliers means to determine supe-

rior sets and the direction of improvement and so on. Buvtvhe i .

in this study, we only need efficien@y, thus we do not

go into the detail any more, lllustrative explanationi's

1.We do not have to care the order of given data.

2. We can obtain efficiency in scalar value. And it
shows how far the reference data will be from
the frontier.

3. When optimization process goes by, frontier of
the efficiency will become a set of Pareto solu-
tion.

Only the lack in DEA is that it assume the convex

nature of the frontier. Which means we cannot measure

efficiency correctly when there are concave nature in the

Pareto optimum solution sets.

Multi-objective Optimization in GAs

Here we only give a formulation of multi-objec-
tive optimization and present the conventional way to
estimate fitness function by using ranking strategy.

Formulation

Find x such that

minimize F(x)={f (x),..., {(x)}"
subject to
g(x) =
Xt <x

(14)

1.0
<xY,
re
x= design variable ¢x,,..., X}")
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F(x)= objective functions{{f (x),..., { (xX)}")
gj(x): constraints (j=1,...,M)
x' %"= side constraints

Penalty function

In GAs, we cannot treat constraints. So that we
have to include them into fitness function using penalty

functions.

pn()= f(9+ 2 pxPILO-g (] (15)

where
pj= penalty coefficient
a= penalty exponent

Plyl= {

By using Eq. (15), we can convert them into fitness func
tion (fit) for each objective function. (Usually fitness func-
tion will be maximize in GAs.)
Ranking method

By using the penalty function for each objective
function, we would like to give higher fitness value to the
frontier to apply GAs. One of the method is ranking
methodP. We will illustrate how we rank each individu-

y fory >0

16).
0 otherwise (16)

method, even if individual E has ranking 1, it is almost
the same distance with F from the frontier which is deter-
mined by DEA. It seems very strange and it will cause
zigzag Pareto solutions for the result of GAs.

The proposed method

In the proposed method, we try to estimate fithness
value by using DEA. We have to prepare data for DEA.
Input in DEA will be the objective function which we
would like to minimize and output will be the objective
function which we would like to maximize. So it might
be straight forward after we calculate objective functions
and constraints and convert them in to fitness function
using Eq. (15). However, there are some conditions in
DEA that we have to convert data for its purpose.

Preparation of data
1. In DEA, we need at least two input and one output (or

one input and two output) data. If we do not have enough
data, add unit data set for output data.
2. In DEA, all data need to be plus, thus, when there are
minus value in the fithess function, convert fitness func-
tion value as,

fit =fit, - min(fiti)+¢ 17),
whereg is a small numberg€0.1 in the following ex-
amples)

als in Fig. 5. In this method, count the number of indi-

viduals which has higher fitness value for every fitnes

function and add 1 to its number. For example, individual

D has no individual which has higher objective function
of both fitl and fit2, thus its ranking is 1. Individual 4 has
2 individuals (G and H), thus its ranking is 3. In this

DEA's frontier
fit 2
A / )
| /G 0individual
D ->rank =1
° O individud
A(2 E ->rank =1
° H (1)
B () F 2individuas
->rank =3
I |
O fit 1

Fig. 5 lllustrative explanation of DEA with
1 input and 2 outputs
5

low of the proposed method
Flow of the proposed method is shown in Fig. 6.
| Randomly create initial population |
I
_>|decode them by using conventional method|
|

|Add every data sets to estimation sets
and calculate behavior variables

A |
store®> tindividual | __{ DEA to calculate
data to estimation sets fitness function
GAs process

[
{eneration max generation
no
1
|
eneratb

yes
yes

_’

es
Y @raﬁon ARg

determine the new searching range
by giving pi and oi

I
4| decode them by using ARange method

Fig. 6 Flowchart of the proposed method
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Initially, populations are given randomly and decode bytics. When we have any pre-knowledge or we found that
using conventional GAs. We prepare data for DEA andhere are any concave characteristics in the frontier, we
calculate fitness function. If fitness function is nearly equaFan convert them to convex character by using following
to 1 (> t), we store them into DEA calculation data. Simpleequation.

GAs will be ran for several times with conventional de- fit=Exp(fit) (19)
coding method for a while (10 generation in the follow-Although it is only a counter-plan for concave character-
ing examples). In this process we would like to find glo-istics, if we can give some good weight for them, we can
bal information of the frontier. After that we will use solve concave characteristics problem like we can see in
ARange decoding. Unfortunately, mean value does nothan and Papalambré&?

have any importance like it has in the single objective .
optimization case. So we determine its value by follow- Demonstrative Examples
ing. We repeat the process until generation become maxlamaki’s simple problem

mum generation. In order to show the effectiveness of the proposed
method, we carry out a simple numerical example shown
Determination of a new range in Tamaki?.
In ARange decoding, a new searching range will Minimize f(x,,x) = 2){~X,
be determined by, ando,. However, because there are and £(x,,x,) ==X,
many different objectives, mean value does not have any subject to
important meaning. What we would like to have in MO is (x,— 1)°+ x,<0 (20)

a precise set of Pareto solutions. Thus, we would like to (xx) = ([0).[0))
give searching range near the Pareto solutions. %1% e

First, we will find two individuals (a and b), which To show the effectiveness of the proposed method, we
is in the neighbor and has maximum distance (Fig. 7);ompare the results with cases.
Then,p, is determined as,

— Case 1: Fonseca’s method with conventional decoding

Hi B WXat (1-w) X ) (18) Case 2: Fonseca’s method with old ARange decoding
where w is a parameter randomly given by [-0.25, 1.25k55e 3: DEA with conventional decoding
in the following. Theng, is determined by the conven- case 4: DEA with new ARange decoding

tional ways. Case 5: DEA with Eq. (19) with conventional decoding

By using these ranges, we can fill the Pareto solucase 6: DEA with Eq. (19) with new ARange decoding
tions which are given by using conventional decoding

method. In the conventional decoding, we use 6 bits for each de-
o sign variables, and in ARange decoding we use 4 hits for
Counter-plan for concave characteristics ~each design variables. And AR generation equals to 10.
In DEA, we only can solve convex characteris- Resylts of each case in the design variable is shown in

2 Fig. 8 to 12. Comparison of the results in objective func-
X tion space of case 4 and 6 is shown in Fig. 13. In case 1,
A 1 no other frontier data we can obtain over all Pareto solution sets after 100 gen-

erations. But the results include zigzag relations, which

can be seen explicitly in the results after 30 generation.

In that sense, we have to examine the results, which are
good Pareto solution and which are not.

1.0 ; L= 10
. . :D:at 0? g DDmFE;
Maximum distance dv2 | efe" dv2
2 | e e N
Uy =W X5+ (1—W) %, - RN o
Ho = WXog + (1-W) X, Too 10
> vl
@] x1 after 30 generation after 100 generation
, _— , = population - Rank 1 data
Fig. 7 Determinatio of the searching range Fig. 8 Results of Case 1
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1.0 - 1.0 b 10— 1.0
L= F J | = | .y i J
I B ] I - ] 7‘:”%? | |
dv2 i ‘% dv2 ‘\ dv2 Y. dv2
| T B L B E— _ i
e niﬁ o | | .‘ | | " . | |
G . oog ‘“ EE
00 @n " ™%+ 2 00, | | "% 3 0-0*% Lo e 00 m—
0.0 10 00 1.0 0.0 1.0 10
dvl dvl dvl dvl
after 30 generation after 100 generation after 30 generation after 100 generation
= population . Rank 1 data = population - efficient frontier data
Fig. 9 Results of Case 2 Fig. 13 Results of Case 6 (t=0.999)
T T T T T T T T T T
10 | ‘;_ | D; o | 1-07 ‘.' ‘ | 0.0 | % Concavepat - 1.0 D df>0.9% |
I | ™ 1 |
T T e T T ?
| degcn”  Cas | S 1 - .. | 05 -
o oT g e .. PabiNg Def>0995 *a |
o.of‘DD‘DDD“I“i‘II- 0.0, ‘ D‘D.‘ﬁn-- 1.2 T T TR IR N B I I \!!.\.
0.0 1 0.0 -15 00 1525 00 40 80
dvil dvi fl f1
after 30 generation after 100 generation Caz4 Case6
= population - efficient frontier data Fig. 14 Comparison of the resultsin objective
Fig. 10 Results of Case 3 (t=0.995) function space
1.0 L T T T 1.0 ;
N ;E‘E i a good set of Pareto solutions without zigzag nature.
dv2 [ S av2 | Which mean that we only have the data in need. How-
" i ) ever, the data between x1=[0.1,0.2] is missing. In Fig. 11,
e " ) 7 we can see that the proposed ARange tried to find the
0-0’?5“ 17, "EYERY Qo[ e warmmy results of missing part in case 3. As ARange can have
00 10 10 more precision that it can obtained some missing part of
after 30dgve}1eration after 10(?\ééqerati on case 3 and obtained over all Pareto optimum sets. When
= population - efficient frontier data we use convex conversion of fitness function, we can
Fig. 11 Results of Case 4 (t=0.995) obtain the missing part of case 3 even with the conven-
10/ g " o T 104 tional decoding (Fig. 12). In Fig. 13, we can obtain more
- o " i Pareto solution than in case 5. Even in the result after 30
Lo J | generation, we can obtain almost the same number of
dv2 | o H‘L;&‘a% = o av2 - Pareto solutions which is obtained after 100 generation
LR -y | in case 5. Compared with the results with case 4, we can
o Be 5o oo | i ﬂnﬁﬂﬁﬁd“%m C obtain more precise Pareto sets. This results are quite natu-
0.0 po o mfmmm Q"7 EE S —— ral, because DEA can estimate its efficiency more accu-
0.0 10 0.0 10 rate in the convex case. As we can see in Fig. 14, the
dvi avl problem has some concave character in its Pareto solu-
after 30 generation after 100 generation : g : -
> population - efficient frontier data tion sets. Thus, there are some missing part in the origi-

nal method. However, after converted to the convex prob-
lem, we can obtained all over the Pareto solution pre-

In case 2, we use old ARange decoding that is to use meglr?ely'

value. We can see that zigzag nature is exaggerated andit , ..
) . static three-bartruss problem

would not disappeared after 100 generation, because t —_ .
: The problem is first solved by Kos$ki and it is
searching range became so narrow to search the other . O

- . also used to explain the efficiency by Athan and
possibility. In that sense, usage of old ARange in Fonsec 5

. apalambro§®.

method was failed. In case 3, even the results after 30

. . . . The total volume of the truss and a linear combi-
generation, we have obtained data in need to predict the .. . T
. . nation of the two nodal displacements are to be minimized.
actual Pareto solution sets. After 100 generation, we ha

; VFhe design variables are the three cross sectional area of

Fig. 12 Results of Case 5 (t=0.999)

American Institute of Aeronautics and Astronautics



L ﬁL 0—3 T T T 10—3 T T T T
> < 1'0& mpopulation 10 = population
. 3 D eff>0.9999 L o D eff>0.9999)
| jump | | @ jump
1 A2 A3 v [ N . V()
L L o - = ag® -
| “ :l N ‘L | DEMH al
F
Il Il Il 3 | | Il Il 3
dy 000857502580 000 G50 150 Z50°
dhv Displacement (m) Displacement (m)
F After 30th generation After 100 generation
Fig. 15 Three-bar truss under static loading Fig. 16 Results in the case we do not use Eq. (19)
103 103
1.00 T T T 1.00 T T
= population| u | ati
the members. Stress and side constraints are imposed. The | & o g gff>0.999999 . & ugogfl:sc;.%gg 9
three bar truss is shown in Fig. 15. Problem formulations | @iump | | jump
are as follow; V(md) Y v(md by
. Yerg. i &, |
Find {A1,A2,A3} such that - 8 -
1 1 1 1 3 | 1 1 1 3
minimizeV = N2LA, + LA, + 2LA,  (21) 0.00 555150 2500 0.00 s T80 z50”
d4d=02 7 Displacement (m) Displacement (m)
) and d=0.25 g+ 0.75 q After 30th generation After 100th generation
subject to ( | Fig. 17 Results in the case we use Eq. (19)
o <o0<c (i=1,2,3
c t ; 1 1
A sA<A,(=1,2,3), some missing range on design variable space, so that the
where b—d searching range will become those range where there
dv = 8FL - — seems no Pareto solutions like we can see in the circle of
E p-ad Fig. 17. This might be one of the shortcoming of using
d = 8FL b-a Eqg. (18). However, even in the results after 30 th genera-
h E b> —ad tions, we can predict the over all Pareto solution sets suf-
_ ficiently, and it shows effectiveness in the searching of
E(d,—d,)
o, = Th the solutions of the proposed method. Comparing the both
Ed results, convex conversion results seems to obtain Pareto
o,=— solutions more effectively. Even we give higher “D eff”
L value, we obtained more Pareto solution than the other.
E(dv + /§dh) This is quite natural results, because of the nature of DEA
g, = —a that need convex characteristics in the objective functions.
8A + VBA + Conclusions
a= . . . .
A At Ay 1. In this article, we proposed a new multi-objective opti-
b= /f:’a_A3 - /§A1 mization method, using ARange GAs with DEA.
d= 3A, + /8_A1 2. When we use ARange decoding, we do not have to

care about the initial searching range and the number
of bits to determine precision of the results. As ARange
decoding try to adapt the searching range adaptive to
the range where we would like to obtain solutions and
when the convergence goes by, it will narrow the range
We applied the proposed method in both case with tg gptain more precise results.
convex conversion and without convex conversion. Res pga gives some mathematical meaning for Pareto
sults are shown in Figs. 16 & 17. In the both cases, we gptimality. In these sense, we can give rational fitness
have obtained sufficient number of Pareto solutions, in fynction to each individuals, so that we can avoid to
order to predict over all Pareto solution sets. Although gptain some zigzag nature which will cause by esti-
the problem seems to have a convex character, there argnating Pareto optimality with conventional ranking
some jump in the Pareto sets, because even if we convertmethods. Moreover, efficiency in DEA will be much
the problem to convex character they do not vanish. In more suitable for GAs.

such a case, Eq. (18) try to search the range WhiChsaﬂ‘? Through some simple numerical examples, we showed

F=20KN, L=1.00m,E=200GPa,
0=200MPag =-200Mpa
A=10e-5mMA=2.0e4m
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the effectiveness of the proposed method. One of the Algorithms”, Chap. 3 on “Genetic Algorithms 2 (ed-
shortcoming in using DEA is that they cannot treat the ited by Kitano), Sangyotosho, (1995), p.71-87.
problem with concave case, We proposed one counte(9) Arakawa, M, Yamakawa, H., “Strategic Genetic Al-
plan to convert the problem into convex characteristics gorithms to Obtain Multiple Acceptable Design”, in
and obtained the results much better than the original CD-ROM proceeding of 22nd Design Automation Con-
ones. ference, (1996).

5. In the proposed method, we can obtain enough numbét0) Arakawa, M., Hagiwara, |., “Development of Adap-
of Pareto solutions to predict over all Pareto solutions tive Real Range Genetic Algorithms”, JSME Interna-
sets within relatively small number of generations. tional, to be appeared.

Which will show the effectiveness of the proposed(11) Arakawa, M., Hagiwara, |., Yamakawa, H.,"Foraging
method in the stand point of convergence. We still need Strategic Genetic Algorithms To Obtain Multiple Ac-
some effort to give searching range to obtain the over ceptable Designs"”, Proc. on Int. Symp. of Optimiza-
all Pareto solutions. We would like to investigate that tion and Innovative Design 97, (in CD-ROM), (1997)
point in the future. (12) Charnes, A., Cooper, W.W,. Rhodes, E., “ Measur-
ing the efficiency of decision making units”, European
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