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Abstract
The present paper describe an implementation of

the adaptive range genetic algorithms (ARange GAs) in
multi-objective optimization by using the data envelop-
ment analysis (DEA). ARange GAs is a new genetic search
algorithms which adapt the searching range according to
the optimization situation and make it possible to obtain
highly accurate results effectively. DEA is to measure the
efficiency of decision making units, and it is used mainly
in the field of economy. When we combine both meth-
ods, we can obtain a great number of Pareto solutions,
that might give an important aspect of the design, within
a single GAs process effectively. The purpose of this study
is to verify the characteristics and effectiveness of the
proposed method through demonstrative examples.

Intr oductions
Recently, requirements of design become more and

more complicated and sophisticated and the customers
try to decide what they really need to buy from many
aspects. Thus, we need to satisfy multiple requirements
to meet these purposes. In such cases, it is rational and
natural to formulate the problem in the multi-objective
optimization (MO). However, in MO, there usually exist
conflict among objective functions, so that the solution
cannot be determined uniquely. In general, we try to fine
a set of non-inferior solutions call Pareto solutions with
results of a number of scalar optimizations and try to give
the implicit desired preference with local information and
approximation of a given Pareto solutions. However, these
processes are not that easy decision makings and we have
to do many try and errors before we finally satisfy with
the results, and which cause the cost of MO very high(1).

When we try to think of the design as treasure hunt-
ing, these decision makings with local information seems
to hunt treasure without a map. The map in MO might be
a set of Pareto solutions, so that we would like to obtain

nearly entire set of Pareto solutions with almost the same
computational cost with that we need in a single scalar
optimization. One possibility to meet this complicated
requirement is the use of genetic algorithms (GAs), be-
cause it can be considered as multi-point search. So that
GAs seems to be preferable in MO. A number of studies
have been done in using GAs in MO. Hajela(2) used
weighted method to deal MO for structural system with
mix of continuous, integer and discrete design variables.
There are several studies which tried to keep Pareto solu-
tion as rank 1 and try to keep rank 1 individuals in the
next generation, (3-6). The other is to divide population in a
number of small groups(7)  and try to maintain special char-
acteristics in each small groups. Tamaki(8) combined these
two approaches and obtained relatively good results. We
have newly introduced a strategy for survival among phe-
notype expression as something of game between indi-
viduals and developed a new methodology(9), and we also
have extended and revised the method to consider envi-
ronment and use adaptive range GAs(10) to give evolution
of the species(11).

In this study, we also try to keep Pareto solutions
and try to give higher fitness function for the frontier of
Pareto solutions. We do not use ranking method like Gold-
berg or Fonseca, but to use DEA(12,13,14). DEA is an ap-
proach comparing the efficiency of decision making units
(DMU) by measuring their efficiency by ratio of weighted
sum of outputs and weighted sum of inputs. By using this
efficiency measure, we can calculate DMU efficiency with
in the range of [0,1] in continuous number. So that it might
be suitable to use as fitness function in GAs.

In this article, we demonstrate the proposed method
by using simple numerical examples, and try to figure
out the characteristics and effectiveness of the proposed
method.

Adaptive Range Genetic Algorithms
The ARange GAs is developed by one of the au-
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thor in order to treat continuous number effectively by
using the same frame work of simple GAs. Details can be
seen in the Refs. (10,15&16).

Expression of continuous variables
From the second generation, we can calculate mean

(µ
i
) and standard deviation (σ

i
)  of  each design variable

of the individuals who are remained after GAs processes.
By using these values, we can determine some sort of
distribution like normal distribution normalized to have
maximum value 1 as

N (xi) = exp ( – (xi – µι)
2 / 2 / σι

2) (1).
These distributions show situation of each generation and
they adapt automatically to the best fitted searching range
in some generation. By using these distributions, continu-
ous variables are given as

R(pi)=

µ ι – – 2σι
2ln LB+

(UB– LB)C(pi)

2m – 1 – 1

forC(pi) < 2m – 1

µ ι + – 2σι
2ln UB–

(UB– LB)(C(pi)– 2m – 1)

2m – 1 – 1

forC(pi)≥ 2m – 1

 (2).

Where p
i
 is the chromosome for design variable x

i
 and

C(p
i
) is the integer decoded by using gray coding, R(p

i
) is

the real number decoded from p
i
, m is the number of bits,

and UB and LB are system parameters. (See Fig. 1)
In this method, searching range will move accord-

ing to the value µ
i
 (mean value of the previous genera-

tion), thus we do not have to care on giving priori set
boundaries. Moreover, if it comes close to convergence,
distribution becomes narrow and it will speed up conver-
gence.

As the searching range will move according to the
mean values of the previous generation, there is a possi-
bility to miss the maximum variables, which have ob-
tained during initial generation to previous generation,
within the searching range. To avoid these situations, we
make some efforts in the value σ

i
  as following and keep

them in the searching range.

σi,new = –
(maxi – µι)

2

2 log (LB)
(8)

If there are any explicit side constraints for each
design variable, there are possibilities that the searching
ranges will break these constraints in the ARRange GAs.
As we do not want to pass these problems in the fitness
function as penalty, we operate both LB and s as follow-
ing and keep side constraints.

for upper bound

LBi,new = exp
(upperi – µι)

2

2σι
2

if LBi,new > UB – margin then

LBi,new = UB – margin and

σi,new = –
(upperi – µι)

2

2log (LBi,new)

  (3),

for lower bound

LBi,new = exp
(µι – loweri)

2

2σι
2

if LBi,new > UB – margin then

LBi,new = UB – margin and

σi,new = –
(µι – loweri)

2

2log (LBi,new)

 (4).

System parameters for ARange GAs
There are five system parameters for ARange GAs;

UB, LB, σ
min

, σ
max

 and margin. And we give default val-
ues by assuming that the searching range will have the
width of 10 as,{UB, LB, σ

min
, σ

max
,margin}={0.99, 0.044,

2.0, 0.1, 0.2}. However, these values must have different
values according to the precision for each design vari-
ables. σ

min
 and σ

max
 will especially play important roles in

improving accuracy. So that we give these values as,
σ

min
=σ

min
 *w /10.0 (5),

σ
max

=σ
max

* w/10.0 (6),
where w represent the width of searching range and it
will be given by upper and lower bound for each design
variables. If there are no side constraints, it can be deter-
mined by the initial given boundary.

Expression of discrete variables
In the conventional method, integer variable are

determined by
DI(p

i
)= x

i,min
+C(p

i
) (7),

where x
i,min

 is a priori set lower bound, as for discrete vari-
able, they are

DC(p
i
)=Database[[C(p

i
)]] (8),

where Database[[k]] means number k-th discrete variable
in the given set of discrete variables. In ARange GAs,

1.0

µ x

UB

0
x0 x1

x2
x3 x4

x5
x6 x7

Fig. 1 Illustrative sketch of adaptive range expression of
continuous variables

LB

R(pi)

previous   range

new range

previous
distribution
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x
i,min

 is determined by the situation of the optimization
using µ (Fig. 2),

x
i,min

 = Int(µ
i
 +0.5) - 2 m-1 (9),

if  x
i,min

 < lower
i
 then

x
i,min

 = lower
i
,

else if x
i,min

 + 2m -1 > upper
i
 then

x
i,min

 = upper
i
 - 2m + 1.

Where Int(•) transforms real number to integer. To keep
maximum value within the searching range, x

i,min
 will be

revised as,
if  x

i,min
 > max

i
 then

x
i,min

 =max
i

(10),
else if x

i,min
 + 2m+1 < max

i

x
i,min

 =max
i
 - 2m + 1.

Demonstrative Example
In order to show the effectiveness of the ARange

GAs, we applied the problem to the Golinski’s speed re-
ducer which was applied in Azarm(17). Here only the re-
sults is shown in Fig. 3 and Table 1. Formulation can also
be seen in Web Page (http://fmad-www.larc.nasa.gov/
mdob/ mdo.test/class2prob4/descr.html). As you can see
in Fig. 3 and Table 1, we have very good convergence
and we can obtain the results which have high accuracy.
After 750 generation, all 5 trials obtained the same re-
sults, which will proof the stability of the proposed

loweri upperi
searching range

µixi,min

(a) normal case
loweri upperi

searching range

µixi,min
out of boundary

(b) consideration of boundary
loweri upperi

searching range

µi

xi,min

normal case

normal case
maxi

(c) keep maximum value ever obtatined

Fig.2  ARange GAs for integr and discrete variables

  it    trial 1   trial 2      trial 3      trial 4        trial 5
150 -2996.84 -3003.43 -2997.03 -2998.37 -2998.07
200 -2995.30 -2996.74 -2994.99 -2995.50 -2995.56
250 -2995.19 -2995.18 -2994.71 -2994.98 -2994.82
300 -2994.75 -2994.95 -2994.71 -2994.90 -2994.82
350 -2994.56 -2994.64 -2994.56 -2994.72 -2994.65
400 -2994.53 -2994.57 -2994.55 -2994.59 -2994.60
450 -2994.51 -2994.54 -2994.53 -2994.59 -2994.54
500 -2994.51 -2994.52 -2994.51 -2994.53 -2994.52
550 -2994.50 -2994.51 -2994.50 -2994.52 -2994.50
600 -2994.49 -2994.50 -2994.49 -2994.50 -2994.50
650 -2994.49 -2994.50 -2994.49 -2994.50 -2994.50
700 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
750 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
800 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
850 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
900 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
950 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49
1000 -2994.49 -2994.49 -2994.49 -2994.49 -2994.49

Table 1 Comparison of the results in fitness function

method.

Data Envelopment Analysis
General Formulation of DEA

Data envelopment analysis (DEA) is first formu-
lated by Charnes, Cooper and Rhodes (12). It provides a
new definition of scalar efficiency of participating units,
along with methods for objectively determining the
weights by reference to the observational data for the
multiple outputs and inputs that characterize such pro-
grams.

In order to calculate efficiency of the units, we
need inputs and outputs data of all the units which we
would like to compare. The definition of efficiency is,

θ =
ui yiΣ

i = 1

s

vj xjΣ
j = 1

m (11),

-2996.0

-2995.0

-2994.0

0 250 500 750 1000

ARange=2994.49

Azarm=2994.57

generation
Fig.3  Convergence of Golinski's speed reducer (5 trials)

fitness
function
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where

x
i
= input data

y
i
= output data

v
i
=weight for input data x

i

u
i
=weight for output data y

i

m=number of input data

s= number of output data

θ= efficiency (called D eff. from now).

When there are n decision making units (DMU), D eff of

unit “o” can be calculated by;

max θ =
u yioΣ

i = 1

s

v xjoΣ
j = 1

m

for unit "o", find ui o,vjo  such that

yikΣ
i = 1

s

v xjkΣ
j = 1

n
≤ 1 (k = 1,...,n)

subject to

ui o  0  (i=1,...,s)
vj o  0  (j=1,...,m)

io

o

jo

uio

jo

(12),

where subscript “o” is efficiency and weights for unit “o”
and “k” is data for unit “k”.  Eq. (12) can be converted
into linear programming and by using dual method, it can
be rewritten as,

θ : efficiency
xjk : input data sets
yik : output data sets

max θ
subject to

θxo – Xλ ≥ 0

find θ and λ such that

yo – Yλ ≤ 0
λ ≥ 0

where
 λ : Lagrange multiplier

o

o

o o

o

o

o

o

o

(13)

.
Each data has its specific meaning, like the determined
weights mean that the weight which give highest effi-
ciency, Lagrange multipliers means to determine supe-
rior sets and the direction of improvement and so on. But
in this study, we only need efficiency θ

o
, thus we do not

go into the detail any more, Illustrative explanation is

Output 2
   Input

Output 1
   Input

units

Frontier of efficiency

O

Fig. 4  Illustrative explanation of DEA with
           1 input and 2 outputs

efficiency θa=

A

P
OP
OA

B

C

D

E

F

G

H

given in Fig. 4, and when  θ
o
=1.0, it means the unit “o” is

located at the frontier of the efficiency.

Remarks
Many advantages are reported in the refs (11,12)

by using the results of DEA. However, we only need to
calculate efficiency in this study. So that we are loosing
many other advantages in DEA. Even though, we can
benefit some of the advantages;

1.We do not have to care the order of given data.
2. We can obtain efficiency in scalar value. And it
shows how far the reference data will be from
the frontier.

3. When optimization process goes by, frontier of
the efficiency will become a set of Pareto solu-
tion.

Only the lack in DEA is that it assume the convex
nature of the frontier. Which means we cannot measure
efficiency correctly when there are concave nature in the
Pareto optimum solution sets.

Multi-objective Optimization in GAs
Here we only give a formulation of multi-objec-

tive optimization and present the conventional way to
estimate fitness function by using ranking strategy.

Formulation
Find x such that

minimize F(x)={f
1
(x),..., f

L
(x)}T (14)

subject to
g

j
(x) ≥ 1.0

x
i
L ≤ x

i
 ≤ x

i
U,

where
x= design variable (={x

1
,..., x

N
}T)
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F(x)= objective functions(={f
1
(x),..., f

L
(x)}T)

g
j
(x)= constraints (j=1,...,M)

x
i
L ,x

i
U= side constraints

Penalty function
In GAs, we cannot treat constraints. So that we

have to include them into fitness function using penalty
functions.

peni(x) = fi (x) + pj ×P[1.0 – gj(x)]aΣ
j =1

M

(15),

where

pj= penalty coefficient

a= penalty exponent

P[y]=
y for y > 0
0 otherwise

(16).

By using Eq. (15), we can convert them into fitness func-
tion (fit

i
) for each objective function. (Usually fitness func-

tion will be maximize in GAs.)
Ranking method

By using the penalty function for each objective
function, we would like to give higher fitness value to the
frontier to apply GAs. One of the method is ranking
method(3). We will illustrate how we rank each individu-
als in Fig. 5. In this method, count the number of indi-
viduals which has higher fitness value for every fitness
function and add 1 to its number. For example, individual
D has no individual which has higher objective function
of both fit1 and fit2, thus its ranking is 1. Individual 4 has
2 individuals (G and H), thus its ranking is 3. In this

O

Fig. 5  Illustrative explanation of DEA with
           1 input and 2 outputs

B

C

D

E

F

G

H

fit 1

fit 2

0 individual
 -> rank =1

2 individuals
 -> rank =3

A
0 individual
 -> rank =1

(1)

(1)

(1)

(2)

(5)

DEA's frontier

method, even if individual E has ranking 1, it is almost
the same distance with F from the frontier which is deter-
mined by  DEA. It seems very strange and it will cause
zigzag Pareto solutions for the result of GAs.

The proposed method
In the proposed method, we try to estimate fitness

value by using DEA. We have to prepare data for DEA.
Input in DEA will be the objective function which we
would like to minimize and output will be the objective
function which we would like to maximize. So it might
be straight forward after we calculate objective functions
and constraints and convert them in to fitness function
using  Eq. (15). However, there are some conditions in
DEA that we have to convert data for its purpose.

Preparation of data
1. In DEA, we need at least two input and one output (or
one input and two output) data. If we do not have enough
data, add unit data set for output data.
2. In DEA, all data need to be plus, thus, when there are
minus value in the fitness function, convert fitness func-
tion value as,

fit
i
=fit

i  
- min(fiti)+ε (17),

where ε is a small number. (ε=0.1 in the following ex-
amples)

Flow of the proposed method
Flow of the proposed method is shown in Fig. 6.

Randomly create initial population

Add every data sets to estimation sets
and calculate behavior variables

DEA to calculate
fitness function

generation  max generation

end
no

yes

store θ>  t individual
data to estimation sets

GAs process

generation  AR generation
yes

yes

determine the new searching range
by giving µi and σi

decode them by using conventional method

decode them by using ARange method

Fig. 6 Flowchart of the proposed method
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Initially, populations are given randomly and decode by
using conventional GAs. We prepare data for DEA and
calculate fitness function. If fitness function is nearly equal
to 1 (> t), we store them into DEA calculation data. Simple
GAs will be ran for several times with conventional de-
coding method for a while (10 generation in the follow-
ing examples). In this process we would like to find glo-
bal information of the frontier. After that we will use
ARange decoding. Unfortunately, mean value does not
have any importance like it has in the single objective
optimization case. So we determine its value by follow-
ing. We repeat the process until generation become maxi-
mum generation.

Determination of a new range
In ARange decoding, a new searching range will

be determined by µ
i
 and σ

i
. However, because there are

many different objectives, mean value does not have any
important meaning. What we would like to have in MO is
a precise set of Pareto solutions. Thus, we would like to
give searching range near the Pareto solutions.

First, we will find two individuals (a and b), which
is in the neighbor and has maximum distance (Fig. 7),
Then, µ

i
 is determined as,

µ i = w xi,a + (1 – w) xi,b (18)

where w is a parameter randomly given by [-0.25, 1.25]
in the following. Then, σ

i
 is determined by the conven-

tional ways.
By using these ranges, we can fill the Pareto solu-

tions which are given by using conventional decoding
method.

Counter-plan for concave characteristics
In DEA, we only can solve convex characteris-

O

Fig. 7  Determinatio of the searching range

1

3

4

2

no other frontier data

x1

x2

Maximum distance

µ1 = w x1,3 + (1 – w) x1,4

µ2 = w x2,3 + (1 – w) x2,4

tics. When we have any pre-knowledge or we found that
there are any concave characteristics in the frontier, we
can convert them to convex character by using following
equation.

fit
i
=Exp(fit

i
) (19)

Although it is only a counter-plan for concave character-
istics, if we can give some good weight for them, we can
solve concave characteristics problem like we can see in
Athan and Papalambros(18).

Demonstrative Examples
Tamaki’s simple problem

In order to show the effectiveness of the proposed
method, we carry out a simple numerical example shown
in Tamaki(7).

Minimize f1(x1,x2)= 2 x1
2 – x2

and f2(x1,x2)= – x1

subject to

(x1 – 1)3 + x2 ≤ 0

(x1,x2)= ([0,),[0,))

(20)

To show the effectiveness of the proposed method, we
compare the results with cases.

Case 1: Fonseca’s method with conventional decoding
Case 2: Fonseca’s method with old ARange decoding
Case 3: DEA with conventional decoding
Case 4: DEA with new ARange decoding
Case 5: DEA with Eq. (19) with conventional decoding
Case 6: DEA with Eq. (19) with new ARange decoding

In the conventional decoding, we use 6 bits for each de-
sign variables, and in ARange decoding we use 4 bits for
each design variables. And AR generation equals to 10.
Results of each case in the design variable is shown in
Fig. 8 to 12. Comparison of the results in objective func-
tion space of case 4 and 6 is shown in Fig. 13. In case 1,
we can obtain over all Pareto solution sets after 100 gen-
erations. But the results include zigzag relations, which
can be seen explicitly in the results after 30 generation.
In that sense, we have to examine the results, which are
good Pareto solution and which are not.

0.0

1.0

0.0 1.0

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 8 Results of Case 1
Rank 1 datapopulation

0.0

1.0

0.0 1.0
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In case 2, we use old ARange decoding that is to use mean
value. We can see that zigzag nature is exaggerated and it
would not disappeared after 100 generation, because the
searching range  became so narrow to search the other
possibility. In that sense, usage of old ARange in Fonseca’s
method was failed. In case 3, even the results after 30
generation, we have obtained data in need to predict the
actual Pareto solution sets. After 100 generation, we have

a good set of Pareto solutions without zigzag nature.
Which mean that we only have the data in need. How-
ever, the data between x1=[0.1,0.2] is missing. In Fig. 11,
we can see that the proposed ARange tried to find the
results of missing part in case 3. As ARange can have
more precision that it can obtained some missing part of
case 3 and obtained over all Pareto optimum sets. When
we use convex conversion of fitness function, we can
obtain the missing part of case 3 even with the conven-
tional decoding (Fig. 12). In Fig. 13, we can obtain more
Pareto solution than in case 5. Even in the result after 30
generation, we can obtain almost the same number of
Pareto solutions which is obtained after 100 generation
in case 5. Compared with the results with case 4, we can
obtain more precise Pareto sets. This results are quite natu-
ral, because DEA can estimate its efficiency more accu-
rate in the convex case. As we can see in Fig. 14, the
problem has some concave character in its Pareto solu-
tion sets. Thus, there are some missing part in the origi-
nal method. However, after converted to the convex prob-
lem, we can obtained all over the Pareto solution pre-
cisely.

A static three-bar truss problem
The problem is first solved by Koski(19) and it is

also used to explain the efficiency by Athan and
Papalambros (18).

The total volume of the truss and a linear combi-
nation of the two nodal displacements are to be minimized.
The design variables are the three cross sectional area of

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 9 Results of Case 2
Rank 1 datapopulation

0.0

1.0

0.0 1.0
0.0

1.0

0.0 1.0

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 10 Results of Case 3 (t=0.995)
efficient frontier datapopulation

0.0

1.0

0.0 1.0
0.0

1.0

0.0 1.0

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 11 Results of Case 4 (t=0.995)
efficient frontier datapopulation

0.0

1.0

0.0 1.0
0.0

1.0

0.0 1.0

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 12 Results of Case 5 (t=0.999)
efficient frontier datapopulation

0.0

1.0

0.0 1.0
0.0

1.0

0.0 1.0

dv2

dv1
after 30 generation

dv2

dv1
after 100 generation

Fig. 13 Results of Case 6 (t=0.999)
efficient frontier datapopulation

0.0

1.0

0.0 1.0
0.0

1.0

0.0 1.0

0.5

1.0

0.0 4.0 8.0

f2

f1

-1.2

-0.6

0.0

-1.5 0.0 1.5 2.5

f2

f1

Concave part

D eff > 0.995

D eff > 0.999

Case 4 Case 6

Fig. 14 Comparison of the results in objective
              function space
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the members. Stress and side constraints are imposed. The
three bar truss is shown in Fig. 15. Problem formulations
are as follow;

Find {A1,A2,A3} such that

minimize V = 2LA1 + LA2 + 2LA3 (21)

and d=0.25 d
v
 + 0.75 d

h

subject to
σ

c
 ≤ σ ≤σ

t
 (i=1,2,3)

A
L
 ≤ A ≤ A

U
 (i=1,2,3),

where

dv = 8FL
E

b – d
b2 – ad

dh = 8FL
E

b – a
b2 – ad

σ 1 =
E(dv – dh)

2L

σ 1 =
Edv

L

σ 1 =
E(dv + 3dh)

4L

a = 8A2 + 8A1 + A3

b = 3A3 – 8A1

d = 3A3 + 8A1

F=20KN, L=1.00m,E=200GPa,
σ

t
=200MPa, σ

c
=-200Mpa

A
L
=1.0 e-5 m2, A

U
=2.0 e-4 m2

We applied the proposed method in both case with
convex conversion and without convex conversion. Re-
sults are shown in Figs. 16 & 17. In the both cases, we
have obtained sufficient number of Pareto solutions, in
order to predict over all Pareto solution sets. Although
the problem seems to have a convex character, there are
some jump in the Pareto sets, because even if we convert
the problem to convex character they do not vanish. In
such a case, Eq. (18) try to search the range which are

L

L

3L

F

F

A1 A2 A3

dv

dh

Fig. 15 Three-bar truss under static loading

some missing range on design variable space, so that the
searching range will become those range where there
seems no Pareto solutions like we can see in the circle of
Fig. 17. This might be one of the shortcoming of using
Eq. (18). However, even in the results after 30 th genera-
tions, we can predict the over all Pareto solution sets suf-
ficiently, and it shows effectiveness in the searching of
the solutions of the proposed method. Comparing the both
results, convex conversion results seems to obtain Pareto
solutions more effectively. Even we give higher “D eff”
value, we obtained more Pareto solution than the other.
This is quite natural results, because of the nature of DEA
that need convex characteristics in the objective functions.

Conclusions
1. In this article, we proposed a new multi-objective opti-

mization method, using ARange GAs with DEA.
2. When we use ARange decoding, we do not have to

care about the initial searching range and the number
of bits to determine precision of the results. As ARange
decoding try to adapt the searching range adaptive to
the range where we would like to obtain solutions and
when the convergence goes by, it will narrow the range
to obtain more precise results.

3. DEA gives some mathematical meaning for Pareto
optimality. In these sense, we can give rational fitness
function to each individuals, so that we can avoid to
obtain some zigzag nature which will cause by esti-
mating Pareto optimality with conventional ranking
methods. Moreover, efficiency in DEA will be much
more suitable for GAs.

4. Through some simple numerical examples, we showed

After 30th generation

jump

0.00

1.00
-3 10

V(m3)

Displacement (m)
2.501.500.50

-3 10

After 100 generation

population
D eff>0.9999

jump

Fig. 16 Results in the case we do not use Eq. (19)

0.00

1.00
-3 10
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2.501.500.50

-3 10
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D eff>0.9999

After 30th generation

jump

After 100th generation

population
D eff>0.999999

jump

Fig. 17 Results in the case we use Eq. (19)
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the effectiveness of the proposed method. One of the
shortcoming in using DEA is that they cannot treat the
problem with concave case, We proposed one counter-
plan to convert the problem into convex characteristics
and obtained the results much better than the original
ones.

5. In the proposed method, we can obtain enough number
of Pareto solutions to predict over all Pareto solutions
sets within relatively small number of generations.
Which will show the effectiveness of the proposed
method in the stand point of convergence. We still need
some effort to give searching range to obtain the over
all Pareto solutions. We would like to investigate that
point in the future.
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