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Abstract—In this paper, we present a novel Multi-Objective  found to be very effective, outperforming those based on
Evolutionary Algorithm (MOEA) called MODE-LD+SS, which  genetic algorithms [23]. Our proposed approach incorgsrat
combines Differential Evolution with local dominance and a g aqditional mechanisms. The first (local dominance) is
scalar selection mechanism for improving both its convergece dto i th te t ds the Paret
rate and its distribution of solutions along the Pareto frort. In ~ YS€d 10 Improve the convergence rateé towards the Fareto
order to assess the performance of the proposed approach, we front, while the second (a selection mechanism based on a
use a set of standard test functions and performance measwse scalarization function) is used to find nondominated sohsi
taken from the specialized literature. Results are compare with covering the entire Pareto front. To assess the performance
{ﬁiﬁicgrfthﬁéeehAﬂ.ﬂEéﬁéi%regﬁgt?%eggghe state-of-thert  of the proposed algorithm, we adopt nine test functions (5

' ' ’ ' with two objectives and 4 with three objectives), and two
. INTRODUCTION performance measures taken from the specialized litevatur

Many real-world optimization problems require the si-Our results are compared with respect to the NSGA-II [6],
multaneous optimization of two or more objective funcSPEAZ2 [28], and MOEA/D [25], which are three MOEAs
tions. Such problems are called Multi-Objective Optimizat "€presentative of the state-of-the-art in the area.

Problems (MOPS). In contrast with single-objective optiaai ~ The remainder of the paper is organized as follows: In
set of them, which correspond to the best possible tradate introduced. In Section Il some previous related work is
offs among the objectives (i.e., no further improvement igummarized. Section IV is devoted to describe the proposed
one objective is possible without worsening another one§PProach. Then, the experimental setup is presented in Sec-
These solutions are contained in the So_camacbto 0pt|ma| tion V. In Section VI the Obta|ned I‘esu|tS are presented and
set (the vectors of the solutions contained in the Paret@iscussed. Finally, in Section VIl we provide our conclusio
optimal set are calledondominatejiand their corresponding and some possible lines of future work.

objective function values are called tRareto front MOPs I
have been a subject of study within Operations Research o S
for several years [19], but the limitations of mathematical A Multi-Objective Optimization Problem (MOP) can be

programming techniques have motivated the use of evolutiofathematically defined as

. BAsic CONCEPTS

ary algorithms to solve them. Multi-objective evolutiopar .

algorithms (MOEASs) have gained popularity mainly because minimize f(Z) := [f1(Z), f2(Z), .. .. fu(Z)] 1)
of their generality (i.e., they require little problem-sgie subject to:

information), ease of use and effectivity. A wide variety of (F)<0 i=1,2 m @)
MOEAs are currently available, although few of them have gilt) = Ty

become popular [5]. MOEASs aim to find solutions that are as hi(T) = i=1,2,...,p 3)
close as possible to the true Pareto front but that, at the sam . _ o
time, are as diverse as possible, so that the entire Pacetp frVhere & = [z1,s,...,2,]" is the vector of decision
can be covered. These two goals turn out to be quite difficif@riables, fi : R"™ — R, i = 1,...k are the objective
in some cases, which has motivated a significant amount Bthctions andg;, i; : R™ — R, i = 1,...,m, j =1,...,p

research. Here, we present a MOEA called MODE-LD+sgre the constraint functions of the problem.. _
which is based on the use of Differential Evolution (DE) The set of constraints of the problem defines the feasible

[20] as its global search engine. Our main motivation to us@gion in the search space of the problem. Any vector of

DE was that MOEAs based on this search engine have peWgfiablesr which satisfies all the constraints is considered a
feasible solution.
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Definition 1. A vector of decision variablexr € R"
dominates another vector of decision variabless R",
(denoted byZ < %) if and only if Z is partially less than
g, .e. Vi € {1,... k} fi(@) < fi(g) AT € {1,...,k} :
fi(@) < fi(y).

uniform manner without resorting to any crowding distance
metric. Finally the MOEA/D-(DE) algorithm is based on
the MOEA/D of Zhang and Li [25], but using the differ-
ential evolution operators. A comprehensive review of some
these multi-objective differential evolution approachas be
found in [18].

Definition 2. A vector of decision variables € X ¢ R"
is nondominated with respect toX, if there does not exist

= —

anotherz’ € X such thatf(z') < f(Z).

IV. OUR PROPOSEDAPPROACH

Algorithm 1 MODE-LD+SS

1: INPUT:
Pl1,..., N] = Population
N = Population Size
F = Scaling factor

Definition 3. A vector of decision variables* € F c R"
(F is the feasible region) isPareto optimal if it is

nondominated with respect t6.
Definition 4. The Pareto Optimal SetP* is defined by:

P* = {& € F|Z is Pareto optimgl
Definition 5. The Pareto Front PF* is defined by:

PF* = {f(&) € R¥*|Z e P*}

oeNouRw N

PREVIOUS RELATED WORK

: Randomly createP? , i =
. EvaluateP! ,i=1,...,

CR = Crossover Rate

AlL, ..., N] = Weight vectors

N B = Neighborhood Size

GM AX = Maximum number of generations

. OUTPUT:

PF = Pareto front approximation
Begin
g0
1,...,N
N
while g < GMAX do
{LND} ={o}
for ¢ = 1to Ndo
DetermineLocalDominan¢®’,N B)
if PY is locally nondominatedhen
{LND} « {LND}U P!
end if
end for
for ¢ = 1to Ndo
Randomly selectii, u5, andus from {LND}
v « CreateMutantVectot(; , us, us)
P9+ Crossoverf?, v)
EvaluateP? ™"
end for
Q«— PIU patl
Determinezx* for Q

if (rand;(0,1) <CR Or j = jrand

The goal when solving a MOP consists on determining theo:
13:
. s
of numerical single-objective optimization problems [20] 20:
: 24:
components (crossover) to construct new solutions frorj. Q — Q\PI+
28 ReturnPF
a steady-state algorithm, it implicitly enforcelitism, i.e., no
real-numbers encoding. evolution. In the basic DE algorithm, and during the offagri
DE has been adopted to solve MOPs in several ways. (#1 # u2 # u3 # F;) are randomly selected for creating a
uals. The parent was replaced only if it was dominated by Ueui + F - (up — uj)
[12], DEMO [21], GDES [13] and NSDE-DCS [11]), Us€ yecior, a new offspring?, (also called trial vector in DE) is
algorithms that do not follow the environmental selection
’ Vi
P ={3 . (5)
The first three algorithms of this last group, make use of ! F; otherwise

Pareto optimal set from the sgt of all the decision variable ﬁ
vectors that satisfy (2) and (3).
14:
15:
DE is a simple and powerful evolutionary algorithm thatigf
has been found to outperform genetic algorithms in a varietys
DE encodes solutions as vectors and uses operations sugt
as vector addition, scalar multiplication and exchange o#3: for i =1to Ndo
: P  MinimumTchebychefff, A;, zx)
the existing ones. DE operates as follows: a newly create&dsg end for
solution, also calle¢andidate is compared to its parent. If 2/ &nd while
the candidate is better than its parent, it replaces thenpare .. .4
the population; otherwise, the candidate is discardechd@ei
solution from the population can be deleted unless a better "€ MOEA presented in this work (called MODE-
solution is created. DE was originally proposed to deal withrP+SS). adopts the evolutionary operators from differinti
creation stage, for each current vectdr € {P}, three
A. Multi-Objective Differential Evolution parents (mutually different among themy), u3,u3 € {P}
the earlier approaches (PDE [1] and GDE [14]), only thé&wutant vectors’ using the following mutation operation:
concept of Pareto dominance was used to compare individ- @

4
the candidate, it was discarded otherwise. Many subsequenty - s 3 real constargcaling factorwhich controls the
approaches (PDEA [17], MODE [24], NSDE [10], GDEZympjification of the differencés — «i3). Using this mutant
nondominated s_orting and/or_ thg _crowding distance metriGaated by crossing over the mutant veatand the current
to evaluate the fitness of the individuals. Only recentlyyne ¢ ution P.. in accordance to:
of NSGA-Il were proposed, such as— MyDE [22],

DEMORS [9],e — ODEMO [4], and MOEA/D-(DE) [16].
the e-dominance concept, as used by Laumanns et al. [15].In the above expression, the indgxrefers to thejth
e-dominance is adopted for spreading the solutions in @mponent of the decision variables vect@rs is a positive



constant andj,..q is a randomly selected integer in the [2(x)
range[l, ..., D] (whereD is the dimension of the solution w,
vectors) ensuring that the offspring is different at leasbie
component with respect to the current solutign The above

DE variant is known asRand/1/bin, and is the version
adopted in the present work. Additionally, the proposed
algorithm incorporates two mechanisms for improving both
the convergence towards the Pareto front and the uniform
distribution of nondominated solutions along the Pareatatr
These mechanisms correspond to the concept of local dom- 71(x)
inance and the use of an environmental selection based on
a scalar function. Below, we explain these two mechanisms
in more detail. Algorithm 1 shows the description of our
proposed MODE-LD+SS.

In Algorithm 1, the SOIUE'O.n Vectors;, i, 43, required space and determined with the minimum objective values of
for creating the trial vectov_(ln equat|o_n (4)), are selected the combined populatio®, consistent on the actual parents
from th_e curr_ent p_opulgtlon, only if they are IOC"?‘”y and the created offspring. This reference point is updated a
nor)dom|nated in their neighborhodd Local dominance is each generation, as the evolution progresses. The pracedur
defined as follows: MinimumTchebychefff, \;, z«) finds, from the set), the
solution vector that minimizes equation (6) for each weight
vector \; and the reference point*.

° Pareto solution
—»  Weight vector

Fig. 1. Distribution of the weight vectors

Definition 6. Pareto Local DominancelLet Z be a feasible
solution, ®(Z) be a neighborhood structure faf in the

—

decision space, anfl(Z) a vector of objective functions. V. EXPERIMENTAL SETUP

- We say that a solutior¥ is locally nondominated with  In order to validate the proposed approach, our results
respect toR(Z) if and only jf thereqis noZ in the are compared with respect to those of NSGA-II [6], SPEA2
neighborhood off such thatf(f/) < f(2) [28], and MOEA/D [25], which are three MOEAs represen-

The neighborhood structure is defined as M@ closest tative of the state-of-the-art in evolutionary multiokjee
individuals to a particular solution. Closeness is measuréPtimization. Our approach was validated using nine test
by using the Euclidean distance between solutions. THYoblems: five from the ZDT (Zitzler-Deb-Thiele) test suite
major aim of using the local dominance concept, as defindd’/] €ach with 2 objectives (ZDT1, ZDT2, ZDT3, ZDT4,
above, is to exploit good individuals' genetic information@nd ZDT6), and four more from the DTLZ (Deb-Thiele-
in creating DE trial vectors, and the associated Oﬁspringaumanns-2|tzler) test suite [8], each with 3 objectives
which might help to improve the MOEA convergence ratdPTLZ1, DTLZ2, DTLZ3, and DTLZ4). The selected test
toward the Pareto front. From Algorithm 1, it can be notedunctions comprise different difficulties such as convex,
that this mechanism has a stronger effect during the earligpncave, and disconnected Pareto fronts, as well as preblem
generations, where the portion of nondominated indivisualVith multiple fronts. The details of these test problems are
is low in the global population, and progressively weakenQ,m'tted here due to space constraints, but can be found in
as the number of nondominated individuals grows durinb%]' (71, 18] )
the evolutionary process. This mechanism is automatically TWo performance measures were adopted in order to assess
switched off, once all the individuals in the populationUr results:Hypervolume (Hvjand Two Set Coverage (C-
become nondominated, and has the possibility to be switchMgtric). A brief description of them is presented next.
on, as some individuals become dominated. Aditionally, thg - Hypervolume (Hv):
diversity of the created offspring can be controled by the
local dominance neighborhood si2éB. Low values of N B
will increase the diversity of offspring, and viceversa.

The second mechanism that we introduced is cadled
lection based on a scalar functiprand is based on the
Tchebycheff scalarization function given by:

Given a Pareto approximation s&tfy., ., and a refer-
ence point in objective spacg. ¢, this performance measure
estimates thélypervolumeattained by it. Such hypervolume
corresponds to the non-overlaping volume of all the hyper-
cubes formed by the reference pointd;) and every vector

in the Pareto set approximation. This is mathematically
defined as:

g(£C|/\7Z ) = 12%)571{/\1|f1(x) — % |} (6) HV = {Usvol;|vec; € PFrnown}
In the above equation);,« = 1,..., N represents the wec; is a nondominated vector from the Pareto set approx-

set of weight vectors used to distribute the solutions alonignation, andvol; is the volume for the hypercube formed
the entire Pareto front (see Figure 1). In this work, this sdty the reference point and the nondominated vectat;.

is calculated using the procedure described in Zhang and Here, the reference point,(. ;) in objective space for the 2-
[25]. z* corresponds to a reference point, defined in objectivebjective MOPs was set to (1.05,1.05), for DTLZ1 was set to



(0.6,0.6,0.6), and to (1.05,1.05,1.05) for DTLZ2, DTLZ3an rate, CR = 0.5 for all MOPs, except for ZDT4 and DTLZ3,
DTLZ4. This performance measure is Pareto compliant [29)vhere we adopted CR = 0.3; Neighborhood size NB = 5
[30], and is used to assess both convergence and distrbutior all MOPs, except for ZDT4, where NB = 1 was used.
of the solutions along the approximated Pareto front. Higfihe statistics presented for the Hypervolume (Hv) and the
values indicate that the solutions are closer to the truet®ar C-Metric, when measured with respect to the true Pareto

front and that they cover a wider extension of it. front, were obtained as average values from 32 independent
. runs for each MOP and for each algorithm. In the case of
B. Two Set Coverage (C-Metric): the statistics for the C-Metric comparing pairs of algarith

This performance measure is also Pareto compliant, afice. C-Metric(A,B)), they were obtained as average values
estimates the coverage proportion, in terms of percentagéthe comparison of all the independent runs from the first
of dominated solutions, between two sets. Given the dets algorithm with respect to all the independent runs from the
and B, both containing only nondominated solutions, the Csecond algorithm.

Metric is mathematically defined as: _ VI. RESULTS AND DISCUSSION
~ |{u € B|3v € A: vdominates u}|

C(A,B) = B In this section, we present the results obtained by the
proposed algorithm MODE-LD+SS, for the nine selected test
This metric indicates the portion of vectors # being  functions. We also present the comparison with respecteto th
dominated by any vector iM. In the present work this results attained by NSGA-Il, SPEA2, and MOEA/D.
measure is used in two different ways. In the first, thedet  Table | shows the results obtained for the Hypervolume
is the true Pareto front, which is knonw for all test funcgon (Hy) measure for all MOPs, and for the four algorithms
used; therefore, the C-Metric can be considered as a measgégnpared in this paper. From this table it can be observed
for the ability of the algorithm to find solutions that arethat, with respect to the Hv performance measure, MODE-
nondominated with respect to the Pareto optimal set (i.6.D+SS outperforms NSGA-Il and SPEA2, in all the bi-
solutions that also belong to the Pareto optimal set). In thghjective MOPs. It also outperforms MOEA/D (with respect
second way, setd and B correspond to two different Pareto to Hv as well) in four (ZDT1, ZDT2, ZDT3, and ZDT6) of
approximations, as obtained by two different algorithmstive bi-objective MOPs. In the case of the 3-objective MOPs,
Therefore, the C-Metric is used for pairwise compariSOn§PEA?2 attains the best results for the Hv measure in three
between the two algorithms used. MOPs (DTLZ1, DTLZ2, and DTLZ4), while MODE-LD+SS
C. Parameters settings: attains the best re;ult in DTLZ3. However, our proposed
' ' MODE-LD+SS obtained values very close to those of SPEA2
The parameters used in the experiments for the diffejn DTLZ1, DTLZ2 and DTLZ4 and better values in DTLZ2
ent algorithms adopted were set as follows. The commaihd DTLZ3, as compared to those of MOEA/D. In all cases,
parameters for all algorithms comprise the population sizgur proposed approach outperforms NSGA-II by an ample
N and maximum number of generatiods\/ AX. These margin.
were set toNV = 100 for all the bi-objectives MOPs and Tables Il to X show the comparison matrices for the C-
N = 300 for all the MOPs having three objectives. WeMetric values obtained with the different algorithms and
adoptedzM AX = 150 for all MOPs, except for ZDT4 and for all the MOPs used in the experiments. The diagonal
DTLZ3, in which we used=M AX = 200. As for specific values of each matrix correspond to the C-Metric for each
parameters of each algorithm, for both, the NSGA-Il andigorithm, as evaluated with respect to the true Pareta fron
the MOEA/D algorithms, some common parameters usggle. C-Metric(PF},..,Algorithm)): while the off-diagonal
were: Crossover probability. = 1.0; mutation probability elements correspond to the comparisons between each pair
pm = 1/NVARS; and, distribution index for mutation of algorithms. From these tables, it can be observed that
nm = 20. For the NSGA-II, distribution index for crossover MODE-LD+SS significantly outperforms all other algorithms
n. = 15; while for the MOEA/D, distribution index for in terms of convergence. MODE-LD+SS is able to converge
crossovem. = 20. SPEA2 was taken from PISA [2], [3], closer to the true Pareto front in all MOPs, and to generate

and was used with the parameters defined therein: Pareto front approximations, having fewer solutions (none
individualmutationprobability = 1.0; in many cases) being dominated by those generaterd by the
individualLrecombinatiomprobability = 1.0; other algorithms. Additionally, our proposed MODE-LS+SS
variablemutationprobability = 1/NVARS; generated more solutions that dominate those generated by
variableswapprobability = 0.5; the other algorithms. It is also important to note that for
variablerecombinatiomprobability = 0.5; ZDT6, our proposed MODE-LD+SS, was able to reach the
distribution index for crossoveyj. = 15; true Pareto front in the 32 independent runs performed.
distribution index for mutatiom,, = 20; For the case of DTLZ1 and DTLZ2, and regarding the
usesymmetricrecombination = 0. C-Metric values presented in Tables VII and VIII, it can be

observed that MODE-LD+SS is able to converge very close
For our MODE-LD+SS, the associated parameters wete the true Pareto front as indicated by the corresponding
the following: Scaling factor, F = 0.5 for all MOPs; crossove C-Metric measure.



TABLE |
COMPARISON OF THEHYPERVOLUMEMETRIC (HV) FOR ALL THE ALGORITHMS

ALGORITHM
Test Function NSGA Il SPEA2 i MOEA/D i MODE-LD+SS
Mean | o [ Mean T o [ Mean ] o [ Mean T o
ZDT1 0.757357 | 0.000928 || 0.761644 | 0.000556 || 0.749964 | 0.009777 || 0.763442| 0.000112
ZDT2 0.422221 | 0.001263 || 0.321971| 0.171286 || 0.387237 | 0.061361 || 0.430358 | 0.000141
ZDT3 0.611480 | 0.008038 || 0.615533 | 0.000416 || 0.608377 | 0.015638 || 0.616381| 0.000150
ZDT4 0.217626 | 0.192914 || 0.287359 | 0.188726 || 0.745887 | 0.009983 || 0.741770| 0.058697
ZDT6 0.345949 | 0.008772 || 0.392697 | 0.002336 || 0.397720 | 0.002886 || 0.411054 | 0.000003
DTLZ1 0.165918 | 0.026090 || 0.191437 | 0.000248 || 0.188726 | 0.000371 || 0.187445| 0.000347
DTLZ2 0.571146 | 0.001942 || 0.590833| 0.000900 || 0.578679 | 0.001460 || 0.581028 | 0.001193
DTLZ3 0.000000 | 0.000000 || 0.467163 | 0.148867 || 0.568895 | 0.007220 || 0.581129 | 0.003303
DTLZ4 0.572327 | 0.002537 || 0.590942 | 0.000978 || 0.579301 | 0.001550 || 0.578038 | 0.001840
TABLE Il TABLE VI
C-METRIC(A,B) FORZDT1 C-METRIC(A,B) FORZDT6
NSGA-II SPEA2 MOEA/D | MODE-LD+SS NSGA-II SPEA2 MOEA/D | MODE-LD+SS
C-Metric(A,B) Mean Mean Mean Mean C-Metric(A,B) Mean Mean Mean Mean
(o) (o) (o) (o) (o) (o) (o) (o)
NSGA-II 0.968750 0.000771 0.033167 0.000000 NSGA-II 0.986873 0.000000 0.001372 0.000000
(0.013854) | (0.003989) | (0.034072) (0.000000) (0.004523) | (0.000000) | (0.003499) |  (0.000000)
SPEA2? 0.378115 0.895000 0.106198 0.000000 SPEA2 1.000000 0.990000 0.040134 0.000000
(0.115819) | (0.036100) | (0.067101) (0.000000) (0.000000) | (0.000000) | (0.076380)|  (0.000000)
MOEA/D 0.299833 0.047767 0.883930 0.000000 MOEA/D 0.986999 0.615444 0.990552 0.000000
(0.107821) | (0.042724) | (0.064323) (0.000000) (0.007570) | (0.272926) | (0.003241) (0.000000)
0.589893 0.214844 0.274901 0.374333 0.992119 0.990000 0.976816 0.000000
MODE-LD+SS (0.088597) | (0.064899) | (0.100480) (0.0783750 MODE-LD+SS (0.005944) | (0.000000) | (0.051151) (0.000000)
TABLE Il TABLE ViII
C-METRIC(A,B) FORZDT2 C-METRIC(A,B) FORDTLZ1
NSGA-II SPEA2 MOEA/D MODE-LD+SS NSGA-II SPEA2 MOEA/D MODE-LD+SS
C-Metric(A,B) Mean Mean Mean Mean C-Metric(A,B) Mean Mean Mean Mean
(o) (o) (o) (o) (o) (o) (o) (o)
NSGA-II 1.000000 0.000303 0.026203 0.000000 NSGA-II 0.655461 0.001915 0.000095 0.000000
(0.000000) | (0.001877) | (0.035988) (0.000000) (0.143824) | (0.003127) | (0.001111)|  (0.000000)
SPEA? 0.362813 0.985938 0.041712 0.004331 SPEA2 0.707633 0.258360 0.012861 0.000000
(0.227343) | (0.037232) | (0.045770) (0.007530) (0.234981) | (0.100637) | (0.027180)|  (0.000000)
MOEA/D 0.450922 0.154067 0.393976 0.057031 MOEA/D 0.377986 0.019929 0.163130 0.0005383
(0.164440) | (0.121784) | (0.170768) (0.030938) (0.130387) | (0.017216) | (0.102328)|  (0.001719)
0.702266 0.242832 0.110288 0.381057 0.611632 0.045080 0.263892 0.008116
MODE-LD+SS (0.086673) | (0.167042) | (0.061098) (0.064387) MODE-LD+SS (0.243895) | (0.019503) | (0.110080) (0.004630)
TABLE IV TABLE ViIII
C-METRIC(A,B) FORZDT3 C-METRIC(A,B) FORDTLZ2
NSGA-II SPEA2 MOEA/D MODE-LD+SS NSGA-II SPEA2 MOEA/D MODE-LD+SS
C-Metric(A,B) Mean Mean Mean Mean C-Metric(A,B) Mean Mean Mean Mean
(o) (o) (o) (o) (o) (o) (o) (o)
NSGAI 0.656875 | 0.002246 | 0.064717 0.000000 NSGAI 0.354375 | 0.027106 | 0.000000 0.000000
(0.075666) | (0.008387) | (0.073280) (0.000000) (0.031910) | (0.009214) | (0.000000)|  (0.000000)
SPEA2 0.339297 0.389375 0.142818 0.000067 SPEA2 0.044411 0.806858 0.000000 0.000000
(0.106685) | (0.065102) | (0.092675) (0.000958) (0.012929) | (0.029297) | (0.000000)|  (0.000000)
MOEA/D 0.221500 0.082778 0.389439 0.023824 MOEA/D 0.722926 0.071016 0.142447 0.005816
(0.070634) | (0.037489) | (0.106475) (0.025038) (0.013865) | (0.013078) | (0.023822)| (0.005185)
0.377051 0.171533 0.299007 0.199554 0.082272 0.078098 0.008309 0.074566
MODE-LD+SS || 973449) | (0.046961) | (0.112709)| (0.039211) MODBE-LD+SS || 5 014202) | (0.013666) | (0.012255)|  (0.017111)
TABLE V TABLE IX
C-METRIC(A,B) FORZDT4 C-METRIC(A,B) FORDTLZ3
NSGA-II SPEA2 MOEA/D MODE-LD+SS NSGA-II SPEA2 MOEA/D MODE-LD+SS
C-Metric(A,B) Mean Mean Mean Mean C-Metric(A,B) Mean Mean Mean Mean
(o) (o) (o) (o) (o) (o) (o) (o)
NSGAI 1.000000 | 0.301200 | 0.002571 0.000166 NSGAI 1.000000 | 0.000221 | 0.000000 0.000000
(0.000000) | (0.455773) | (0.004654) (0.001994) (0.000000) | (0.000868) | (0.000000)|  (0.000000)
SPEA2 0.546084 | 1.000000 | 0.003022 0.000566 SPEA2 0.877437 | 0.798140 | 0.010756 0.001108
(0.489198) | (0.000000) | (0.004910) (0.003887) (0.163622) | (0.107026) | (0.042299) |  (0.008432)
MOEA/D 0.977144 | 0.938814 | 0.952296 0.164757 MOEA/D 0.418284 | 0.380625 | 0.639418 0.008286
(0.019361) | (0.176612) | (0.083845) (0.368419) (0.084607) | (0.265565) | (0.181815)|  (0.022365)
0.988408 0.976602 0.689329 0.220064 0.977820 0.535140 0.370058 0.339882
MODE-LD+SS || 106452) | (0.151037) | (0.359937)| (0.357158) MODBE-LD+SS || 041731) | (0.262711) | (0.158495)|  (0.128920)




TABLE X
C-MEeTRIC(A,B) FORDTLZ4

NSGA-II SPEA2 MOEA/D MODE-LD+SS
C-Metric(A,B) Mean Mean Mean Mean
(o) (o) (o) (o)
NSGA-II 0.361563 | 0.026370 | 0.000008 0.000000
(0.038679) | (0.010174) | (0.000180) (0.000000)
SPEA2 0.043145 0.746696 0.000000 0.000000
(0.014076) | (0.020173)| (0.000000) (0.000000)
MOEA/D 0.076018 0.067166 0.124613 0.009343 g
(0.019680) | (0.014841) | (0.035191) (0.006096) g
o
MODE-LD+SS 0.077891 0.077581 0.001519 0.107422 %

(0.019727) | (0.016563) | (0.002431) | (0.006116)

These results contrast with the Hv measure obtained by
SPEAZ2 for these same MOPs. The differences can be ex-
plained by the fact that SPEA2 obtained a better distriloutio
of solutions. Thus, in this case, one algorithm provided bet
ter convergence (MODE-LD+SS), while the other provided
better spread of solutions (SPEA2) (see Figures 7 and 8).
Figures 2 to 10 show the comparison of the obtained Paregg »
fronts by the four MOEAs, for all the MOPs adopted in our
study. It is worth noting that for the two-objective MOPsdan
for comparison purposes, the Pareto front approximations a
plotted with a horizontal and vertical shifts.

VII. CONCLUSIONS ANDFUTURE WORK

We have introduced a new MOEA called MODE-LD+SS,
which combines differential evolution with local dominanc
and scalar selection mechanisms. Local dominance aims
to improve the convergence rate and the scalar selection
mechanism intends to improve the distribution of solutions
along the Pareto front. In order to assess the performance of
our proposed approach, we adopted 9 test problems and two
performance measures (Hypervolume and C-Metric) taken
from the specialized literature. Our results were compared
with respect to those produced by NSGA-Il, SPEA2, and
MOEA/D, which are elitist MOEAs representative of the
state-of-the-art in the area. ]

Our comparative study showed that our proposed MODE-9- 3
LD+SS outperforms NSGA-Il, SPEA2 and MOEA/D in 5
of the 9 MOPs used with respect to the Hypervolume.
Our approach was also found to be competitive with re-
spect to SPEA2 and MOEA/D in those 3-objective MOPs
in which it did not attain the best Hypervolume measure
(DTLZ1, DTLZ2 and DTLZ4). Regarding the C-Metric, our
proposed MODE-LD+SS outperformed NSGA-Il, SPEA2
and MOEA/D in all the 9 MOPs adopted. Based on these
results, we can conclude that our proposed approach has good
convergence properties.

As part of our future work, we are interested in under-
taking a thorough statistical analysis of the performanice o
our proposed approach, including an analysis of variarate th
allows us to determine its most suitable parameter values. W
also intend to apply our proposed approach to real-world
problems to see if its good convergence properties remain
valid in practical applications.
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