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Abstract Optimization problems in many industrial applications aegy hard to
solve. Many examples of them can be found in the design oihaerttecal systems.
In this field, the designer is frequently faced with the pesblof considering not
only a single design objective, but several of them, i.e2,dBsigner needs to solve
a Multi-Objective Optimization Problem (MOP). In aeroniaat systems design,
aerodynamics plays a key role in aircraft design, as welhdlse design of propul-
sion system components, such as turbine engines. Thuslyaamic shape opti-
mization is a crucial task, and has been extensively stuatiedddeveloped. Multi-
Objective Evolutionary Algorithms (MOEAS) have gained ptgity in recent years
as optimization methods in this area, mainly because of $iraplicity, their ease of
use and their suitability to be coupled to specialized nicaésimulation tools. In
this chapter, we will review some of the most relevant resdean the use of MOEAs
to solve multi-objective and/or multi-disciplinary aesothmic shape optimization
problems. In this review, we will highlight some of the betseefind drawbacks of
the use of MOEAs, as compared to traditional design optitiiranethods. In the
second part of the chapter, we will present a case study apiblecation of MOEAS
for the solution of a multi-objective aerodynamic shaperojzation problem.
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1 Introduction

There are many industrial areas in which optimization pseee help to find new
solutions and/or to increase the performance of an existireg Thus, in many cases
a research goal can be translated into an optimization @nobDptimal design in
aeronautical engineering s, by nature, a multiobjectivelfidisciplinary and highly
difficult problem. Aerodynamics, structures, propulsianpustics, manufacturing
and economics, are some of the disciplines involved in gy tof problems. In
fact, even if a single discipline is considered, many depigilems in aeronautical
engineering have conflicting objectives (e.g., to optindazaeing’s lift and drag or
a wing’s structural strength and weight). The increasingaed for optimal and
robust designs, driven by economics and environmentat@nts, along with the
advances in computational intelligence and the increasamgputing power, has
improved the role of computational simulations, from bejuasgt analysis tools to
becoming design optimization tools.

In spite of the fact that gradient-based numerical optitzremethods have been
successfully applied in a variety of aeronautical/aerospesign problents[30,
16, 42] their use is considered a challenge due to the faligwlifficulties found in
practice:

1. The design space is frequently multimodal and highly loear.

2. Evaluating the objective function (performance) fordesign candidates is usu-
ally time consuming, due mainly to the high fidelity and higmeénsionality
required in the simulations.

3. By themselves, single-discipline optimizations maymte solutions which not
necessarily satisfy objectives and/or constraints cemnsilin other disciplines.

4. The complexity of the sensitivity analyses in Multidigaiary Design Optimiza-
tion (MDO?) increases as the number of disciplines involved becormgsila

5. In MDO, a trade-off solution, or a set of them, are seardbed

Based on the previously indicated difficulties, designexgehbeen motivated
to use alternative optimization techniques such as Emiatly Algorithms (EAS)
[31, 20, 33]. Multi-Objective Evolutionary Algorithms (MEAS) have gained an
increasing popularity as numerical optimization toolsenamautical and aerospace
engineering during the last few years [1, 21]. These pomuaiased methods
mimic the evolution of species and the survival of the fittasatd compared to tradi-
tional optimization techniques, they present the follagyvauvantages:

(a) Robustnessin practice, they produce good approximations to optimtd sé
solutions, even in problems with very large and complexgtespaces, and are
less prone to get trapped in local optima.

2 It is worth noting that most of the applications using gratieased methods have adopted them
to find global optima or a single compromise solution for maakhjective problems.

3 Multidisciplinary Design Optimization, by its nature, céie considered as a multi-objective
optimization problem, where each discipline aims to optera particular performance metric.
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(b) Multiple Solutions per RurAs MOEASs use a population of candidates, they are
designed to generate multiple trade-off solutions in alsingn.

(c) Easy to ParallelizeThe design candidates in a MOEA population, at each gen-
eration, can be evaluated in parallel using diverse panaslig

(d) Simplicity: MOEASs use only the objective function values for each desgm
didate. They do not require a substantial modification orgeminterfacing for
using a CFD (Computational Fluid Dynamics) or CSD/M (Conapioinal Struc-
tural Dynamics/Mechanics) code.

(e) Easy to hybridizeAlong with the simplicity previously stated, MOEAs also
allow an easy hybridization with alternative methods,,ex@emetic algorithms,
which additionally introduce specifities to the implemeiatia, without influenc-
ing the MOEA simplicity.

(f) Novel Solutionsin many cases, gradient-based optimization techniques con
verge to designs which have little variation even if prodlegth very different
initial setups. In contrast, the inherent explorative ¢dlitees of MOEAs allow
them to produce, some times, novel and non-intuitive dessign

An important volume of information has been published onube of MOEAS
in aeronautical engineering applications (mainly mogdby the advantages previ-
ously addressed). In this chapter, we provide a review ofes@presentative works,
dealing specifically with multi-objective aerodynamic paaptimization.

The remainder of this chapter is organized as follows: IniBe@, we present
some basic concepts and definitions adopted in multi-algeoptimization. Next,
in Section 3, we review some of the work done in the area ofiroblective aerody-
namic shape optimization. This review covesstrogate based optimizatiphybrid
MOEA optimizatioprobust design optimizatigmultidisciplinary design optimiza-
tion, anddata mining and knowledge extractiom Section 4 we present a case
study and, finally, in Section 5. we present our conclusiomkfanal remarks.

2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mattetinally defined as
follows®:

minimizef(x) := [f1(x), f2(x),..., fk(X)] 1)

subject to:
g(X)<0 i=12,...,m (2
h(x)=0 i=12,....p 3)

4 Without loss of generality, minimization is assumed in tbikofving definitions, since any max-
imization problem can be transformed into a minimizatioe.on
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wherex = [x1,Xo, ... ,xn]T is the vector of decision variables, which are bounded
by lower () and upperx¥) limits which define the search spagg, fi : R" — R,

i =1,...,k are the objective functions amglh; : R" - R, i=1,...m j=1,...p

are the constraint functions of the problem.

In other words, we aim to determine from among the®et . (% is the feasi-
ble region of the search spacé) of all vectors which satisfy the constraints, those
that yield the optimum values for all theobjective functions, simultaneously. The
set of constraints of the problem defin@s Any vector of variablex which satis-
fies all the constraints is considered a feasible solutiotheir original version, an
EA (and also a MOEA) lacks a mechanism to deal with constthé®arch spaces.
This has motivated a considerable amount of research riegette design and im-
plementation of constraint-handling techniques for bods Bnd MOEAs [10, 29].

2.1 Pareto dominance

Pareto dominance is an important component of the notiomptifnality in MOPs
and is formally defined as follows:

Definition 1. A vector of decision variablesc R" dominates another vector of de-
cision variabley € R", (denoted by <y) if and only if x is partially less thaly,
ievie{l,... .k} fi(x) < fi(y)Adie{1,...,k}: fi(x) < fi(y).

Definition 2. A vector of decision variables € 2~ C R" is nondominated with
respect taZ’, if there does not exist anothere 2" such thaf(x’) < f(x).

In order to say that a solution dominates another one, itseebe strictly better
in at least one objective, and not worse in any of them.

2.2 Pareto optimality

The formal definition ofPareto optimalityis provided next:

Definition 3. A vector of decision variables* € .7 C . c R" is Pareto optimal
if it is nondominated with respect t&.

In words, this definition says that is Pareto optimal if there exists no feasible
vectorx which would decrease some objective without causing a semebus in-
crease in at least one other objective (assuming mininsizatirhis definition does
not provide us a single solution (in decision variable spauoet a set of solutions
which form the so-calle®areto Optimal Sef2?*), whose formal definition is given
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by:
Definition 4. ThePareto optimal setZ?* is defined by:

P = {x e F|xis Pareto optimal

The vectors that correspond to the solutions included inPdu®to optimal set
are said to beaondominated

2.3 Pareto front

When all nondominated solutions are plotted in objectivectfion space, the non-
dominated vectors are collectively known as Hageto front(Z2.7*).

Definition 5. ThePareto front 22.%* is defined by:

27 ={f(x) e Rx e 2"}

The goal on a MOP consists on determinig?j from .# of all the decision variable
vectors that satisfy (2) and (3). Thus, when solving a MOPaimeto find not one,

but a set of solutions representing the best possible wéfdemong the objectives
(the so-called Pareto optimal set).

3 Multi-Objective Aerodynamic Shape Optimization

3.1 Problem definition

Aerodynamics is the science that deals with the interastadrfluid flows and ob-
jects. This interaction is governed by conservation lawgivlare mathematically
expressed by means of tNavier-Stokegquations, which comprise a set of partial
differential equations, being unsteady, nonlinear anpEmiamong them. Aero-
dynamicists are interested in the effects of this intecactin terms of their aero-
dynamic forces and moments, which are the result of integyahe pressure and
shear stresses distributions that the flow excerses ovebjket with which it is in-
teracting. In its early days, aerodynamic designs were dgrextensive use of ex-
perimental facilities. Nowadays, the use of Computatidfiaid Dynamics (CFD)
technology to simulate the flow of complete aircraft confagions, has made it
possible to obtain very impressive results with the helpightperformance com-
puters and fast numerical algorithms. At the same time, xygatal verifications
are carried out in scaled flight tests, avoiding many of theient disadvantages
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and extremely high costs of wind tunnel technology. Theeefave can consider
aerodynamics as a mature engineering science.

Thus, current aerodynamic research focuses on finding nsigrieeand/or im-
proving current ones, by using numerical optimization meghes. In the case of
multi-objective optimization, the objective functionsatefined in terms of aero-
dynamic coefficients and/or flow conditions. Additionaltiesign constraints are
included to render the solutions practical or realizabléerms of manufacturing
and/or operating conditions. Optimization is accomplésbg means of a more or
less systematic variation of the design variables whichmpaterize the shape to be
optimized. A variety of optimization algorithms, rangirrgin gradient-based meth-
ods to stochastic approaches with highly sophisticateersels for the adaptation of
the individual mutation step sizes, are currently avadabrom them, MOEAs have
been found to be a powerful but easy-to-use choice. Next, iNdriefly review
some of the most representative works on the use of MOEAsdiardynamic de-
sign. The review comprises the following dimensions thatidentified as the most
relevant, from a practical point of view, for the purposethid chapter:

Surrogate-based optimization,

Hybrid MOEA optimization,

Robust design optimization,
Multidisciplinary design-optimization, and
Data-mining and knowledge extraction.

3.2 Surrogate-based optimization

Evolutionary algorithms, being population-based aldwnis, often require popula-
tion sizes, and a number of evolution steps (generatioastight demand tremen-
dous amounts of computing resources. Examples of theseatioorsdare presented
by Benini [4], who reported computational times of 2000 mghe multi-objective
re-design of a transonic turbine rotor blade, using a pdjauavith 20 design can-
didates, and 100 generations of evolution time, in a fooeessors workstation.
Thus, when expensive function evaluations are requiredgtuired CPU time may
turn prohibitive the application of MOEAS, even with todsgvailable computing
power.

For tackling the above problem, one common technique adaptthe field of
aerodynamic shape optimization problems, is the use obgate models. These
models are built to approximate computationally expenfsinetions. The main ob-
jective in constructing these models is to provide a redslgreccurate approxima-
tion to the real functions, while reducing by several ordd@rsagnitude the com-
putational cost. Surrogate models range form Responsacuiethods (RSM)
based on low-order polynomial functions, Gaussian preess Kriging, Radial
Basis Funcions (RBFs), Artificial Neural Networks (ANNS),Support Vector Ma-
chines (SVMs). A detailed description of each of these taples is beyond the
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scope of this chapter, but the interested reader is reféoréuh [19] for a compre-
hensive review of these and other approximation techniques

In the context of aerodynamic shape optimization problesome researchers
have used surrogates models to reduce the computatioralised in the optimiza-
tion process. The following is a review of some represergasearch that has been
conducted in this area:

e Lian and Liou [26] addressed the multi-objective optimi@atof a three-dimen-
sional rotor blade, namely the redesign of the NASA rotor émpressor blade,
a transonic axial-flow fan rotor. Two objectives were coesidl in this case:
(i) maximization of the stage pressure rise, and (ii) miziation of the entropy
generation. Constraints were imposed on the mass flow réiavioa difference
less than 0.1% between the new one and the reference desigrbldde ge-
ometry was constructed from airfoil shapes defined at foanspations, with a
total of 32 design variables. The authors adopted a MOEAMasd&/IOGA [14]
with real numbers encoding. The optimization process wagleal to a second-
order RSM, which was built with 1,024 design candidatesgigie Improved
Hypercube Sampling (IHS) algorithm. The authors reported the evaluation
of the 1,024 sampling individuals took approximately 128ts0(5.33 days) us-
ing eight processors and a Reynolds-Averaged Navier-S10k® simulation. In
their experiments, 12 design solutions were selected frenRiISM-Pareto front
obtained, and such solutions were verified with a high fideliED simulation.
The objective function values slightly differed from thosletained by the ap-
proximation model, but all the selected solutions weredpétt both objective
functions than the reference design.

e Song and Keane [46] performed the shape optimization of ia aicraft en-
gine nacelle. The primary goal of the study was to identify/titade-off between
aerodynamic performance and noise effects associatedvaitbus geometric
features for the nacelle. For this, two objective functiarese defined: i) scarf
angle, and ii) total pressure recovery. The nacelle gegnveis modeled us-
ing 40 parameters, from which 33 were considered desigrabi@s. In their
study, the authors implemented the NSGA-II [12] as the rabjective search
engine, while a commercial CFD software was used for evianatf the three-
dimensional flow characteristics. A kriging-based surtegaodel was adopted
in order to keep the number of designs being evaluated wahQRD tool to
a minimum. In their experiments, the authors reported dilfies in obtaining
a reliable Pareto front (there were large discrepanciesdst two consecutive
Pareto front approximations). They attributed this bebiaio the large number
of variables in the design problem, and also to the assatdiféculties to ob-
tain an accurate kriging model for these situations. In otdalleviate this, they
performed an analysis of variance (ANOVA) test to find thealales that con-
tributed the most to the objective functions. After thid tédsey presented results
with a reduced surrogate model, employing only 7 decisiateiées. The au-
thors argued that they obtained a design similar to the puswone, but requiring
a lower computational cost because of the use of a reduceteruhvariables
in the kriging model.
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e Arabnia and Ghaly [2] presented the aerodynamic shape @atiion of turbine
stages in three-dimensional fluid flow, so as to minimize iveese effects of
three-dimensional flow features on the turbine performahee objectives were
considered: (i) maximization of isentropic efficiency foetstage, and (ii) mini-
mization of the streamwise vorticity. Additionally, coraints were imposed on:
(1) inlet total pressure and temperature, (2) exit presg@jeaxial chord and
spacing, (4) inlet and exit flow angles, and (5) mass flow rHte. blade geom-
etry, both for rotor and stator blades, was based on the BTlhine which
is used as a reference design to compare the optimizatioftse$he multi-
objective optimization consisted of finding the best digttion of 2D blade sec-
tions in the radial and circumferential directions. Thehaus adopted NSGA
[47] as their search engine. Both objective functions weetuated using a 3D
CFD flow simulation, taking an amount of time of 10 hours pesigle candidate.
The authors adopted an artificial neural network (ANN) basedel. The ANN
model with backpropagation, contained a single hidderrlajt 50 nodes, and
was trained and tested with 23 CFD simulations, samplingléséign space us-
ing the Latin Hypercubes technique. The optimization pssogas undertaken
by using the ANN model to estimate both the objective fumiand the con-
straints. Finally, the nondominated solutions obtainedevweyaluated with the
actual CFD flow simulation. The authors indicated that theyenable to obtain
design solutions which were better than the referencertartbesign.

3.2.1 Comments regarding surrogate-based optimization

The accuracy of the surrogate model relies on the number anbeodistribution
of samples provided in the search space, as well as on thetiealef the appropri-
ate model to represent the objective functions and consstadne important fact is
that Pareto-optimal solutions based on the computatipohkap surrogate model
do not necessarily satisfy the real CFD evaluation. So, digated in the previ-
ous references, it is necessary to verify the whole set odtBayptimal solutions
found from the surrogate, which can render the problem \vierg tonsuming. If
discrepancies are large, this condition might atenuatdd&mefit of using a surro-
gate model. The verification process is also needed in codgrdate the surrogate
model. This latter condition raises the question of howroiitethe design process it
is necessary to update the surrogate model. There are noafjares for this, and
many researchers rely on previous experiences and tris¢t@odguesses.

CFD analyses rely on discretization of the flow domain andiimerical models
of the flow equations. In both cases, some sort of reduced Intadiebe used as
fitness approximation methods, which can be further usect@igte a surrogate
model. For example, Lee et al. [24] use different grid resohs for the CFD sim-
ulations. Coarse grids are used for global exploration|enime grids are used for
solution exploitation purposes.

Finally, many of the approaches using surrogates, buileshfielating the design
variables with the objective functions. However, Leifsson Koziel [25], have re-
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cently proposed the use of physics-based surrogate madetsich, they are built
relating the design variables with pressure distributi@nstead of objective func-
tions). The premise behind this approach is that in aeranyes the objective func-
tions are not directly related with the design variableswith the pressure distribu-
tions. The authors have presented successful resultstiissngew kind of surrogate
model for global transonic airfoil optimization. Its ex&on to multiobjective aero-
dynamic shape optimization is straightforward and veryhgsing.

3.3 Hybrid MOEA optimization

One of the major drawbacks of MOEAs is that they are very defimgn(in terms
of computational time), due to the relatively high numberobjective function
evaluations that they typically require. This has motidaaenumber of approaches
to improve their efficiency. One of them consists in hybridiza MOEA with a
gradient-based method. In general, gradient-based mettma/erge quickly for
simple topologies of the objective functions but will getgped in a local optimum
if multi-modal objective functions are considered. In gast, MOEAs can nor-
mally avoid local minima and can also cope with complex, yoigjective function
topologies. The basic idea behind this hybridization isewort to gradient-based
methods, whenever the MOEA convergence is slow. Some reqtas/e works us-
ing this idea are the following:

e Lianetal. [27] deal with a multi-objective redesign of thepe blade of a single-
stage centrifugal compressor. The objectives are: (i) wimize the total head,
and (ii) to minimize the input power at a design point. Thelsgctives are con-
flicting with each other. In their hybrid approach, they cleup gradient-based
method that uses a Sequential Quadratic Programming (SRne, with a
GA-based MOEA. The SQP approach works in a confined regioheotiesign
space where a surrogate model is constructed, and optimwi#edradient-based
methods. In the hybrid approach of this example, the MOEAse&das a global
search engine, while the SQP model is used as a local seaatianmism. Both
mechanisms are alternatively used under a trust-regionefineork until Pareto
optimal solutions are obtained. By this hybridization aggwh, favorable char-
acteristics of both global and local search are maintained.

e Chung et al. [9] address a multidisciplinary problem inwietysupersonic busi-
ness jet design. The main objective of this particular pFoblvas to obtain a
trade-off design having good aerodynamic performancegewhinimizing the
intensity of the sonic boom signature at the ground levelltighiective opti-
mization was used to obtain trade-offs among the objeatinetfons of the prob-
lem which were to minimize: (i) the aircraft drag coefficig(if) initial pressure
rise (boom overpressure), and (iii) ground perceived nigigel. In this study,
the authors proposed and tested the Gradient Enhancedbjalttive Genetic
Algorithm (GEMOGA). The basic idea of this MOEA is to enharibe non-
dominated solutions obtained by a genetic algorithm withaaggnt-based local
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search procedure. One important feature of this approastthed the gradient
information was obtained from the Kriging model. Therefahe computational
cost was not considerably increased.

e Ray and Tsai [38] considered a multiobjective transonifodishape design
optimization problem with two objectives to be minimized:the ratio of the
drag to lift squared coefficients, and (ii) the squared maneeefficient. Con-
straints were imposed on the flow Mach number and angle aflattdae MOEA
used is a multi-objective particle swarm optimizer (MOPSO)is MOEA was
also hybridized with a gradient-based algorithm. Conttarstandard hybridiza-
tion schemes where gradient-based algorithms are usegtowmthe nondom-
inated solutions obtained (i.e., as a local search engindjjis approach the
authors used the gradient information to repair solutiamisatisfying the equal-
ity constraints defined in the problem. This repairing ailfpon was based on
the Marquardt-Levenberg algorithm. During the repairimggess, a subset of
the design variables was used, instead of the whole setdir do reduce the
dimensionality of the optimization problem to be solved.

3.3.1 Comments on hybrid MOEA optimization

Experience has shown that hybridizing MOEAs with gradieased techniques can,
to some extent, increase their convergence rate. Howewthie iexamples presented
above, the gradient information relies on local and/or gla@urrogate models. For
this, one major concern is how to build a high-fidelity suategmodel with the ex-
isting designs in the current population, since, theirigtion in the design space
can introduce some undesired bias in the surrogate modéditidwaklly, there are
no rules for choosing the number of points for building ther@gate model, nor
for defining the number of local searches to be performedsd lparameters are
emprirically chosen. Another idea that has not been exglaremulti-objective
evolutionary optimization, is to use adjoint-based CFDusohs to obtain gradi-
ent information. Adjoint-based methods are also maturertiegies currently used
for single objective aerodynamic optimization [28], anddjent information with
these techniques can be obtained with as much of an addibbjective function
evaluation.

3.4 Robust design optimization

In aerodynamic optimization, uncertainties in the envin@mt must be taken into
account. For example, the operating velocity of an airaredly deviate from the
normal condition during the flight. This change in velocigncbe so high that it
changes the Mach and/or Reynolds number for the flow. Thatuami of these pa-
rameters can substantially change the aerodynamic prepeftthe design. In this
case, a robust optimal solution is desired, instead of thienapsolution found for
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ideal operating conditions. By robustness, it is meant inegal that the perfor-
mance of an optimal solution should be insensitive to smattysbations of the
design variables or environmental parameters. In mukbicibje optimization, the
robustness of a solution can be an important factor for asaetimaker in choos-
ing the final solution. Search for robust solutions can batée as a multiobjective
task, i.e., to maximize the performance and the robustriesdtaneously. These
two tasks are very likely conflicting, and therefore, MOEAs1de employed to
find a number of trade-off solutions. In the context of moljective aerodynamic
shape optimization problems, we summarize next some worklmnst design.

e Yamaguchiand Arima [51] dealt with the multi-objective iopization of a tran-
sonic compressor stator blade in which three objectives winimized: (i) pres-
sure loss coefficient, (ii) deviation outflow angle, and) (iiicidence toughness.
The last objective function can be considered as a robudtittom for the de-
sign, since it is computed as the average of the pressuredescients at two
off-design incidence angles. The airfoil blade geometrg @afined by twelve
design variables. The authors adopted MOGA [14] with reatibers encoding
as their search engine. Aerodynamic performance evatuetirdhe compressor
blade was done using Navier-Stokes CFD simulations. Thenggattion process
was parallelized using 24 processors in order to reducedhmuatational time
required.

e Rai [37] dealt with the robust optimal aerodynamical desifja turbine blade
airfoil shape, taking into account the performance dedgradaue to manufac-
turing uncertainties. The objectives considered wereto(ijninimize the vari-
ance of the pressure distribution over the airfoil's sugfaand (ii) to maximize
the probability of constraint satisfaction. Only one coaisit was considered, re-
lated to the minimum thickness of the airfoil shape. The audtdopted a multi-
objective version of the differential evolution algorittand used a high-fidelity
CFD simulation on a perturbed airfoil geometry in order taleate the aerody-
namic characteristics of the airfoil generated by the MOE#e geometry used
in the simulation was perturbed, following a probabilityndéy function that is
observed for manufacturing tolerances. This process haghadomputational
cost, which the author reduced using a neural network sateagodel.

e Shimoyama et al. [44] applied a design for multi-objectixessgma (DFMOSS)
[43] for the robust aerodynamic airfoil design of a Mars @xptory airplane.
The aim is to find the trade-off between the optimality of tlesign and its ro-
bustness. The idea of the DFMOSS methodology was to incatparMOEA to
simultaneously optimize the mean value of an objectivetiongwhile minimiz-
ing its standard deviation due to the uncertainties in theraing environment.
The airfoil shape optimization problems considered tw@saa robust design of
(a) airfoil aerodynamic efficiency (lift to drag ratio), ai) airfoil pitching mo-
ment constraint. In both cases, only the variability in teefMach number was
taken into account. The authors adopted MOGA [14] as thaircdeengine. The
airfoil geometry was defined with 12 design variables. Thedgnamic perfor-
mance of the airfoil was evaluated by CFD simulations udiegiavre-Averaged
compressible thin-layer Navier-Stokes equations. Thieastreported computa-
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tional times of about five minutes per airfoil, and about S@iiscofor the total
optimization process, using a NEC SX-6 computing systerh @& processors.
Eighteen robust nondominated solutions were obtainedifirtt test case. From
this set, almost half of the population attained tised®ndition. In the second test
case, more robust nondominated solutions were found, &ydsttisfied a sigma
level as high as 25.

e Leeetal. [24] presented the robust design optimizatiomd@BERA M6 Wing
Shape. The robust optimization was based on the concept daiuchi method
in which the optimization problem is solved considering entainties in the de-
sign environment, in this case, the flow Mach number. Thelprolhad two ob-
jectives: (i) minimization of the mean value of an objecfiwaction with respect
to variability of the operating conditions, and (ii) minipaition of the variance
of the objective function of each candidate solution, wigispect to its mean
value. In the sample problems, the wing was defined by meaits pfanform
shape (sweep angle, aspect ratio, taper ratio, etc.) ar @itfoil geometry, at
three wing locations (each airfoil shape was defined withraliination of mean
lines and camber distributions), using a total of 80 desmynables to define the
wing designs. Geometry constraints were defined by uppetcaver limits of
the design variables. The authors adopted the HierarchAgyaichronous Paral-
lel Multi-Objective Evolutionary Algorithm (HAPMOEA) algrithm [15], which
is based on evolution strategies, incorporating the carmfepovariance Matrix
Adaptation (CMA). The aerodynamic evaluation was done &itbFD simula-
tion. 12 solutions were obtained in the robust design of timgwAll the nondom-
inated solutions showed a better behavior, in terms of a@amic performance
(lift-to-drag ratio) with a varying Mach number, as comhte the baseline de-
sign. During the evolutionary process, a total of 1100 iitlials were evaluated
in approximately 100 hours of CPU time.

3.4.1 Comments on robust design optimization

As can be seen form the previous examples, robust solutiam$e achieved in
evolutionary optimization in different ways. One simpleyapach is to add pertur-
bations to the design variables or environmental paramétefore the fitness is
evaluated, which is known as implicit averaging [50]. Areatiative to implicit av-

eraging is explicit averaging, which means that the fithedsevof a given design
is averaged over a number of designs generated by addingmaperturbations to
the original design. One drawback of the explicit averagimeghod is the number of
additional quality evaluations needed, which can turn f@each impractical. In
order to tackle this problem, metamodeling techniques baea considered [32].
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3.5 Multi-disciplinary design optimization

Multi-disciplinary design optimization (MDO) aims at ingmrating optimization
methods to solve design problems, considering not only agaeering discipline,
but a set of them. The optimum of a multidisciplinary problenght be a compro-
mise solution from the multiple disciplines involved. Inglsense, multi-objective
optimization is well suited for this type of problems, siricean exploit the interac-
tions between the disciplines, and can help to find the todffeamong them. Next,
we present some work in which MOEAs have been used for aeerdynshape
optimization problems, coupled with another discipline.

e Chiba et al. [8] addressed the MDO problem of a wing shape fioam@sonic
regional-jet aircraft. In this case, three objective fiumres were minimized: (i)
block fuel for a required airplane’s mision, (ii) maximurnkéaoff weight, and
(iii) difference in the drag coefficient between transomd gaubsonic flight con-
ditions. Additionally, five constraints were imposed, #od which were related
to the wing’s geometry and two more to the operating conaim lift coeffi-
cient and to the fuel volume required for a predefined aiterégsion. The wing
geometry was defined by 35 design variables. The authordedl §RMOGA
[40]. The disciplines involved included aerodynamics andctural analysis and
during the optimization process, an iterative aeroelasilation was generated
in order to minimize the wing weight, with constraints on téutand strength
requirements. Also, a flight envelope analysis was don&jmibg high-fidelity
Navier-Stokes solutions for various flight conditions.dugh the authors used
very small population sizes (eight individuals), about 8&rs of CPU time
were required at each generation, since an iterative psacas performed in or-
der to optimize the wing weight, subject to aeroelastic @nehgth constraints.
The population was reinitialized at every 5 generationgdmge adaptation of
the design variables. In spite of the use of such a reducedatign size, the au-
thors were able to find several nondominated solutions oiatpeing the initial
design. They also noted that during the evolution, the wingweight tended to
increase, but this degrading effect was redeemed by araseia aerodynamic
efficiency, given a reduction in the block fuel of over onegeart, which would
be translated in significant savings for an airline’s operet costs.

e Sasaki et al. [41] used MDO for the design of a supersonic whape. In this
case, four objective functions were minimized: (i) dragftioent at transonic
cruise, (i) drag coefficient at supersonic cruise, (iiindeg moment at the wing
root at supersonic cruise condition, and (iv) pitching mata supersonic cruise
condition. The problem was defined by 72 design variablesis@aints were
imposed on the variables ranges and on the wing sectioclkrtess and camber,
all of them being geometrical constraints. The authors stbARMOGA [40],
and the aerodynamic evaluation of the design soutions, was Iy high-fidelity
Navier-Stokes CFD simulations. No aeroelastic analysis pexformed, which
considerably reduced the total computational cost. Theativg associated with
the bending moment at wing root was evaluated by numeritedgration of the
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pressure distribution over the wing surface, as obtaindddZ FD analysis. The
authors indicated that among the nondominated solutiars thiere designs that
were better in all four objectives with respect to a refeeetiesign.

e Lee et al. [23] utilized a generic Framework for MDO to exgldhe improve-
ment of aerodynamic and radar cross section (RCS) chaistiterof an Un-
manned Combat Aerial Vehicle (UCAV). In this applicatiomptdisciplines were
considered, the first concerning the aerodynamic efficiemog the second re-
lated to the visual and radar signature of an UCAV airplanedhis case, three
objective functions were minimized: (i) inverse of the/liftag ratio at ingress
condition, (ii) inverse of the lift/drag ratio at cruise atition, and (iii) frontal
area. The number of design variables was of approximatedyat@ only side
constraints were considered in the design variables. Tétefio objective func-
tions were evaluated using a Potential Flow CFD Solver (F2J27] coupled to
FRICTION code to obtain the viscous drag, using semi-ercglirielations. The
authors adopted the Hierarchical Asynchronous ParalléfiNbjective Evolu-
tionary Algorithm (HAPMOEA) [15]. The authors reported aopessing time
of 200 hours for their approach, on a single 1.8 GHz proce#sisrimportant
to consider that HAPMOEA operates with different CFD grigdks (i.e. ap-
proximation levels): coarse, medium, and fine. In this cis®authors adopted
different population sizes for each of these levels. Alstytions were allowed
to migrate from a low/high fidelity level to a higher/lowereim an island-like
mechanism.

3.5.1 Comments on multidisciplinary design optimization

The increasing complexity of engineering systems hasadiseinterest in multidis-
ciplinary optimization, as can be seen from the examplesgmted in this section.
For this task, MOEAs facilitate the integration of severiaktiplines, since they do
not require additional information other than the evaluatwf the corresponding
objective functions, which is usually done by each disaipkand by the use of sim-
ulations. Aditionally, an advantage of the use of MOEAs fdD@®, is that they can
easily manage any combination of variable types, comingfitee involved disci-
plines i.e., from the aerodynamic discipline, the varialitan be continuous, but
for the structural optimization, it can happen that the alales are discrete. Kuhn
et al. [22] presented an example of this condition for thetidisciplinary design
of an airship. However, one challenge in MDO is the incregsiimensionality at-
tained in the design space, as the number of disciplinesraiseases.

3.6 Data mining and knowledge extraction

Data mining tools, along with data visualization using driapl methods, can help
to understand and extract information from the data coathin the Pareto opti-
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mal solutions found using any MOEA. In this sense, Multi-@tijve Design Ex-
ploration (MODE), proposed by Jeong et al. [18] is a framédwtorextract design
knowledge from the obtained Pareto optimal solutions swctraae-off informa-
tion between contradicting objectives and sensitivity afte design parameter to
the objectives. In the framework of MODE, Pareto-optimdlons are obtained
by a MOEA and knowledge is extracted by analyzing the desayarpeter values
and the objective function values of the obtained Paretov@b solutions using data
mining approaches such as Self Organizing Maps (SOMs) aalgisis of variance
(ANOVA). They also propose to use rough sets theory to olstdés from the Pareto
optimal solutions. MODE has been applied to a wide varietyesign optimization
problems as summarized next:

e Jeong et al. [18] and Chiba et al. [7, 6] explored the trade-arhong four aero-
dynamic objective functions in the optimization of a wingapk for a Reusable
Launch Vehicle (RLV). The objective functions were: (i) Tslift of the aero-
dynamic center between supersonic and transonic flightitons, (ii) Pitching
moment in the transonic flight condition, (iii) drag in tharsonic flight condi-
tion, and (iv) lift for the subsonic flight condition. The fithiree objectives were
minimized while the fourth was maximized. These objectiwese selected for
attaining control, stability, range and take-off consitsj respectively. The RLV
definition comprised 71 design variables to define the wirgfalrm, the wing
position along the fuselage and the airfoil shape at presdnivingspan stations.
The authors adopted ARMOGA [40], and the aerodynamic etialuaf the RLV
was done with a Reynolds-Averaged Navier-Stokes CFD sitionlaA trade-
off analysis was conducted with 102 nondominated indivislganerated by the
MOEA. Data mining with SOM was used, and some knowledge waseted
in regards to the correlation of each design variable to thjeative functions
in [7]; with SOM, Batch-SOM, ANOVA and rough sets in [6]; andtivSOM,
Batch-SOM and ANOVA in [18]. In all cases, some knowledge wgtsacted in
regards to the correlation of each design variable to theativg functions.

e Oyamaetal. [35] applied a design exploration techniqueti@et knowledge in-
formation from a flapping wing MAV (Micro Air Vehicle). The figing motion
of the MAV was analyzed using multi-objective design op#iation techniques
in order to obtain nondominated solutions. Such nondoradhablutions were
further analyzed with SOMs in order to extract knowledgelaitioe effects of the
flapping motion parameters on the objective functions. Tdrdlicting objectives
considered were: (i) maximization of the time-averagectlifefficient, (i) max-
imization of the time-averaged thrust coefficient, and (iinimization of the
time-averaged required power coefficient. The problem haddesign variables
and the geometry of the flying wing was kept fixed. Constraivese imposed
on the averaged lift and thrust coefficients so that they westtive. The authors
adopted a GA-based MOEA. The objective functions were abthby means of
CFD simulations, solving the unsteady incompressible &la8itokes equations.
Objective functions were averaged over one flapping cydhe Jurpose of the
study was to extract trade-off information from the objeetiunctions and the
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flapping motion parameters such as plunge amplitude anddrexy, pitching
angle amplitude and offset.

e Tani et al. [49] solved a multiobjective rocket engine tysbmp blade shape op-
timization design which considered three objective fudi (i) shaft power, (ii)
entropy rise within the stage, and (iii) angle of attack @& tiext stage. The first
objective was maximized while the others were minimizede @esign candi-
dates defined the turbine blade aerodynamic shape and temheis58 design
variables. The authors adopted MOGA [14] as their searcinen@he objective
function values were obtained from a CFD Navier-Stokes flmutation. The
authors reported using SOMs to extract correlation infaionafor the design
variables with respect to each objective function.

3.6.1 Comments on data mining and knowledge extraction

When adopting the data mining techniques used in the abam@es, in which
analyses are done, correlating the objective functionsaghwith the design param-
eter values of the Pareto optimal solutions, some valualibernation is obtained.
However, in many other cases, for aerodynamic flows, the ledye required is
more related to the physics, rather than to the geometrgnddy the design vari-
ables. For example, for understanding the relation betwleegeneration of shock
wave formation and aerodynamic characteristics in a transorfoil optimization.
For this, Oyama et al. [34], have recently proposed a newcgabrto extract useful
design information from one-dimensional, two-dimensipaad three-dimensional
flow data of Pareto-optimal solutions. They use a flow datdyaisaby Proper Or-
thogonal Decomposition (POD), which is a statistical apptothat can extract
dominant features in the data by decomposing it into a septiinal orthogonal
base vectors of decreasing importance.

4 A Case Study

Here, we present a case study of evolutionary multi-objeatptimization for an
airfoil shape optimization problem. The test problem cimas@responds to the air-
foil shape of a standard-class glider. The optimizatiorbfmm aims at obtaining
optimum performance for a sailplane. In this study the trafi@among three aero-
dynamic objectives is evaluated using a MOEA.

4.1 Objective functions

Three conflicting objective functions are defined in termsadfailplane average
weight and operating conditions [48]. They are formally dedi as:
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(i) Minimize Cp/C subject taCi = 0.63,Re= 2.04- 106, M =0.12
(i) Minimize Cp/C subject taCi = 0.86,Re= 1.63- 106, M =0.10

(iii) Minimize Cp/C*/? subject taC,. = 1.05,Re=1.29- 106, M = 0.08

In the above definitionsZp /C. andCD/Cf/2 correspond to the inverse of the
glider’s gliding ratio and sink rate, respectively. Botte amportant performance
measures for this aerodynamic optimization probl€m.andC, are the drag and
lift coefficients. In the above objective function definitg the aim is to maximize
the gliding ratio for objectives (i) and (ii), while minimizg the sink rate in objective
(iii). Each of these objectives is evaluated at differemsgribed flight conditions,
given in terms of Mach and Reynolds numbers.

4.2 Geometry parameterization

Finding an optimum representation scheme for aerodynah@pes optimization
problems is an important step for a successful aerodynaptimization task. Sev-
eral options can be used for airfoil shape parameterization

(a) The representation used needs to be flexible to desanjbgemeral airfoil shape.

(b)The representation also needs to be efficient, in orderttie parameterization
can be achieved with a minimum number of parameters. Inefficiepresenta-
tions may result in an unnecesarily large design space whictonsequence,
can reduce the search efficiency of an evolutionary algorith

(c) The representation should allow the use of any optinuratigorithm to perform
local search. This requirement is important for refiningdbkitions obtained by
the global search engine in a more efficient way.

In the present case study, the PARSEC airfoil representpth) is used. Fig. 1
illustrates the 11 basic parameters used for this reprasentr,. leading edge
radius,Xup/Xio location of maximum thickness for upper/lower surfac&g,/Zio
maximum thickness for upper/lower surfacBgqp/ Zxxio curvature for upper/lower
surfaces, at maximum thickness locatiozg, trailing edge coordinate) Z trail-
ing edge thicknesge trailing edge direction, anf. trailing edge wedge angle.
For the present case study, the modified PARSEC geometrgseptation adopted
allows us to define independently the leading edge radiuk,fboupper and lower
surfaces. Thus, 12 variables in total are used. Their alitavaanges are defined in
Table 1.

The PARSEC airfoil geometry representation uses a lineabawation of shape
functions for defining the upper and lower surfaces. Thesmali combinations are
given by:
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| | leup | lelo | Cftel Be | Zie | AZe |Xup|zuplz><><up| Xo | Zo |Zxxlo|
min|0.00850.002 7.0{10.0-0.00§0.00250.410.11 -0.9 |{0.20/-0.023 0.05|
max0.0126§0.00410.014.0/-0.0030.00500.460.13 -0.7 [0.26-0.015 0.20|

Table 1 Parameter ranges for modified PARSEC airfoil represemtatio

z ZXXup
Zup
o AZrg
e Xup TE Zre
Xio “F X
‘ Z/o X=1
XXlo
Fig. 1 PARSEC airfoil parameterization
6 n—-1
Zypper= z anXZ (4)
n=1
6 n—-1
Ziower = Z anT (5)
n=1

In the above equations, the coefficieats andby are determined as function
of the 12 described geometric parameters, by solving thewWolg two systems of
linear equations:

Upper surface:

1 1 1 1 1 Ll ra] [ Zetdaze
ST G Zun
1/2 32 52 7/2 92 112 | |g tan((2ce — Bre)/2)
e P PR X Sxi BXi| @] T 0 ©
b Pl X B i | | Zour
1 0 0 0 0 0 3 Veup

Itis important to note that the geometric parametg(s)/reio, Xup/Xio, Zup/Zio»
Zyxup/ Zxxior Zte, AZe, Ote, andfee are the actual design variables in the optimization
process, and that the coeficiengsb, serve as intermediate variables for interpolat-
ing the airfoil's coordinates, which are used by the CFD splwe used the Xfoil
CFD code [13]) for its discretization process.
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Lower surface:
1 1 1 1 1 17 by Ze— 307 ]
1/2 3/2 5/2 7/2 9/2 11/2
0/ Xio/ 0/ o/ 0/ o/ b2 Zlo
/2 32 52 72 92 1Y2 | |bs tan((2ate + Bre) /2)
_1/2 1/2 32 7y5/2 9y 7/2 9/2 (7)
SR G i 0
*:‘LXFS/Z §x|71/2 15v1/2 35y3/2 63y5/2 99y,7/2 bs Zyxio
470 470 4 Mo 4 o 4 Mo 4 Mo
1 0 0 0 0 o | |be —/Melo

4.3 Constraints

For this case study, five constraints are considered. Thetlise are defined in
terms of flight speed for each objective function, namelyghescribedC, values,
C_ = 0.63 for objective (i) C. = 0.86 for objective (ii), andC. = 1.05 for objective
(i), enable the glider to fly at a given design speed, andrtalpce the necessary
amount of lift to balance the gravity force for each designdition being analyzed.
It is important to note that prescribing the requif@d the corresponding angle of
attacka for the airfoil is obtained as an additional variable. Fas tthe flow solver,
given the design candidate geometry, solves the flow equeatiith a constraint on
theC value, i.e., it additionally determines the operating argjlattacka. Two ad-
ditional constraints are defined for the airfoil geometiyst the maximum airfoil
thickness range is defined by.0% < t/c < 13.5%. For handling this constraint,
every time a new design candidate is created by the evolryaperators, its max-
imum thickness is checked and corrected before being eealugihe correction is
done by scaling accordingly the design paramedgggndZ,, which mainly define
the thickness distribution in the airfoil. In this way, origasible solutions are eval-
uated by the simulation process. The final constraint isrtiértg edge thickness,
whose range is defined bydb% < AZ;e < 0.5%. This constraint is directly handled
in the lower and upper bounds by the correspondidg design parameter.

4.4 Evolutionary algorithm

For solving the above case study, we adopted MODE-LD+SSs[8lasearch algo-
rithm. Additionaly, and for comparison purposes, we alsedugn implementation
of the SMS-EMOA algorithm [5]. This algorithm is based on thgervolume per-
formance measure [53] and has also been used in the contixtaf optimization
problems.
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Algorithm 1 MODE-LD+SS

1:

N

NGO R®

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24.
25:
26:
27:
28:
29:
30:

INPUT:

P[1,...,N] = Population

N = Population Size

F = Scaling factor

CR= Crossover Rate

A[1,...,N] = Weight vectors

NB = Neighborhood Size

GMAX = Maximum number of generations

: OUTPUT:

PF = Pareto front approximation
Begin
g0

: Randomly creat® ,i=1,...,N
. EvaluateP? ,i=1,...,N
: while g < GMAX do

{LND} ={o}
for i =1toNdo
DetermineLocaIDominanQEg,N B)
it PY is locally nondominatethen
{LND} « {LND}UP?
end if
end for
for i =1to Ndo
Randomly seleai, up, andug from {LND}
v « CreateMutantVector(u uy, uz)
P9t Crossover(P,v)
Evaluate?"*
end for
Q—PIyPI+L
Determinezx for Q
for i=1toNdo
PI*! — MinimumTchebycheff(Q ', z+)
Q—Q\R**
end for
PF — {P}9t!
end while
ReturiPF
End

The Multi-objective Evolutionary Algorithm MODE-LD+SSéds Algorithm 1) [3]
adopts the evolutionary operators from differential etiolu [36]. In the basic DE
algorithm, and during the offspring creation stage, folheaarent vectoR, € {P},
three parents (mutually different among tham)u,,us € {P} (U1 # Uz # uz # R)
are randomly selected for creating a mutant veetasing the following mutation

operation:

V—up+F-(uz—us)
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F > 0, is a real constargcaling factorwhich controls the amplification of the
difference(u, — u3). Using this mutant vector, a new offspriﬁ’é (also called trial
vector in DE) is created by crossing over the mutant vectord the current solution
R, in accordance to:

P {VJ if (rand;(0,1) <CRoOr j = jrand
~ UPj otherwise

(9)

In the above expression, the indgxefers to thejth component of the decision
variables vectorCRis a positive constant anjghng is a randomly selected integer
in the rangdl,...,D] (whereD is the dimension of the solution vectors) ensuring
that the offspring is different at least in one componeniwéispect to the current so-
lution B. The above DE variant is known &nd/1/bin, and is the version adopted
here. Additionally, the proposed algorithm incorporat®e mechanisms for im-
proving both the convergence towards the Pareto front, leadniform distribution
of nondominated solutions along the Pareto front. Thesénar@sms correspond to
the concept of local dominance and the use of an environingzitction based on
a scalar function. Below, we explain these two mechanismsare detail.

As for the first mechanism, local dominance concept, in Atpar 1, the solu-
tion vectorsuy, Uy, uz, required for creating the trial vecter(in equation (8)), are
selected from the current population, only if they are lycabndominated in their
neighborhoodl. Local dominance is defined as follows:

Definition 6. Pareto Local DominanceLet x be a feasible solutior](x) be a
neighborhood structure for in the decision space, ari@k) a vector of objective
functions.

- We say that a solutioxis locally nondominated with respectfd(x) if and only
if there is nox in the neighborhood of such thaf(x') < f(x)

The neighborhood structure is defined as M closest individuals to a par-
ticular solution. Closeness is measured by using the Eemtliddistance between
solutions in the design variable space. The major aim ofgugia local dominance
concept, as defined above, is to exploit good individuals&gie information in cre-
ating DE trial vectors, and the associated offspring, whigght help to improve
the MOEA's convergence rate toward the Pareto front. FrogoAthm 1, it can
be noted that this mechanism has a stronger effect duringaHer generations,
where the portion of nondominated individuals is low in thebgl population, and
progressively weakens, as the number of nondominatediéhails grows during
the evolutionary process. This mechanism is automaticaiigched off, once all
the individuals in the population become nondominated,leaslthe possibility of
being switched on, as some individuals become dominated.

As for the second mechanisiselection based on a scalar functiahis based
on the Tchebycheff scalarization function given by:

g(xA,Z) = max{A'|fi(x) - 7} (10)
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In the above equatiorl,i = 1,...,N represents the set of weight vectors used
to distribute the solutions along the entire Pareto framthis case, this set is cal-
culated using the procedure described in [322]corresponds to a reference point,
defined in objective space and determined with the minimujaative values of the
combined populatioQ, consistent on the actual parents and the created offspring
This reference point is updated at each generation, as thetien progresses. The
procedurdlinimumTchebycheff(Q', z«) finds, from the se®, (the combined pop-
ulation consistent on the actual parents and the creatsproff)), the solution vector
that minimizes equation (10) for each weight vectband the reference poiat.

The second MOEA adopted is the SMS-EMOA, which is a steaag stigorithm
based on two basic characteristics: (1) non-dominatethgdg used as its ranking
criterion and (2) the hypervoluriés applied as its selection criterion to discard that
individual, which contributes the least hypervolume towwest-ranked front.

The basic algorithm is described in Algorithm 2. Startinghaan initial pop-
ulation of u individuals, a new individual is generated by means of ramded
variation operators. We adopted simulated binary crosg@EX) and polynomial-
based mutation as described in [11]. The new individual eitome a member of
the next population, if replacing another individual ledaals higher quality of the
population with respect to the hypervolume.

Algorithm 2 SMS-EMOA

1: By« init() [* initialize random population of: individuals */
2:t<0

3: repeat

4: Q1< generatéR) [* generate offspring by variation*/
5. Ri1 < reducéR U{qt+1}) /* selectu best individuals */
6: until termination condition is fulfilled

The procedur®educedescribed in Algorithm 2 selects theindividuals of the
subsequent population. The algorithm fast-nondominatetidsed in NSGA-11[12]
is applied to partition the population intosets#x, ..., %y. The subsets are called
fronts and are provided with an index representing a hibreat order (the level
of domination) whereas the solutions within each front avtually nondominated.
The first subset contains all nondominated solutions of tiggnal setQ. The sec-
ond front consists of individuals that are nondominatedenget Q\%1), e.g. each
member of%, is dominated by at least one member%f. More general, théth
front consists of individuals that are nondominated if theividuals of the frontg
with j < i were removed fron®.

The value ofA (s, Zy)] can be interpreted as the exclusive contributios taf
the hypervolume value of its appropriate front. By defimitaf A o~ (s, %v)], an in-
dividual, which dominates another is always kept and a nondated individual
is replaced by a dominated one. This measure keeps thosélunalis which maxi-

5 The Hypervolume (also known as th&metric or the Lebesgue Measure) of a set of solutions
measures the size of the portion of objective space thatisrdded by those solutions collectively.
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Algorithm 3 Reduce(Q)
1: {%,...,%,} — fastnondominatedsort(Q) /* all v fronts of Q*/
2: 1 —argmineg, (A (S, %)) I* se %, with lowestA o (s, %y)*/
3: return (Q\r)

mize the population’s S-Metric value, which implies thas ttovered hypervolume
of a population cannot decrease by application ofReeluceoperator. Thus, for
Algorithm 1 the following invariant holds:

' (R) <7 (Ry1) (11)

Due to the high computational effort of the hypervolume gkdton, a steady
state selection scheme is used. Since only one individeaéeted, only one has to
be deleted from the population at each generation. Thuseleetion operator has
to compute at mostt + 1 values of the S-Metric (exactly + 1 values in case all
solutions are nondominated). These are the values of tleetubf the worst ranked
front, in which one point of the front is left out, respectiveA (u + A) selection
scheme would require the calculation(é’f;’\) possible S-Metric values to identify
an optimally composed population, maximising the S-Matgtvalue.

The parameters used for solving the present case studypaeddh algorithm
were set as followsd\ = 120 (population size) for both MOEABE, = 0.5 (mutation
scaling factor for MODE-LD+SS)CR = 0.5 (crossover rate for MODE-LD+SS),
NB= 5 (neighborhood size for MODE-LD+S9),, = 20 (mutation index for SBX
in SMS-EMOA), and. = 15 (crossover index for SBX in SMS-EMOA).

4.5 Results

Both, MODE-LD+SS and SMS-EMOA were run for 100 generatidrie simula-
tion process in each case took approximately 8 hrs of CPU. fiiwve independent
runs were executed for extracting some statistics. Figs.32show the Pareto front
approximations (of the median run) at different evolutiongs. For comparison
purposes, in these figures the corresponding objectivditurscof a reference air-
foil (a7200 [48]) are plotted. At = 10 generations (the corresponding figure is not
shown due to space constraints), the number of nondomisatations is 26 for
SMS-EMOA and 27 for MODE-LD+SS. With this small number of mominated
solutions is difficult to identify the trade-off surface ftiis problem. However, as
the number of evolution steps increases, the trade-ofaisarfs more clearly re-
vealed. Att = 50 generations (see Fig. 2), the number of nondominatedi@atu
is 120 for SMS-EMOA, and 91 for MODE-LD+SS. At this point, ttrade-off sur-
face shows a steeper variation of objective (iii) toward ¢benpromise region of
the Pareto front. Also, the trade-off shows a plateau whezetird objective has a
small variation with respect to the other objectives. Rinatt = 100 generations
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(see Fig. 3), the shape of the trade-off surface is morelgldafined, and a clear
trade-off between the three objectives are evidencedittpertant to note in Fig.

3, that the trade-off surface shows some void regions. Tdniglition is captured by
both MOEAs and is attributed to the constraints defined ireilfeil geometry. Ta-

ble 2 summarizes the maximum possible improvement witheetgp the reference
solution, that can be attained for each objective and by BHBEA.

MOEA
SMS-EMOA MODE-LD+SS

GenlAOD]1(%)[AOb [2(%)[AOb j3(%) |AOb]1(%)|AOb}2(%)| AOb 3(%)
10| 11.43 | 10.19 5.43 11.93 | 10.38 547
50| 12.84 | 10.67 6.06 1322 | 10.67 6.21
100] 12.75 | 10.79 6.28 13.63 | 10.80 6.40

Table 2 Maximum improvement per objective for the median run of esl¢PEA used

In the context of MOEAS, it is common to compare results ondags of some
performance measures. Next, and for comparison purposesdethe algorithms
used, we present the hypervolume values attained by eachAyiddEwell as the val-
ues of the two set coverage performance measure C-M(A,B)eaet them. Next,
we present the definition for these two performance measures

Hypervolume (Hv): Given a Pareto approximation $&fnown and a reference
point in objective spacge+, this performance measure estimatesHiypervolume
attained by it. Such hypervolume corresponds to the nonlapiag volume of all
the hypercubes formed by the reference paipt] and every vector in the Pareto
set approximation. This is mathematically defined as:

HV = {Uivoli|veg € PFRaown} (12)

veg is a nondominated vector from the Pareto set approximadiodyol; is the
volume for the hypercube formed by the reference point aeaditimdominated vec-
torveg. Here, the reference poirg{;) in objective space for the 3-objective MOPs
was set to (0.007610, 0.005895, 0.005236 ), which corregptmthe objective
values of the reference airfoil. High values of this measndéicate that the solu-
tions are closer to the true Pareto front and that they coweder extension of it.

Two Set Coverage (C-Metric): This performance measure estimates the cover-
age proportion, in terms of percentage of dominated salstibetween two sets.
Given the seté\ andB, both containing only nondominated solutions, the C-Metri
is mathematically defined as:

uc B|3ve A: vdominates
cap - ucs 8 b 13)
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This performance measure indicates the portion of vectdBsieing dominated
by any vector inPA. The setsA andB correspond to two different Pareto approxima-
tions, as obtained by two different algorithms. Therefdine, C-Metric is used for
pairwise comparisons between algorithms.

For the hypervolume measure, SMS-EMOA attains a valuklwf= 1.5617-
10~10with a standard deviation @f = 2.4526- 1012, while MODE-LD+SS attains
a value ofHv = 1.6043- 1010 with a standard deviation of = 1.2809- 10~12,
These results are the average of five independent runs exdeyieach algorithm.

As for the C-Metric, the corresponding values obtained &e: M(SMS—
EMOAMODE — LD + S§ = 0.07016 with a standard deviation of = 0.03134,
andC — M(MODE — LD + SSSMS—- EMOA) = 0.3533 with a standard deviation
of 0 = 0.0510. These latter results are the average of all the pa&mambinations
of the five independent runs executed by each algorithm. €sults indicate that
MODE-LD+SS converges closer to the true Pareto front, angiges more non-
dominated solutions than SMS-EMOA.

Finally, in Figure 4 are presented the geometries of theeafe airfoil, a7200,
and two selected airfoils from the trade-off surface of finsblem and obtained by
SMS-EMOA and MODE-LD+SS dt= 100 generations. These two latter airfoil are
selected as those with the closest distance to the origimeadbjective space, since
they are considered to represent the best trade-off snhitio

5 Conclusions and final remarks

In this chapter we have presented a brief review of the rebedone on multi-
objective aerodynamic shape optimization. The examplesegmted cover a wide
range of current applications of these techniques in théezbof aeronautical en-
gineering design, and in several design scenarios. Th@agpipes reviewed include
the use of surrogates, hybridizations with gradient-baseldniques, mechanisms
to search for robust solutions, multidisciplinary appies; and knowledge extrac-
tion techniques. It can be observed that several Pareteddd©EASs have been
successfully integrated in industrial problems. It can bécgated that in the near
future, an extended use of these techniques will be a stdpdactice, as the com-
puting power available continues to increase each year.dlsio worth noting that
MOEAs are flexible enough as to allow their coupling to bothieeering models
and low-order physics-based models without major chafiges; can also be easily
parallelized, since MOEAs normally have low data depengenc

From an algorithmic point of view, it is clear that the use aféo-based MOEAS
remains as a popular choice in the previous group of appitatlt is also evident
that, when dealing with expensive objective functions sagthose of the above ap-
plications, the use of careful statistical analysis of paters is unaffordable. Thus,
the parameters of such MOEASs were simple guesses or takervalnes suggested
by other researchers. The use of surrogate models alsorappebese costly ap-
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SMS-EMOA ©
MODE-LD+SS
3 a7200 =

0.0054 .
0.0053 +
0.0052
0.0051

0.005

0.0049

Fig. 2 Pareto front approximation at Gen = 50 (6000 OFEs)

SMS-EMOA ©

MODE-LD+SS e

3 a7200 =
0.0053
0.0052
0.0051

0.005

0.0049

Fig. 3 Pareto front approximation at Gen = 100 (12000 OFEs)
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MODE-LD+SS -------
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-0.05
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Fig. 4 Airfoil shape comparison

plications. However, the use of other simpler techniques ss fithess inheritance
or fitness approximation [39] seems to be uncommon in thisadlemnd could be
a good alternative when dealing with high-dimensional prots. Additionally, the
authors of this group of applications have relied on verypéntonstraint-handling
techniques, most of which discard infeasible individuAlgernative approaches ex-
ist, which can exploit information from infeasible solut®and can make a more
sophisticated exploration of the search space when dealthgconstrained prob-
lems (see for example [29]) and this has not been propertiiediyet. Finally, it is
worth emphasizing that, in spite of the difficulty of theselgems and of the evi-
dent limitations of MOEASs to deal with them, most authorsofinding improved
designs when using MOEAs, even when in all cases a fairly lsmiahber of fit-
ness function evaluations was allowed. This clearly ifaists the high potential of
MOEAs in this domain.
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