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Abstract

Nowadays, the solution of multi-objective optimization problems in aeronau-

tical and aerospace engineering has become a standard practice. These two fields

offer highly complex search spaces with different sources of difficulty, which are

amenable to the use of alternative search techniques such asmetaheuristics, since

they require little domain information to operate. From theseveral metaheuristics

available, multi-objective evolutionary algorithms (MOEAs) have become partic-

ularly popular, mainly because of their availability, easeof use and flexibility. This

paper presents a taxonomy and a comprehensive review of applications of MOEAs

in aeronautical and aerospace design problems. The review includes both the char-

acteristics of the specific MOEA adopted in each case, as wellas the features of

the problems being solved with them. The advantages and disadvantages of each

type of approach are also briefly addressed. We also provide aset of general guide-

lines for using and designing MOEAs for aeronautical and aerospace engineering

problems. In the final part of the paper we provide some potential paths for future

research, which we consider promising within this area.
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1 Introduction

Optimal design in aeronautical/aerospace engineering is,by nature, a multiobjective-

multidisciplinary and highly difficult problem. Aerodynamics, structures, propulsion,

acoustics, manufacturing and economics, are some of the disciplines involved in this

type of problems. Even if a single discipline is considered,many design problems

have competing objectives (e.g., to optimize a wing’s lift and drag or a wing’s struc-

tural strength and weight). During the last three decades, the process of engineering

design has been clearly improved because of the dominant role that computational

simulations have played in this area [87] e.g., Computational Fluid Dynamics (CFD)

simulations to perform aerodynamic analysis [67] and Computational Structural Dy-

namics/Mechanics (CSD/M) through the use of the Finite Element Method (FEM) to

process structural analysis [169]. The increasing demand for optimal and robust de-

signs, driven by economic and environmental constraints, along with an increasing

computing power, has improved the role of computational simulations, from being just

analytical tools until becoming design optimization tools.

In spite of the fact that gradient-based numerical optimization methods have been

successfully applied in a variety of aeronautical/aerospace design problems [63, 153]1,

their use is considered a challenge due to the following difficulties found in practice:

1. The design space is frequently multimodal and highly non-linear.

2. Evaluating the objective function (performance) for thedesign candidates is usu-

ally time consuming, due mainly to the high-fidelity and dimensionality required

in the simulations.

3. By themselves, single-discipline optimizations may provide solutions which not

necessarily satisfy objectives and/or constraints considered in other disciplines.

4. The complexity of the sensitivity analyses in Multidisciplinary Design Optimiza-

1It is worth noting that most of the applications using gradient-based methods have adopted them to find

global optima or a single compromise solution for multi-objective problems.
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tion (MDO2) increases as the number of disciplines involved becomes larger.

5. In MDO, a trade-off solution, or a set of them, are searchedfor.

Based on the previously indicated difficulties, designers have been motivated to use

alternative optimization techniques such as EvolutionaryAlgorithms (EAs) [86, 34,

122]. Multi-Objective Evolutionary Algorithms (MOEAs) have gained an increasing

popularity as numerical optimization tools in aeronautical and aerospace engineering

during the last few years [120, 4, 87]. These population-based methods mimic the evo-

lution of species and the survival of the fittest, and compared to traditional optimization

techniques, they present the following advantages:

• Robustness:In practice, they produce good approximations to optimal sets of

solutions, even in problems with very large and complex design spaces. Instead

of a single-point search with gradient information, MOEAs use a population of

design candidates (i.e., they perform a multi-point search) and are less prone to

get trapped in local optima. Additionally, they can manage non-differentiable,

mixed real-discrete and highly non-linear objective functions/fitness landscapes.

• Multiple solutions per run: As MOEAs use a population of candidates, they

are designed to generate multiple trade-off solutions in a single run. Evidently,

the generation of more solutions also involves a higher computational time when

dealing with expensive applications. Thus, the number of solutions to be gen-

erated by a MOEA in the applications discussed in this paper tends to be low,

unless surrogate models are adopted.

• Easy to parallelize:The design candidates in a MOEA population, at each gen-

eration, can be evaluated in parallel using diverse paradigms. This can be useful

in problems involving objective functions that are costly to evaluate (something

common in aeronautical and aerospace applications).

2Multidisciplinary Design Optimization, by its nature, canbe considered as a multi-objective optimiza-

tion problem, where each discipline aims to optimize a particular performance metric.
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• Simplicity: MOEAs use only the objective function values for each designcan-

didate. They do not require a substantial modification or complex interfacing for

using a CFD or CSD/M code. This situation substantially reduces the cost related

to code writing and tuning every time a new application is envisaged. Further-

more, designers can easily make use of in-house developed and/or commercial

codes previously validated.

• Easy to hybridize: Along with the simplicity previously stated, MOEAs also

allow an easy hybridization with alternative methods, e.g., memetic algorithms,

which additionally introduce specifities to the implementation, without influenc-

ing the MOEA simplicity.

• Novel solutions: In many cases, gradient-based optimization techniques con-

verge to designs which have little variation even if produced with very different

initial setups. In contrast, the inherent explorative capabilities of MOEAs allow

them to produce, some times, novel and non-intuitive designs.

The important volume of information that has been publishedon the use of MOEAs

in aeronautical and aerospace engineering applications (mainly motivated by the advan-

tages previously addressed) has led us to write this paper, which provides a review of

this work in an organized and classified manner. As we will seelater on, MOEAs have

been used in a variety of design stages and in diverse problems.

The remainder of this paper is organized as follows. In Section 2, some basic con-

cepts on multi-objective optimization are presented. Section 3 briefly describes some

of the MOEAs that have been most commonly used in the specialized literature. Sec-

tion 4 presents a taxonomy of applications of MOEAs in aeronautical and aerospace

engineering. Such applications are explained in more detail in Section 5. After that,

in Section 6, possible future research paths are highlighted. Finally, Section 7 presents

the main conclusions of this review.
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2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mathematically defined as fol-

lows3:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:

gi(~x) ≤ 0 , i = 1, 2, . . . , m (2)

hi(~x) = 0 , i = 1, 2, . . . , p (3)

where~x = [x1, x2, . . . , xn]
T is the vector of decision variables,fi : IRn → IR, i =

1, ..., k are the objective functions andgi, hj : IRn → IR, i = 1, ..., m, j = 1, ..., p are

the constraint functions of the problem.

The set of constraints of the problem defines the feasible region in the search space

of the problem. Any vector of variables~x which satisfies all the constraints is consid-

ered a feasible solution. In their original version, an EA (and also a MOEA) lacks a

mechanism to deal with constrained search spaces. This has motivated a considerable

amount of research regarding the design and implementationof constraint-handling

techniques for both EAs and MOEAs [23, 108].

Regarding optimal solutions in MOPs, the following definitions are provided:

Definition 1. A vector of decision variables~x ∈ IRn dominates another vector of deci-

sion variables~y ∈ IRn, (denoted by~x ≺ ~y) if and only if ~x is partially less than~y, i.e.,

∀i ∈ {1, . . . , k} : fi(~x) ≤ fi(~y) ∧ ∃i ∈ {1, . . . , k} : fi(~x) < fi(~y).

3Without loss of generality, minimization is assumed in the following definitions, since any maximization

problem can be transformed into a minimization one.
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Definition 2. A vector of decision variables~x ∈ X ⊂ IRn is nondominated with

respect toX , if there does not exist another~x′ ∈ X such that~f(~x′) ≺ ~f(~x).

Definition 3. A vector of decision variables~x∗ ∈ F ⊂ IRn (F is the feasible region)

is Pareto-optimal if it is nondominated with respect toF .

Definition 4. ThePareto optimal setP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5. ThePareto front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

The goal on a MOP consists on determining the Pareto optimal set from the setF of

all the decision variable vectors that satisfy (2) and (3).

Thus, when solving a MOP, we aim to find not one, but the set of solutions repre-

senting the best possible trade-offs among the objectives (the so-called Pareto optimal

set).

3 Multi-Objective Evolutionary Algorithms

It is worth indicating that traditional EAs require some modifications in order to deal

with multi-objective optimization problems. The main two are the following:

1. All the nondominated solutions should be considered equally good by the se-

lection mechanism. This means that a different notion of fitness is required for

dealing with multi-objective optimization problems. The most popular mecha-

nism to deal with this problem is called Pareto ranking and was introduced by

Goldberg [51]. This approach assigns a rank to each solutionbased on its Pareto

dominance, such that nondominated solutions are all sampled at the same rate.

However, in the early days of MOEAs, several mechanisms not based on Pareto

optimality were adopted with EAs [24].
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2. EAs tend to converge to a single solution if run long enough, because of stochas-

tic noise [51]. Therefore, a mechanism to maintain diversity is required. This

component is known as thedensity estimator. Fitness sharing [52] was the ear-

liest density estimator, but many others have been proposedover time, including

clustering [189], entropy [41], adaptive grids [81] and crowding [32], among

others.

MOEAs can be classified in several ways [24]. However, for thepurposes of this

survey, we decided to adopt a simple high-level classification that considers only two

types of MOEAs: (a) Non-Pareto-based and (b) Pareto-based.The first group contains

MOEAs that do not adopt the concept of Pareto optimality in their selection mech-

anism, whereas the second comprises those MOEAs that adopt Pareto optimality in

their selection mechanism. Some of the most popular non-Pareto-based MOEAs are

the following:

• Lexicographic method: The user ranks the objectives of the problem in a de-

creasing order and the optimization proceeds from higher tolower order objec-

tives, one at a time. Once an objective is optimized, the aim is to improve as

much as possible the following objective(s) without decreasing the quality of the

previous one(s) [24]. This sort of approach normally generates a single nondom-

inated solution, but if instead of using a fixed objective as the most important, it

is randomly chosen, several solutions can be generated in one run.

• Aggregating functions: All the objectives are added up into a single (scalar)

value which constitutes the objective to be optimized. Since objectives tend to

be defined in very different ranges, a normalization is normally required. Also,

weights tend to be assigned to each objective in order to define preferences from

the user [24]. Varying the weights during the run allows, in general, the genera-

tion of different nondominated solutions in one run [71, 59].

• Population-based methods: A number of sub-populations (usually as many as

the number of objective functions of the problem) are generated from a main

population of an EA. Each sub-population optimizes a singleobjective function
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and then all the sub-populations are merged and mixed. The aim is that, when

performing crossover, individuals that are good in one objective will recombine

with individuals that are good in another one [149]. This sort of approach pro-

duces several nondominated solutions in a single run, but ittypically misses good

compromises among the objectives because of the way in whichindividuals are

selected in each population [24].

Among the Pareto-based methods, there are two sub-classes:the non-elitist MOEAs

and the elitist MOEAs. Non-elitist MOEAs do not retain the nondominated solutions

that they generate and could, therefore, lose them after applying the evolutionary oper-

ators. Elitist MOEAs retain these solutions either in an external archive or in the main

population.

The most representative non-elitist MOEAs are the following:

• Nondominated Sorting Genetic Algorithm(NSGA): It was proposed by Srini-

vas and Deb [160]. It is based on several layers of classifications of the indi-

viduals. Before selection is performed, the population is ranked on the basis

of nondomination: all nondominated individuals are classified into one category

(with a dummy fitness value, which is proportional to the population size, in or-

der to provide an equal reproductive potential for these individuals). To maintain

the diversity of the population, these classified individuals are shared with their

dummy fitness values. Then this group of classified individuals is ignored and

another layer of nondominated individuals is considered. The process continues

until all individuals in the population are classified. Since individuals in the first

front have the maximum fitness value, they always get a higherselection proba-

bility than the rest of the population.

• Niched-Pareto Genetic Algorithm (NPGA): Proposed in [62]. It uses a tour-

nament selection scheme based on Pareto dominance. The basic idea of the

algorithm is the following: Two individuals are randomly chosen and compared

against a subset from the entire population (typically, around 10% of the popula-

tion). If one of them is dominated (by the individuals randomly chosen from the
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population) and the other is not, then the nondominated individual wins. When

both competitors are either dominated or nondominated (i.e., there is a tie), the

result of the tournament is decided through fitness sharing [52].

• Multi-Objective Genetic Algorithm (MOGA): Proposed in [46]. In this ap-

proach, the rank of a certain individual corresponds to the number of individuals

in the current population by which it is dominated. All nondominated individuals

are assigned the lowest possible rank (i.e., one), while dominated ones receive as

rank the number of individuals that dominate them plus one.

Among the most popular Pareto-based elitist MOEAs, we have the following:

• Strength Pareto Evolutionary Algorithm (SPEA): Introduced in [189]. It uses

an archive containing nondominated solutions previously found (the so-called

external nondominated set). At each generation, nondominated individuals are

copied to the external nondominated set, removing the dominated solutions. For

each individual in this external set, astrengthvalue is computed. This strength is

similar to the ranking value of MOGA, since it is proportional to the number of

solutions to which a certain individual dominates. The fitness of each member

of the current population is computed according to the strengths of all external

nondominated solutions that dominate it. In SPEA, instead of using niches based

on distance (as MOGA and NPGA), Pareto dominance is adopted to ensure that

the solutions are properly distributed along the Pareto front. Although no niche

radius is required, the effectiveness of this approach relies on the size of the

external nondominated set, since such a set participates inthe selection process

of SPEA. Because of this, the authors decided to adopt a technique that prunes

the contents of the external nondominated set so that its size remains below a

certain threshold. The approach adopted for this sake was a clustering technique

called “average linkage method” [112].

• Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has three main

differences with respect to its predecessor [188]: (1) it incorporates a fine-grained
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fitness assignment strategy which, for each individual, takes into account both

the number of individuals to which it dominates and the number of individu-

als that dominate it; (2) it uses a nearest neighbor density estimation technique

which guides the search more efficiently, and (3) it has an enhanced archive trun-

cation method that guarantees the preservation of boundarysolutions.

• Pareto Archived Evolution Strategy(PAES): This algorithm was introduced in

[83]. PAES consists of a (1+1) evolution strategy (i.e., a single parent that gener-

ates a single offspring) in combination with a historical archive that records the

nondominated solutions previously found. This archive is used as a reference

set against which each mutated individual is being compared. Such a historical

archive is the elitist mechanism adopted in PAES. However, an interesting as-

pect of this algorithm is the procedure used to maintain diversity which consists

of a crowding procedure that divides objective space in a recursive manner. Each

solution is placed in a certain grid location based on the values of its objectives

(which are used as its “coordinates” or “geographical location”). A map of such

grid is maintained, indicating the number of solutions thatreside in each grid lo-

cation. Since the procedure is adaptive, no extra parameters are required (except

for the number of divisions of the objective space).

• Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was

introduced in [32] as an improved version of the NSGA. In the NSGA-II, for each

solution one has to determine how many solutions dominate itand the set of so-

lutions to which it dominates. The NSGA-II estimates the density of solutions

surrounding a particular solution in the population by computing the average dis-

tance of two points on either side of this point along each of the objectives of the

problem. This value is the so-calledcrowding distance. During selection, the

NSGA-II uses a crowded-comparison operator which takes into consideration

both the nondomination rank of an individual in the population and its crowding

distance (i.e., nondominated solutions are preferred overdominated solutions,

but between two solutions with the same nondomination rank,the one that re-

sides in the less crowded region is preferred). The NSGA-II does not use an
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external memory as the other MOEAs previously discussed. Instead, the elitist

mechanism of the NSGA-II consists of combining the best parents with the best

offspring obtained (i.e., a (µ + λ)-selection). Due to its clever mechanisms, the

NSGA-II is much more efficient (computationally speaking) than its predeces-

sor, and its performance is so good, that it has become very popular in the last

few years, becoming a landmark against which other MOEAs have to be com-

pared [187].

There are several other multi-objective metaheuristics available. The two following

are discussed here because they are adopted by some of the applications discussed here:

• Particle Swarm Optimization: This metaheuristic is inspired on the choreog-

raphy of a bird flock which aim to find food [77]. It can be seen asa distributed

behavioral algorithm that performs (in its more general version) a multidimen-

sional search. The implementation of the algorithm adopts apopulation of par-

ticles, whose behavior is affected by either the best local (i.e., within a certain

neighborhood) or the best global individual. Particle swarm optimization (PSO)

has been successfully used for both continuous nonlinear and discrete binary op-

timization [40]. For extending PSO to deal with MOPs, the main issues are:

(1) how to select particles (to be used as leaders) in order togive preference to

nondominated solutions over those that are dominated?, (2)how to retain the

nondominated solutions found during the search process in order to report so-

lutions that are nondominated with respect to all the past populations and not

only with respect to the current one?, and 3) how to maintain diversity in the

swarm in order to avoid convergence to a single solution? Normally, mecha-

nisms very similar to those adopted with MOEAs (namely, Pareto-based selec-

tion and external archives) have been adopted in multi-objective particle swarm

optimizers (MOPSOs). However, the addition of other mechanisms (e.g., a mu-

tation operator) is also relatively common in MOPSOs. An important number of

multi-objective versions of PSO currently exist (see for example [140]), and this
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remains as a very active area of research.

• Differential Evolution: This metaheuristic was proposed by Kenneth Price and

Rainer Storn [161, 130] to optimize problems over continuous domains. The core

idea is to use vector differences for perturbing a vector population, and it aims to

estimate the gradient in a region (rather than in a point). Differential Evolution

(DE) performs mutation based on the distribution of the solutions in the current

population. In this way, search directions and possible step sizes depend on the

location of the individuals selected to calculate the mutation values. Several

DE variants are possible, and they differ in the way in which the parents are

selected and in the form in which recombination and mutationtakes place (see

[130] for more information on DE). The high success of DE in single-objective

optimization has made it an interesting candidate for solving MOPs. The main

issues for extending DE to multi-objective optimization are very similar to those

of PSO (i.e., how to select parents, how to store nondominated solutions and

how to maintain diversity in the population). As with MOPSOs, very similar

mechanisms to those adopted by MOEAs have been use with multi-objective

differential evolution (MODE). A variety of MODE approaches currently exist

(see for example [110]), and this also remains as a very active area of research.

It is worth noting that MODEs are often considered MOEAs [24].

Although many other MOEAs exist (see for example [25, 186]),it is not the inten-

tion of this paper to be comprehensive. The interested reader may refer to [24, 31] for

more information on this topic.

The main advantages of MOEAs are their generality, ease of use and the fact that

they require little or no specific domain information to operate. Also, they are less

susceptible to the specific features of the problem (e.g., shape or continuity of the

Pareto front) than traditional mathematical programming techniques [24].

Although the performance of MOEAs has been traditionally assessed using a va-

riety of quantitative measures (see for example [24, 190]),few of them have been

adopted in the applications discussed in this paper. This isprobably due to the high

computational cost of these applications and the few nondominated solutions that are
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normally produced. This is the reason why the use of such performance measures is

not discussed in the applications reviewed here, except if one of them is adopted in the

selection process (e.g., SMS-EMOA adopts a selection mechanism based on a perfor-

mance measure calledhypervolume[10]).

4 A Taxonomy of Applications

Aeronautical/aerospace engineering design process comprise three phases: (i)Concep-

tual design, (ii) Preliminary design, and (iii) Detailed design[13]. In each of these

phases, design concepts are analyzed to determine their compliance with the perfor-

mance requirements, as well as their manufacturability andeconomical viability. The

design process cannot be considered as serial, but as a cyclic process, in which many

design iterations are required. This iterative process is mainly executed between the

first two phases. Applications surveyed in this article cover the spectrum ofConceptual

designandPreliminary designwhere numerical optimization has its greatest impact,

and where the goal of optimization is to refine the design, prior to theDetailed design

phase in which design production is initiated (see Figure 1).

Although very interesting ways of classifying complex MOPshave been proposed

in the past (see for example the approach described in [73]),the taxonomy adopted

in this article aims to reflect the optimization problem complexity degree in terms of

three main features: (i) physics-model fidelity, (ii) the number of disciplines involved,

and (iii) the associated computational cost needed to perform the optimization process.

The classes considered are the following:

1. Conceptual design optimization: Being this the earliest phase of the design

process, it has an emphasis on finding the bestDesign Concepts, ensuring de-

signers that they are heading into the correct design path, guaranteeing to meet

all design’s performance requirements.

2. 2D geometries and airfoil shape optimization: In these applications the di-

mensionality of the problem is reduced, and the physics for the simulations can

be considered as two-dimensional.
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3. 3D complex physics/shape optimization: 3D complex physics, 3D complex

geometries or the combination of both are considered in thisclass of applications.

4. Structural optimization : Considering the design of lighter and stronger struc-

tures as the premise of aeronautical/aerospace design, this class of application

looks for the best trade-off between these two objectives, clearly in conflict.

5. Multidisciplinary design optimization : These applications cover those where

two or more disciplines are involved, each one with specific objectives to accom-

plish or to optimize.

6. Aerospace system optimization: Applications focused on space systems such

as spacecrafts and satellites.

7. Control system design: These applications are used for parametric design in

different control laws.

The different approaches in each one of these classes will bedescribed in the fol-

lowing section. It is worth mentioning that this review of the state-of-the-art is focused

on Pareto-based MOEAs. This decision was made based on the fact that the number

of references of non-Pareto-based approaches would not allow a careful description of

each approach.

5 Applications

5.1 Conceptual design optimization

Traditionally, the aeronautical/aerospaceConceptual Designphase has been conducted

with the help of databases, statistics, and regression/low-order engineering models as

well as company’s/designer’s accumulated experience. Themain outcome of this de-

sign phase has been to determine a few promisingDesign Conceptsto be further ana-

lyzed in thePreliminary Designphase, in which numerical simulations or experimental

setups are developed to verify and refine the design. Additionally, tradeoff analyses are

performed in order to identify unreasonable or conflicting requirements. This latter
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task has been limited because of the large design spaces thatneed to be explored,

and a holistic (multidisciplinary) vision of the design is required when multiple dis-

ciplines are involved in the design. Nowadays, with the increasing computing power

available, low-cost/fidelity numerical simulations have spread toward theConceptual

Designphase, making it possible to benefit from theexplorationof large design spaces

with reduced time and low computational cost. Additionally, it is possible to envision

performingtrade-off analysis of the multi-objective and/or multidisciplinarydesigns.

Both of these characteristics are inherent in the use of MOEAs for the present class of

applications reported next:

- Oyama and Liou [124] addressed the conceptual design of rocket engine pumps,

for a centrifugal single and multi-stage pump design. In both cases two objec-

tives were defined: (i) maximization of total head in the pump, and (ii) minimiza-

tion of the pump input power. Side constraints were considered for the design

variables range, defining the pump geometry. An additional operating constraint

was imposed for the static pressure at the rotor tip in order to detect the inception

of cavitation, being crucial to prevent this condition for the optimal design. The

authors adopted MOGA with fitness sharing [52], blended crossover (BLX-α)

and uniform random mutation. Conceptual designs were evaluated using a one

dimensional meanline pump flow-modeling method, which provides a fast mod-

eling of turbopumps for rocket engines at very low computational cost. For the

first conceptual design case, a total of 498 different nondominated solutions were

obtained, while 660 were found in the second case. Authors noted that improve-

ments in the objective functions were within 1% in both objectives with respect

to a reference design.

- Buonanno and Mavris [15] addressed the conceptual design of a small supersonic

aircraft, considering seven objectives: (i) weight, (ii) range, (iii) takeoff balanced

field length, (iv) loudness, (v) overpressure, (vi) flight Mach number, and (vii)

cabin size. Some of them were minimized, while others were maximized. An

application example presented by the authors comprised a set of up to 64 design
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variables (both continuous and discrete variables were considered), describing

the aircraft geometry and the mission requirements. The authors used a parallel

hybrid subjective/quantitative MOEA, in which the fitness of an individual was a

combination of both quantitative and qualitative metrics,with the latter being de-

fined by a human evaluator. A parallel-MOEA) (pMOEA), based on the injection

island genetic algorithm [36], was adapted for this MOP. Thestrategy consisted

on assigning one objective function per island and solving atwo-objective op-

timization problem. The second objective for each island was constructed as a

goal attainment metric based on the mission requirements for the aircraft. In this

way, each island obtained a set of solutions excelling in itsassigned objective

and representing a trade-off with respect to the project goals. After a certain

number of generations, the nondominated solutions from theislands were sent

to a central island which solved the seven-objective problem formulated as a

goal attainment problem. Each island used SPEA2. The nondominated solu-

tions from the central island were transferred back to each of the islands and

the process was repeated until satisfactory solutions wereobtained. The authors

used physics-based analysis tools for performance prediction. Low-order/fidelity

models were used for the involved disciplines: aerodynamics, propulsion, stabil-

ity and control, economics, aeroelasticity, manufacturing and acoustics, along

with modules for weight estimation and geometry parameterization.

- Valliyappan and Simpson [175] solved a conceptual design optimization for a

general aviation aircraft product family of small propeller driven GAA (General

Aviation Aircraft) to be scaled around the2, 4, and6 seats configurations, and

which can cruise from150 to 300 knots and have a range from800 to1000 miles.

The aim of this study was to explore the design space in order to find the trade-

off between platform commonality and individual product performance within

the aircraft family. The MOP comprised four objective functions which were de-

fined by means of a goal programming formulation, where the deviations of each

goal from their targets were minimized. For this sake, a set of 7 goals (aspiration

levels), and a set of7 constraints were defined. The first two objectives measured
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the technical and economical related goals within the family, respectively; while

the third objective measured the total constraint violation for the whole family;

finally, objective four measured the variance index or degree of commonality in

variables within the product family. Design candidates were defined with a set of

14 continuous/discrete design variables, and the evaluation of the aircraft perfor-

mance was done via NASA’s GASP (General Aviation Synthesis Program). The

authors used the NSGA-II. A special encoding was adopted in order to contain a

set of commonality controlling genes (one gene per variable), followed by a con-

catenation of genes defining the design variables of each product in the product

family.

- Rajagopal et al. [135] investigated an Unmanned Aerial Vehicle (UAV) concep-

tual design. Two objectives were considered: (i) the maximization of the en-

durance (the time an airplane can fly given a payload and a given fuel weight)

and (ii) the minimization of the wing weight. Six design variables were used,

four of them being wing-geometry related parameters (aspect ratio, wing load-

ing, taper ratio, thickness to chord ratio) and the other twobeing UAV’s oper-

ational parameters (loiter velocity and altitude). Additionally, constraints were

imposed on the performance parameters of the UAV design. These included: (1)

wing weight, (2) rate of climb, (3), stall speed, and (4) maximum speed at sea

level condition. NSGA-II with real-numbers encoding and the SBX crossover

operator was adopted. This MOEA was coupled to Raymer’s RDS software,

which is based on the design methods described in [138], in order to evaluate the

performance of each design candidate. The authors reportedthat a Pareto front

was obtained with a total of 11 solutions.

- Kuhn et al. [88] developed a multidisciplinary conceptualdesign methodology

for its application to hybrid airship design (aerostatic lift and aerodynamic lift).

Two objectives were considered: (i) minimization of the total mass, and (ii) max-

imization of the payload. Thirteen constraints were imposed, related to stress

levels in the components. A set of 18 mixed real/discrete variables were used to

represent the geometry of the airship and its structural properties. The optimiza-
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tion tool adopted was a MOEA called GAME (Genetic Algorithm for Multicrite-

ria Engineering) [90], which is based on Evolution Strategies (ES). The evalua-

tion of the objective functions was done with models varyingin fidelity, ranging

from interpolation models to FEM models. The latter was usedfor the structural

analysis using a FEM commercial software. A Hybrid Universal Ground Ob-

server (HUGO) airship demonstrator was designed, with a total of 10,000 design

candidates being evaluated.

- Jing and Shuo [74] presented the conceptual design of an air-breathing hyper-

sonic cruise vehicle. Five design objectives were considered: (i) maximiza-

tion of the lift-to-drag ratio, (ii) minimization of the stagnation temperature, (iii)

maximization of the thrust-to-drag ratio, (iv) maximization of the airframe vol-

ume, and (v) minimization of the Radar Cross Section (RCS). Constraints were

imposed on variables ranges, flow flux and Mach number at inletconditions,

trimmed angle of attack and rolling angle, and static stability and maneuverabil-

ity margins as well. 21 design variables were used to define the geometry of the

design candidates. The authors adopted MOGA with the following features: real

numbers encoding, arithmetic crossover, Gaussian mutation, steady-state repro-

duction and fitness sharing. Constraint handling was done byan accurate penalty

strategy. Additionally, for further improvement of the solutions, a simulated an-

nealing algorithm4 was adopted as a local search engine. The objectives were

evaluated using simplified models with reduced computational cost. Only three

globally nondominated solutions could be generated. Such solutions were fur-

ther evaluated and compared against a reference design. Theauthors noted that

these solutions were better in all the objectives than the reference design (i.e.,

4Kirkpatrick et al. [79] pointed out the analogy between an “annealing” process and optimization: a

system state is analogous to the solution of an optimizationproblem; the free energy of the system (to be

minimized) corresponds to the cost of the objective function to be optimized; the slight perturbation imposed

on the system to change it to another state corresponds to a movement into a neighboring position (with

respect to the local search state); the cooling schedule corresponds to the control mechanism adopted by the

search algorithm; and the frozen state of the system corresponds to the final solution generated by the search

algorithm (using a population size of one). These analogiesled to the development of the so-calledsimulated

annealingalgorithm.
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they dominated it).

- Xiaoqing et al. [184] evaluated the multiobjective optimization of hypersonic

waverider shape generation. Three objectives were considered: (i) lift-to-drag

ratio, (ii) vehicle’s volume, and (iii) vehicle’s volumetric ratio. No information

is given, concerning constraints, thus it is assumed that only side constraints on

variable ranges are considered. The base section of the waverider was defined

by means of analytical shape functions (i.e., fourth-orderpolynomials), keeping

to a minimum the number of design variables. The authors explored two dif-

ferent techniques: (a) cone derived waverider, and (b) osculating cone derived

waverider. The authors adopted the NSGA-II with an improvedcrowding mech-

anism.

- Theisinger and Braun [170] identified hypersonic entry aeroshell shapes in or-

der to find trade-off designs with increased landed mass capabilities. Three ob-

jectives were considered: (i) drag-area, (ii) static stability and (iii) volumetric

efficiency. This particular spacecraft design problem was driven by planetary

entry-descent-landing performance requirements and thermal/structural limita-

tions, which are naturally conflicting. All objectives weremaximized and two

constraints were imposed to the volumetric efficiency and onthe lift-to-drag ra-

tio. Side constraints were applied to the design variables in order to obtain de-

signs fitting with the current launch systems. Aeroshell shape was described by

a bi-parametric, cubic by quadratic, non-uniform rationalB-spline 3D surface,

allowing them to define the optimization problem with 20 design variables, in-

cluding the aeroshell angle of attack. The authors adopted the version of the

NSGA-II available in theiSIGHT commercial software. Additionally, the ob-

jective function evaluations were performed with the estimated flowfield around

the aeroshell using a physics-based simulation, namely theNewtonian impact

theory. The Mars Science Laboratory Aeroshell was adopted as a reference de-

sign. The authors found several design candidates that performed better than the

reference design in the three objectives under consideration.
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Analysis of the use of MOEAs in conceptual design:

Table 1 summarizes the application of MOEAs in conceptual design optimization

problems. From this table and the previous review, it can be observed that the NSGA-II

is the most frequently adopted approach. The common use of Pareto-based approaches

seems to corroborate the hypothesis from some authors regarding the suitability of

Pareto optimality to drive the search at the preliminary stages of design [181]. It should

be clear that the use of MOEAs is computationally expensive,which is the reason why

analytic and/or low-order engineering models are adopted in most cases. Only in a

few applications, researchers seem to rely on low-order physics-based models [15],

and variable-fidelity physics-based models [88]. Nevertheless, we believe that in the

near future, MOEAs will become a standard practice, as the computing power available

continues to increase each year. It is also worth noting thatMOEAs are flexible enough

as to allow their coupling to both engineering models and low-order physics-based

models without major changes. They can also be easily parallelized, since MOEAs

normally have low data dependency. Finally, it is worth indicating the advantage of

incorporating a subjective evaluation scheme for cases in which the search must be

controlled, disallowing the generation of impractical design solutions as reported by

Buonanno and Mavris [15].

An aspect that is important to emphasize is the poor scalability of Pareto-based

MOEAs as we increase the number of objectives [82]. Many of the applications pre-

viously described considered a low number of conflicting objectives (two or three in

most cases). Although MOEAs can still be used in high-dimensional objective spaces,

it is required to use mechanisms different from the traditional Pareto-based selection

[64]. This issue, however, does not seem to be a major concernin most of the appli-

cations reviewed above. A remarkable exception is the work reported in [15] in which

the authors deal with a problem having seven objectives. Theauthors adopt in this

case a parallel MOEA based on the concepts of co-evolution ofmultiple populations.

This approach seems to produce acceptable results in this high-dimensional objective

search space. Another issue that seems to be a common concernin this first group of

applications is the encoding of the decision variables. Since this sort of application
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normally has mixed decision variables (e.g., discrete and continuous), authors tend to

propose their ownad-hocencodings, which also require specialized crossover and mu-

tation operators associated to them. It should also be evident that in this first type of

applications, authors paid little or no attention to the fine-tuning of parameters of their

MOEAs. This may be due to the obvious difficulties to perform acareful statistical

analysis when dealing with very expensive objective functions. However, other pos-

sible alternatives such as self-adaptation or on-line adaptation have not been properly

addressed by researchers in this area yet [174]. If such self-adaptation and on-line

adaptation mechanisms are unaffordable, at least the use ofrelatively high mutation

rates is suggested, combined with a plus selection mechanism that combines the pop-

ulation of parents with the population of offspring and retains the best half. This will

increase the selection pressure but will maintain enough diversity as to avoid premature

convergence. Finally, it is worth mentioning the use of external files (or archives) as

a viable alternative to reduce objective function evaluations and perform a more accu-

rate search. This sort of mechanism can be particularly useful when combined with

relaxed forms of Pareto dominance such asǫ-dominance [94], which allows to regulate

convergence, and has not been adopted by researchers working in this first group of

applications.

5.2 2D geometries and airfoil shape optimization

Aeronautic and aerospace systems are, in general, complex engineering systems. Their

analysis and design is a very complex task. There exist, however, many enginering

design cases where this complexity can be tackled by analyzing basic components of

the complete system, on which reduced/simplified models canbe used as the basis

for analyzing the whole system. Examples of these conditions are the design of 3D

complex shapes such as wings and turbine blades, where the analysis of their 2D build-

ing sections (airfoils) is frequently performed prior to the analysis of the complete 3D

geometry. In other cases, the geometry for the system can be such that its operating

conditions can be estimated by analyzing its sectional properties. Examples of this lat-
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ter condition are the aircraft engine inlets/nozzles, where the flow can be assumed as

two-dimensional or axisymmetrical. In this section, some applications of MOEAs for

these types of problems are presented.

- Yamaguchi and Arima [185] dealt with the optimization of a transonic com-

pressor stator blade in which three objectives were minimized: (i) pressure loss

coefficient, (ii) deviation outflow angle, and (iii) incidence toughness. The last

objective function can be considered as a robust condition for the design, since

it is computed as the sum of the pressure loss coefficients at two off-design inci-

dence angles. The airfoil blade geometry was defined by twelve design variables.

The authors adopted MOGA with real-numbers encoding, fitness sharing and in-

termediate crossover. Aerodynamic performance evaluation for the compressor

blade was done using Navier-Stokes CFD simulations. The optimization pro-

cess was parallelized, using 24 processors in order to reduce the computational

time required. In order to promote diversity, during the first few generations,

parents were selected from individuals with the first two lowest rank values (i.e.,

dominated individuals were also selected) and later on, only nondominated indi-

viduals were selected.

- Benini and Toffolo [9] addressed the development of high-performance airfoils

for its application in axial flow compressors. They minimized two objectives:

(i) nondimensional pressure ratio, and (ii) the pressure loss coefficient reduced

from the unit value. Constraints were imposed on the design conditions, and

were evaluated at 5 different flow-field points, in order to obtain airfoils being at

least equal in performance to the reference airfoils adopted by the authors. The

airfoil geometry was defined using three Bézier curves. In total 9 designs vari-

ables were used to define the airfoil geometry, its length, pitch, and incidence.

A special procedure was used to avoid generating either useless or invalid air-

foil geometries. The MOEA used by the authors is based on an elitist (µ + µ)

evolution strategy, which adopted binary encoding. In their implementation,µ

offspring were generated using crossover and were mutated with a random-based

mechanism. Repeated solutions (clones) were replaced by randomly-generated
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individuals. In the selection process, the combined population of parents and

offspring were Pareto-ranked but considering also a diversity metric defined as

a function of the minimal normalized Euclidean distance (indecision variable

space) of each individual to its closest neighbor. The bestµ individuals were

retained as members of the following generation. The evaluation of the objec-

tive functions was done by means of CFD simulations with a high computational

cost. The nondominated solutions generated by the authors were found to be

superior in performance to the reference airfoils, using NACA 65 family airfoils.

- Naujoks et al. [113] addressed an airfoil design problem inwhich extreme Pareto

optimal solutions were defined for two operational design points (two competing

objectives): one for high lift performance at low speed condition and the other

one for low drag performance at high speed condition. The airfoil was repre-

sented by two Bézier curves, and a total of 12 design variables were adopted.

No constraints were defined, other than side constraints (upper and lower limits

for the design variables). The authors used an approach called MODES (Multi

Objective Derandomized Evolution Strategy). In this case a(1+10)-DES (De-

randomized Evolution Strategy) was adopted, which means that only one parent

was used to produce the offspring. The aerodynamic evaluation of the design

candidates is performed using a CFD Navier-Stokes simulation with a high com-

putational cost. It is worth noting, however, that for the examples presented by

the authors, a budget of only 1000 evaluations was considered. Although this

was a very small number of objective function evaluations, the authors reported

the generation of good approximations of the Pareto front. In a further paper,

Naujoks et al. [114] proposed to use a (20+20)-MODES strategy, along with an

additional selection mechanism inspired on the NSGA-II. The results presented

with this additional selection mechanism were very similarto those obtained be-

fore, both in terms of quality of the Pareto approximation and in terms of the

spread of the nondominated solutions along the Pareto front.

- Beume et al. [10] poposed the SMS-EMOA (SMS stands for S-metric5 selec-

5Thehypervolume (also known as theS metric or the Lebesgue Measure) of a set of solutions measures
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tion) strategy. The approach was used to solve a multi-objective airfoil design

problem. As in the previous case, Pareto extreme solutions were defined by

three operational conditions for lift, drag and pitching moment coefficients. The

optimization problem was to find trade-off solutions minimizing the drag val-

ues for the three flow conditions, while not losing lift and keeping the pitching

moment within a2% range from the reference design points. Additionally, ge-

ometrical constraints were included for the airfoil shape.These last constraints

were treated in a direct manner, discarding all infeasible solutions, previous to a

CFD simulation. Results for this application were presented and compared with

those obtained by using NSGA-II, in both cases with a limitedbudget of 1,000

function evaluations.

- Rai [133] dealt with the robust optimal aerodynamical design of a turbine blade

airfoil shape, taking into account the performance degradation due to manufac-

turing uncertainties. Two objectives were considered: (i)to minimize the vari-

ance of the pressure distribution over the airfoil’s surface, and (ii) to maximize

the probability of constraint satisfaction. Only one constraint was considered,

related to the minimum thickness of the airfoil shape. The constraint-handling

technique adopted was the one developed by the same author and reported in

[132]. The airfoil shape parameterization consisted of eight decision variables

but in the experiments presented, only two of them were used for perturbing one

airfoil side (the pressure side). The author adopted a multi-objective differential

evolution (MODE) approach [130]. Its main features included a mechanism to

reduce the set of nondominated solutions in case its size exceeded a certain (pre-

defined) threshold. This was done to promote diversity in thepopulation. It also

adopted an intermediate population whose size was twice as large as the original

and which was Pareto ranked so that only the first half was retained for the next

generation. The author used a high-fidelity CFD simulation on a perturbed air-

foil geometry in order to evaluate the aerodynamic characteristics of the airfoil

the size of the portion of objective space that is dominated by those solutions collectively. It has been proved

that the maximization of this performance measure is equivalent to finding the Pareto optimal set [45], and

this has also been empirically verified by some researchers [38].
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generated by MODE. The simulation follows a probability density function that

is observed for manufacturing tolerances. This process required a high compu-

tational cost, which the author attempted to reduce by usingan artificial neural

network [150] Response Surface Model (RSM).

- Ray and Tsai [136] considered an airfoil shape design optimization problem with

two objectives to be minimized: (i) the ratio of the drag-to-lift squared coeffi-

cients, and (ii) the squared moment coefficient. Constraints were imposed on

the flow Mach number and angle of attack. Airfoil shapes were defined by the

PARSEC representation [158]. This airfoil representationallowed to define the

geometry of an airfoil with11 design variables which are more related to its aero-

dynamic performance than in other type of airfoil representations. The optimizer

used is a multi-objective particle swarm optimizer (MOPSO)[3]. A particular

feature of this application was that the particle swarm scheme was based on

movements for the particles of one position to another in thedesign space, rather

than on an update of an individual’s velocity as done in the standard particle

swarm optimization algorithm. The aim of this scheme was a reduction in the

number of user-defined inputs. The flow solver utilized corresponds to an Euler

code which was able to capture nonlinearities in the flow suchas shock waves.

In their results, the authors obtained a set with 32 nondominated solutions. In

a related work, Ray and Tsai [137] presented a parallel implementation of this

MOPSO for airfoil shape optimization. This approach was also hybridized with

a gradient-based algorithm. Contrary to standard hybridization schemes where

gradient-based algorithms are used to improve the nondominated solutions ob-

tained (i.e., as a local search engine), in this approach theauthors used the gradi-

ent information to repair solutions not satisfying the equality constraints. This re-

pairing algorithm was based on the Marquardt-Levenberg algorithm [106, 100].

During the repairing process, a subset of the design variables was used, instead of

the whole set, in order to reduce the dimensionality of the optimization problem

to be solved.

- Obayashi et al. [117] studied the aerodynamic design of cascade airfoils shapes.
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The problem considered three objective functions: (i) pressure rise, (ii) flow turn-

ing angle, and (iii) total pressure loss. The first two objectives were maximized

and the third one was minimized. The authors used a real-coded MOGA. Ob-

jective evaluation was performed using a 2D Navier-Stokes code for flow evalu-

ation. The same MOEA was also used for the design of a four-stage compressor

[123, 117]. In this second application, two objective functions were maximized:

(i) total pressure ratio and (ii) isentropic efficiency. TheMOP consisted of 80

design variables, and one constraint on the flow conditions,in order to avoid

designs with flow separation. The evaluation was done using flow simulations

based on the streamline curvature method in which solutionsare obtained iter-

atively, causing a high computational cost even when an engineering model is

used. The nondominated solutions obtained by the authors outperformed a base-

line design in both objective functions by an amount of 1%.

- D’Angelo and Minisci [29] solved a subsonic airfoil shape optimization prob-

lem, in which two objective functions were minimized: (i) drag force coeffi-

cient, and (ii) lift force coefficient difference with respect to a reference value.

The airfoil geometry was parameterized using Bézier curves both for its cam-

ber line and for its thickness distribution. Five design variables were used and

constraints were imposed on the extreme values of the objective functions. The

authors adopted MOPED (Multi-Objective Parzen-based Estimation of Distribu-

tion) [27], which uses the Parzen method to build a probabilistic representation

of the nondominated solutions, with multivariate dependencies among the deci-

sion variables. The authors included three modification to improve MOPED: (a)

the use of a Kriging model by which solutions were evaluated without resort-

ing to costly computational simulations, (b) the use of evolution control to keep

the evolution from converging to false Pareto fronts, and (c) the hybridization of

the algorithm with some mechanisms from NSGA-II (selectionand ranking of

solutions). Aerodynamic evaluations were performed by using a CFD simula-

tion code, tailored for aerodynamic airfoil analysis. The authors indicated that

this subsonic airfoil shape optimization problem presented difficulties associated
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to more complex problems: The true Pareto front was discontinuous and par-

tially converged solutions (when divergence was detected,the iterative process

was stopped) from the aerodynamic simulation code introduced irregularities in

objective function space. The approximation model reducedthe number of ob-

jective function evaluation in a significant manner (to one sixth of their original

value).

- Bing et al. [11] presented the aerodynamic shape optimization for a 2D Hy-

personic inlet and 2D SERN (Single-Expansion-Ramp Nozzle)used in scram-

jet engines. Two applications were presented, one with two objectives and the

other with three objectives. For the first optimization example a 2D Hypersonic

engine inlet was considered, and the aim was to maximize the two following

objectives: (i) pressure recovery, and (ii) static pressure rise. Constraints on

the design variables, inlet geometry and flow condition at exit, were imposed.

The inlet geometry was defined using four decision variables. The evaluation

of the design performance required high fidelity CFD Navier-Stokes simulations

since the flow physics was highly nonlinear for the operatingflow conditions

indicated. The results of both the NSGA-II and the Neighborhood Cultivation

Genetic Algorithm (NCGA) [182] were compared. The second problem consid-

ered the same inlet design previously defined, with the additional objective of

minimizing the inlet drag coefficient. From the results presented by the authors,

in both cases, the NCGA algorithm performed better than NSGA-II, obtaining

more nondominated solutions with a better spread along the Pareto front.

- Brown et al. [14] addressed the optimization design of a scramjet inlet consider-

ing two objectives: (i) total pressure recovery factor, and(ii) variation of pressure

recovery factor for a± 5% change in free stream Mach number. The first objec-

tive was maximized, while the second was minimized. According to the design

problem, geometric constraints were defined in order to remove physically un-

realistic solutions. Additionally, operational flow constraints were considered to

guarantee the auto-ignition in the engine. This condition required a certain range

for pressure, temperature and Mach number in the flow at specific locations. The
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inlet was considered as a 2-D geometry and consisted of threeflat ramps and

a cowl at the combustion chamber inlet. In this case, 12 design variables were

adopted. The MOEA adopted used a selective breeding processthat ranked solu-

tions according to the constraints, and also on the basis of the desirability of the

values of the objectives (according to the user’s preferences). The objective func-

tions consisted of hypersonic flow conditions in which strong shock waves were

present. The authors did not report the cardinality of the set of nondominated

solutions that they obtained, but they reported the generation of a considerably

high number of nondominated solutions.

- Congedo et al. [26] dealt with the airfoil shape optimization for transonic flows

of Bethe-Zel’dovich-Thompson (BZT) fluids. In this case, two design conditions

were explored, both for a non-lifting airfoil, and for a lifting airfoil. In the sec-

ond case, the MOP considered two design objectives: (i) maximization of lift

at BZT subcritical conditions, and (ii) minimization of wave drag while maxi-

mizing lift for supercritical BZT flow conditions. The geometry of the airfoil

shape was represented with a Bézier curve with 16 2D controlpoints, i.e., 32

decision variables, from which 10 are constants used to control the leading edge

and trailing edge positions as well as the leading edge slope. Thus, the prob-

lem consisted of 22 variables. The only constraint includedwas the thickness to

chord ratio of the airfoil, which was adjusted to its specified value, once a design

was generated, and prior to the flow solution. The authors used the NSGA with

a sigma-share formula given in [131], which takes into account the population

size and the number of objectives. They chose parameters such that less than

1,000 objective function evaluations were performed. The authors reported that

all the solutions that they obtained outperformed the baseline design as well as

the designs obtained using traditional design methods.

- Shimoyama et al. [156] developed a novel optimization approach for robust de-

sign. In their approach, a design for multi-objective six-sigma (DFMOSS) [155]

was applied for the robust aerodynamic airfoil design of a Mars exploratory air-

plane. The core of the design methodology was, on the one hand, the concept
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of Robust Design6 and, on the other, its multi-objective nature. The idea of the

DFMOSS methodology was to incorporate a MOEA to simultaneously optimize

the mean value of an objective function, while minimizing its standard deviation

due to the uncertainties indicated above. The airfoil shapeoptimization problems

considered two cases: a robust design of (a) airfoil aerodynamic efficiency (lift-

to-drag ratio), and (b) airfoil pitching moment constraint. In both cases, only

the variability in the flow Mach number was taken into account. The authors

adopted MOGA. The airfoil geometry was defined using Béziercurves both for

the upper and for the lower surfaces. 6 control points were used, resulting in

12 design variables. The aerodynamic performance of the airfoil was evaluated

by CFD simulations using the Favre-Averaged compressible thin-layer Navier-

Stokes equations. Eighteen robust nondominated solutionswere obtained in the

first test case. From this set, almost half of the population attained the6σ con-

dition. In the second test case, more robust nondominated solutions were found,

and they satisfied a sigma level as high as25σ.

- Szöllös et al. [162] addressed the aerodynamic shape optimization of the airfoil

geometry of a standard-class glider, considering three objectives: (i) maximize

gliding ratio at high flight speed, (ii) maximize gliding ratio at average weather

conditions, and (iii) minimize sink rate at low turning speeds. All these objec-

tives are specified in terms of airfoil’s aerodynamic lift and drag coefficients as

well as flight operating conditions in terms of the Reynolds number (Re) and the

Mach number (M ). Constraints are considered for: (a) airfoil’s maximal lift co-

efficient at landing flight conditions, (b) maximum airfoil’s thickness to chord ra-

tio, (c) trailing edge thickness, and (d) pitching moment coefficient (Cm) which

is required not to be worse than a reference airfoil design. The authors intro-

duced a new MOEA calledmulti-objective micro-genetic algorithm with range

adaptation, based onǫ-dominanceor ǫµARMOGA. This approach is inspired

6Robust design takes into account the fact that in real-worldengineering designs, performance of a design

can vary from its expected value, due mainly to errors and uncertainties in the design and/or manufacturing

process, and/or in the operating conditions. Therefore, the aim is to find the trade-off between the optimality

of the design and its robustness.
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on the Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) [143].

ARMOGA incorporates two archiving techniques: a global archive, which stores

all the best solutions obtained so far, and a recent archive,which stores the best

solutions of the past previous generations. Solutions fromthe second archive par-

ticipate in the parent selection process.ǫµARMOGA introduces two additional

mechanisms. The first corresponds to the use of a small population size (i.e.

the use of a micro-genetic algorithm as in [85, 25]), coupledwith the use of an

external file for storing the nondominated solutions obtained so far. The second

mechanism corresponds to the use of the concept ofǫ-dominance [95], which

is a relaxed form of Pareto dominance that has been used as an archiving strat-

egy that allows to regulate convergence. The authors initialized the population

using a Latin Hypercube Sampling (LHS) technique, and the main population

was reinitialized at every certain number of generations, based on the average

and standard deviation of the decision variables. The objective functions were

evaluated using a CFD simulation code. The authors obtainedfeasible solutions

with improvements on the order of 10%, 8% and 7-10% for the first, second and

third objectives, respectively, with respect to a reference airfoil design.

Analysis of the use of MOEAs in 2D geometries and airfoil shape optimization:

Table 2 summarizes the application of MOEAs in 2D geometriesand airfoil shape

optimization problems. From this table and the previous discussion, we can see that,

as before, a wide variety of Pareto-based elitist MOEAs havebeen used in this do-

main. It is also worth noting the use of MOEAs inrobust design, in which solutions

are evaluated with off-design operating conditions and manufacturing tolerances. Such

solutions are thus representing more realistic designs. Several authors report improved

designs when adopting MOEAs, but unsuccessful cases have also been reported. The

cases in which MOEAs fail to produce improved designs seem tobe associated to situ-

ations in which the baseline design had been already improved in a significant manner,

or when the search space is so highly constrained that it is difficult to move to better
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regions. Again, the high computational cost associated to the use of MOEAs is evident.

In spite of the advantages of Pareto-based MOEAs, it is also evident that, when dealing

with expensive objective functions such as those of the above applications, the use of

careful statistical analysis of parameters is unaffordable. Thus, the parameters of the

MOEAs discussed in this section were simple guesses or takenfrom values suggested

by other researchers. It is also important to note that some researchers have suggested

clever approaches that allow the use of very small population sizes, although surrogate

models have also been employed, as in the previous section. Nevertheless, the use

of other simpler techniques such as fitness inheritance or fitness approximation [139]

seems to be uncommon in this domain and could be a good alternative when dealing

with high-dimensional problems. Additionally, the authors of this group of applications

have relied on very simple constraint-handling techniques, most of which discard in-

feasible individuals. Alternative approaches exist, which can exploit information from

infeasible solutions and can make a more sophisticated exploration of the search space

when dealing with constrained problems (see for example [108]) and this has not been

properly studied yet. Finally, it is worth emphasizing that, in spite of the difficulty

of these problems and of the evident limitations of MOEAs to deal with them, most

authors report finding improved designs when using MOEAs, even when in all cases a

fairly small number of fitness function evaluations was allowed. This clearly illustrates

the high potential of MOEAs in this domain.

5.3 3D complex physics/shape optimization

Sophisticated aeronautical/aerospace systems possess inmost cases, complex three-

dimensional shapes and/or are designed to operate in complex physical environments.

Examples of such complex three-dimensional shapes are those of turbine/propeller

blades, and complete aircraft configurations. Complex three-dimensional physics are

present for high speed flow over wings and turbine/propellerblades, in which shock

waves can arise, affecting the design performance. For these cases, the MOP cannot

be simplified by the use of reduced models, such as two-dimensional simulations, as

done in the applications of the previous section. Next, we will discuss applications of
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MOEAs in which their authors deal with these 3D complex physics/shape optimization

problems.

- Sasaki et al. [145] and Obayashi et al. [118] solved a multi-objective aerody-

namic wing shape optimization problem in which they minimized three objec-

tives: (i) drag coefficient for transonic cruise, (ii) drag coefficient for supersonic

cruise, and (iii) bending moment at the wing root for supersonic cruise condition.

The set of constraints comprised lift coefficient at both transonic and supersonic

cruise conditions, wing area and maximum airfoil thickness. The variables for

this design were 66 in total, and defined the wing planform shape, airfoil chord

and thickness distribution at several wing stations, as well as wing twist angles

at the same airfoil locations. The authors adopted MOGA and the design can-

didates were evaluated by a high-fidelity Navier-Stokes CFDflow simulation.

The evaluation process was parallelized using the master-slave paradigm. In a

further paper, Sasaki et al. [146] used the same algorithm for the aerodynamic

optimization of a supersonic transport wing-body configuration. In this applica-

tion, two objectives were considered: (i) drag coefficient and (ii) difference in

Darden’s equivalent area distribution. Constraints on thelift coefficient were im-

posed during the optimization, and on the length and volume of the fuselage. The

aim of the second objective was to achieve low sonic boom characteristics. For

this problem, the number of variables increased to 131, as the fuselage geometry

was added in this case. The aerodynamic evaluation for the first objective was

performed by an Euler CFD simulation to considerably reducethe computational

time with respect to the use of a Navier-Stokes CFD simulation. Nonetheless,

the optimization process was parallelized using the master-slave paradigm. Two

test cases were considered, each one having different upper/lower limits for the

section nearby the wing-body intersection.

- Sasaki and Obayashi [147] solved a problem similar to the previous one [146]

and obtained analogous results, but in this case, the ARMOGAalgorithm was

used. Also, and in order to incorporate constraints, an extended Pareto ranking

method based on constraint-dominance was used [47].
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- Ng et al. [115] addressed a multiobjective wing platform and airfoil shape opti-

mization problem. The MOP aimed to redesign the reference ONERA M6 wing

minimizing two objectives: (i) W/Wo, which is the ratio for the design wing

weight with respect to the reference ONERA M6 wing weight, and (ii) CD/CDo,

which is the ratio of the design wing drag coefficient with respect to that of the

reference wing. The first objective was evaluated using a semi-empirical equa-

tion, while the second was obtained from a multigrid Euler CFD simulation.

Constraints were imposed on the flow Mach number and constantlift coeffi-

cient. No special constraint handling technique was used, but the CFD code was

instructed to vary the angle of attack, subjected to a tolerance, in order to satisfy

this equality constraint. This technique can be seen as a mechanism to repair

solutions. The wing platform was represented by 5 design variables: (a) taper

ratio, (b) wing sweep angle, (c) twist angle, (d) aspect ratio, and (e) thickness-to-

chord ratio. The airfoil used for the wing corresponded to the symmetric airfoil

used in the ONERA M6 wing, and was the same across the wing. Theoptimizer

used was based on the PSO algorithm described in Ray et al. [136]. The authors

presented results for two test cases: the first with 4 steps and the second with

8 steps. In the first case 10 nondominated solutions were obtained, while 11

were found in the second case. In both cases, all the nondominated designs were

better in the first objective function compared to the reference wing, and for the

second objective, almost half of the population were betterwhile the rest were

worse, with respect to the reference wing. An Adaptive Search Space Operator

(ASSO) technique was used by the authors to give the algorithm the possibility

of adapting decision variables bounds by shrinking/expanding the boundaries of

the design space.

- Lian and Liou [101] addressed the optimization of a three-dimensional rotor

blade, namely the redesign of the NASA rotor 67 compressor blade, a transonic

axial-flow fan rotor, which was the first of a two-stage compressor fan. Two ob-

jectives were considered in this case: (i) maximization of the stage pressure rise,

and (ii) minimization of the entropy generation. Constraints were imposed on
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the mass flow rate to have a difference less than 0.1% between the new one and

the reference design. The blade geometry was constructed from airfoil shapes

defined at four span stations, with a total of 32 design variables. The authors

adopted MOGA. The optimization process was coupled to a second-order RSM,

which was built with 1,024 design candidates using the Improved Hypercube

Sampling (IHS) algorithm. 12 design solutions were selected from the RSM-

Pareto front obtained, and such solutions were verified witha high fidelity CFD

simulation. The objective function values slightly differed from those obtained

by the approximation model, but all the selected solutions were better in both

objective functions than the reference design. Similar work was presented by

Lian and Liou [102] but minimizing the blade weight instead of the entropy gen-

eration. Similar performance results were obtained with lighter blades. More re-

cently, Kim and Liou [78] presented the design of three new MOEAs, including

addtitional mechanisms to the basic MOGA algorithm indicated before. Such

mechanisms included: an elite-preserving approach (EP-MOGA), a modified

sharing function (EP-MOGAS), and a gradient-based directional operator (EP-

MOGAS-D).

- Holst [61] presented the aerodynamic optimization of a wing-body configuration

in which two objective functions were maximized: (i) lift-to-drag ratio, and (ii)

configuration volume. Constraints were imposed on the operating flow condi-

tion at transonic Mach number and at a fixed lift. The problem had 66 decision

variables which controlled the wing geometry, its positionalong the fuselage and

the section shape of the fuselage at some specified fuselage stations. The author

adopted MOGA. The proposed approach was able to reduce the fuselage cross

section in the vicinity of the wing-fuselage juncture, which is a common practice

in aerodynamic design for the transonic flow regime.

- Sasaki et al. [142] solved an aerodynamic MOP for a turbine compressor stage.

The main aim was to improve three aerodynamic objectives, byidentifying the

trade-offs among them in the baseline condition: (i) isentropic efficiency, (ii)

blockage, and (iii) flow loss. Equality constraints on the design were imposed,
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intended mainly to maintain the flow and operating conditions similar to those

of the baseline geometry: Stage loading, mass flow rate, stage exit whirl angle

and pressure ratio. Such equality constraints were transformed into inequali-

ties, and thresholds were reduced as the optimization proceeded. The three-

dimensional shape of the blade was re-designed from the baseline geometry,

by defining parameters that allowed: (a) axial movement of sections along the

engine axis, (b) circumferential movement of sections, (c)solid body rotation

of sections based on trailing edge position, and (d) controlon the number of

blades. In total, 28 design variables were used per compressor stage. The au-

thors adopted ARMOGA. The aerodynamic evaluation was performed with high

fidelity Reynolds-Averaged Navier-Stokes CFD tools to analyze a compressor

stage. The CFD analysis comprised the rotor/stator interaction. The authors

presented two application examples, the first of which had a fixed number of

rotor/stator blades. The optimization process was able to improve the baseline

design while 8 designs satisfied all the constraints. Efficiency was improved

within 1%, even when infeasible solutions were considered.After analyzing

the trade-off among the objectives from the first test case, asecond test case was

proposed, considering the number of rotor/stator blades asan additional variable,

and changing the approximation function in the radial direction. In this case, a

B-spline function was used instead of the cubic-spline adopted in the previous

case. Results from this second test case achieved an efficiency improvement of

1.5%. In this case, 14 feasible designs were generated, fromwhich only 4 were

nondominated.

- Benini [8] extended a previous work from Benini and Toffolo[9] for a three-

dimensional transonic compressor rotor design optimization problem in which

two objective functions were maximized: (i) total pressureratio, and (ii) adia-

batic efficiency. Constraints were imposed on the design conditions as to obtain

the mass flow of a reference design, the NASA Rotor 37. The blade geome-

try used in the transonic compressor rotor was parameterized by Bézier curves

defining the mean camber line and the thickness distribution. Three profiles
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along the blade span were defined: at hub, midspan and tip. A total of 23 de-

cision variables defined the 3D compressor rotor geometry. The author used

the MOEA described in [9], which is based on evolution strategies. The perfor-

mance evaluation of the designs was done using high fidelity Navier-Stokes CFD

simulations. The authors noted that the nondominated solutions produced were

clustered around the reference design point, due to a tight constraint imposed on

the flow mass rate, which did not allow the algorithm to explore a wider region

of the search space. Nevertheless, the author was able to obtain improvements in

both objective functions using the proposed approach.

- Chiba et al. [17] explored the trade-offs among four aerodynamic objective

functions in the optimization of a wing shape for a Reusable Launch Vehicle

(RLV). The objective functions were: (i) the shift of the aerodynamic center

between supersonic and transonic flight conditions, (ii) pitching moment in the

transonic flight condition, (iii) drag in the transonic flight condition, and (iv)

lift for the subsonic flight condition. The first three objectives were minimized

while the fourth was maximized. These objectives were selected for attaining

control, stability, range and take-off constraints, respectively. The RLV defini-

tion comprised 71 design variables to define the wing platform, wing position

along the fuselage and airfoil shape at prescribed wingspanstations. The authors

adopted ARMOGA, and the aerodynamic evaluation of the RLV was done with

a Reynolds-Averaged Navier-Stokes CFD simulation. A trade-off analysis was

conducted with 102 nondominated individuals generated by the MOEA.

- Song and Keane [159] performed the shape optimization of a civil aircraft en-

gine nacelle. The primary goal of the study was to identify the trade-off between

aerodynamic performance and noise effects associated withvarious geometric

features for the nacelle. For this, two objective functionswere defined: i) scarf

angle, and ii) total pressure recovery. The nacelle geometry was modeled using

40 parameters, from which 33 were considered design variables. The authors

adopted the NSGA-II with a commercial CFD software for evaluating the three-

dimensional flow characteristics. Due to the large size of the design space to be
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explored, as well as the simulations being time consuming, aKriging-based sur-

rogate model was adopted in order to keep the number of designs being evaluated

with the CFD tool to a minimum. The authors reported difficulties in obtaining

a reliable Pareto front (there were large discrepancies between two consecutive

Pareto front approximations). They attributed this behavior to the large number

of variables in the design problem, and also to the associated difficulties to obtain

an accurate Kriging model for these situations. In order to alleviate this situation,

they performed an analysis of variance (ANOVA) test to find the variables that

contributed the most to the objective functions. After thistest, they presented

results with a reduced surrogate model, employing only 7 decision variables.

The authors argued that they obtained a design similar to a reference one, but

requiring a lower computational cost because of the use of this reduced Kriging

model.

- Jeong et al. [69] investigated the improvement of the lateral dynamic character-

istics of a lifting-body type re-entry vehicle in transonicflight condition. Two

objectives were minimized: (i) the derivative of the yawingmoment, and (ii) the

derivative of the rolling moment. The MOP involved four design variables, and

two solutions were sought: The first one without constraints, and the second one

constraining the lift-to-drag ratio for the lifting-body type re-entry vehicle. The

authors adopted the Efficient Global Optimization for Multi-Objective Problems

(EGOMOP) algorithm developed by Jeong et al. [68]. This algorithm was built

upon the ideas of the EGO and ParEGO Algorithms from Jone et al. [76] and

Knowles et al. [80], respectively. For the exploration of the nondominated solu-

tions, the authors adopted MOGA. Due to the geometry of the lifting body and

the operating flow condition of interest, namely high Mach number and strong

vortex formation, the evaluation of the objectives was doneby means of a full

Navier-Stokes solver. Since the objectives were actually derivatives, multiple

flow solutions were required to determine their values in a discrete manner, con-

siderably increasing the total computational time due to a large number of calls

of the CFD code. The authors were able to find better geometry configurations
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than the baseline one, with better lateral dynamic characteristics, both for the

unconstrained and for the constrained instances.

- Lee et al. [98] presented the robust design optimization ofan ONERA M6 wing

shape. The robust optimization was based on the concept of the Taguchi method

in which the optimization problem is solved considering uncertainties in the de-

sign environment, in this case, the flow Mach number. The problem had two ob-

jectives: (i) minimization of the mean value of an objectivefunction with respect

to variability of the operating conditions, and (ii) minimization of the variance

of the objective function of each candidate solution, with respect to its mean

value. In the sample problems, the wing was defined by means ofits planform

shape (sweep angle, aspect ratio, taper ratio, etc.) and of the airfoil geometry, at

three wing locations (each airfoil shape was defined with a combination of mean

lines and camber distributions), using a total of 80 design variables to define the

wing designs. Geometry constraints were defined by upper andlower limits of

the design variables. The authors adopted the HierarchicalAsynchronous Paral-

lel Multi-Objective Evolutionary Algorithm (HAPMOEA) [54], which is based

on evolution strategies, incorporating the concept of Covariance Matrix Adapta-

tion (CMA). The aerodynamic evaluation was done with a CFD simulation. It is

worth noting that HAPMOEA uses, during the evolutionary process, a hierarchi-

cal set of CFD models, varying the grid resolution of the solver (three levels are

used), as well as different population sizes (depending on the grid resolution).

The authors presented two solutions, with and without uncertainties. In the latter

case the problem considered two design points (at two different operating condi-

tions), and the algorithm found the trade-off solutions between these two design

points. For the case of the design with uncertainties, the optimization problems

found the trade-off solutions considering the minimization for the mean value

of the objective function (the inverse of the lift-to-drag ratio for the wing) and

its variance with respect to the mean value. From the resultspresented by the

authors, the Pareto fronts were continuous and exhibited a concave geometry

for the trade-off solutions. 12 solutions were obtained in the robust design of
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the wing and all the nondominated solutions presented a shock-free flow both

at the upper and at the lower surface of the wing. Additionally, the nondomi-

nated solutions showed a better behavior, in terms of aerodynamic performance

(lift-to-drag ratio) with a varying Mach number, as compared to the baseline de-

sign. In these examples, the authors used three grid-levels(model resolution):

fine, intermediate, and coarse. During the evolutionary process, the individuals

were moved from the coarse to the fine levels and viceversa. A total of 1100

individuals were evaluated.

- Oyama et al. [126] applied a design exploration technique to extract knowledge

information from a flapping wing MAV (Micro Air Vehicle). Theflapping mo-

tion of the MAV was analyzed using multi-objective design optimization tech-

niques in order to obtain nondominated solutions which wereanalyzed with Self

Organizing Maps (SOMs) in order to extract knowledge about the effects of the

flapping motion parameters on the objective functions. The conflicting objectives

considered were: (i) maximization of the time-averaged lift coefficient, (ii) max-

imization of the time-averaged thrust coefficient, and (iii) minimization of the

time-averaged required power coefficient. The problem had five design variables

and the geometry of the flying wing was kept fixed. Constraintswere imposed

on the averaged lift and thrust coefficients so that they werepositive. The au-

thors adopted MOGA. Due to the nature of the complex flow in this problem,

the objective functions were obtained by means of CFD simulations, solving

the unsteady incompressible Navier-Stokes equations. Objective functions were

averaged over one flapping cycle. The purpose of the study wasto extract trade-

off information from the objective functions and the flapping motion parameters

such as plunge amplitude and frequency, pitching angle amplitude and offset,

and phase difference. In order to minimize the turnaround computational time,

the evaluation of the objective functions was parallelizedusing a cluster of work-

stations. From the results obtained, the authors extractedextreme nondominated

solutions which were further analyzed to understand their flow physics for each

objective in particular.
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- Arabnia and Ghaly [5] presented the aerodynamic shape optimization of tur-

bine stages in three-dimensional fluid flow, so as to minimizethe adverse effects

of three-dimensional flow features on the turbine performance. Two objectives

were considered: (i) maximization of isentropic efficiencyfor the stage, and

(ii) minimization of the streamwise vorticity. Additionally, constraints were im-

posed on: (1) inlet total pressure and temperature, (2) exitpressure, (3) axial

chord and spacing, (4) inlet and exit flow angles, and (5) massflow rate. The

blade geometry, both for rotor and stator blades, was based on the E/TU-3 tur-

bine which is used as a reference design to compare the optimization results.

The multi-objective optimization consisted of finding the best distribution of 2D

blade sections in the radial and circumferential directions. For this, a quadratic

rational Bézier curve, with 5 control points was used for each of the two blades.

The authors adopted NSGA. Both objective functions were evaluated by using

a 3D CFD flow simulation. The authors adopted an artificial neural network

(ANN) based RSM. The ANN model with backpropagation, contained a single

hidden layer with 50 nodes, and was trained and tested with 23CFD simulations,

sampling the design space using the LHS technique. The optimization process

was undertaken by using the ANN model to estimate both the objective func-

tions, and the constraints. Finally, the nondominated solutions obtained were

evaluated with the actual CFD flow simulation. The authors indicated that they

were able to obtain design solutions which were better than the reference turbine

design.

- Tani et al. [168] solved a rocket engine turbopump blade shape optimization de-

sign which considered three objective functions: (i) shaftpower, (ii) entropy rise

within the stage, and (iii) angle of attack of the next stage.The first objective was

maximized while the others were minimized. The design candidates defined the

turbine blade aerodynamic shape and consisted of 58 design variables. The au-

thors adopted MOGA. The objective function values were obtained from a CFD

Navier-Stokes flow simulation. The authors reported solutions that were better

than a baseline design turbopump blade shape. Indeed, improvements on the
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three objective functions were of 8%, 30% and 40%, respectively, as compared

to the baseline design.

Analysis of the use of MOEAs in 3D complex physics/shape optimization:

Table 3 summarizes the application of MOEAs in 3D complex physics/shape opti-

mization problems. For this group of applications, a commonpoint is that 3D complex

shapes and/or complex physics models are considered, whichrequires, in most cases,

the use of high dimensional design space and/or sophisticated simulation tools. For

both cases, the design optimization search becomes highly computationally expensive

(some authors report times in the order of days or even monthsfor the problems that

they solved). Such applications require approaches that can minimize their high com-

putational cost. Some authors relied on parallelization techniques for this sake (see for

example [145]). An interesting parallel approach is the onereported by Lee et al. [98],

in which the evaluation of the objectives is done in an asynchronous manner, with a

scheme that resembles an island model [24]. Such asynchronous parallel MOEAs are

uncommon in the specialized literature, in spite of their high potential in the sort of ap-

plications reported in this section. Another alternative is the use of surrogate models,

which are adopted by a number of works reported in this section. For example, Lian

and Liou [101, 102], used a second order RSM, Song and Keane [159] used a Kriging-

based model, Lee et al. [98] adopted hierarchical CFD models(i.e., models with vary-

ing mesh sizes, which produce approximations at a reduced computational cost), and

Arabnia and Ghaly [5] adopted an artificial neural network. The use of approximate

models can be seen as an advantage, but also presents drawbacks, for example, for

large dimensional design spaces, as indicated by Song and Keane [159]. Another alter-

native is to adopt simpler approximation mechanisms such asfitness inheritance [109]

and fitness approximation [164]. Another aspect worth emphasizing is that most au-

thors adopted MOEAs with real-numbers encoding, rather than with binary encoding.

This is relatively common when dealing with engineering applications having a high

number of decision variables. The lack of modern diversity maintenance approaches
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such as archiving techniques (see for example [94, 60, 151])is also evident within the

applications of this section, although there are some interesting exceptions. For exam-

ple, Sasaki and Obayashi [147] adopted two external archives for their MOEA. Also

interesting is the proposal of Holst [61] of using “bins” (this approach is similar in its

operation to the adaptive grid adopted in PAES [83]). However, it is worth noting that

both, Sasaki & Obayashi’s and Holst’s approaches quickly degrade their performance

as the number of objectives increases.

An interesting area worth exploring is the design of mechanisms that allow a better

(i.e., more intelligent) exploration of the search space. For example, Sasaki [143], and

Ng et al. [115] use statistics gathered from the population in order to guide the search.

Such approach, however, requires a good diversity maintenance mechanism in order to

avoid an excessive selection pressure that would produce premature convergence.

In spite of the large number of constraint-handling techniques currently available

for evolutionary algorithms [23, 108], in most of the works reported in this section there

is a noticeable lack of them. The use of good constraint-handling techniques is partic-

ularly useful when the optimum solutions lie on the boundarybetween the feasible and

the infeasible regions, which is normally the case in multi-objective optimization [24].

Their use can contribute to a better (i.e., more efficient andeffective) exploration of the

search space in the presence of constraints.

5.4 Structural optimization

Since its origins, aeronautical and aerospace engineeringdesign has adopted, as a

premise, the design of lighter and stronger structures, which are two objectives that

are clearly in conflict. The applications of MOEAs in structural optimization that are

reviewed in this section make evident that these design goals are still pursued by re-

searchers in aeronautical and aerospace engineering.7

- Langer et al. [91] applied an integrated approach using Computer Aided Design

(CAD) modeling with a MOEA for structural shape and topologyoptimization

7For a good survey of the use of MOEAs in structural optimization, the interested reader is referred to

[73].
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problems. The authors dealt with the structural optimization of a typical instru-

ment panel of a satellite in which two objectives were defined: (i) minimizing

the instrument panel mass, and (ii) maximizing the first eigenfrequency. The

problem had eight constraints, which were defined in terms ofoperating con-

ditions, mainly given by stress, temperature and eigenfrequency levels, as well

as geometric constraints. The problem had 17 design variables from which 2

were discrete and the rest were mixed (continuous/discrete). The discrete vari-

ables considered the number of stringers to use in the panel,and the plate and

stringer materials. The MOEA developed by the authors had the following fea-

tures: it used a mix of real/integer representation for continuous and discrete

variables, respectively, and crossover and mutation operators were applied difer-

ently for each type of variable. Besides, the algorithm usedPareto dominance-

based ranking to assign fitness to an individual and the “goals and priorities”

strategy [47] as a constraint-handling technique. The nondominated solutions

obtained at each generation were stored in an external file, which constituted, at

the end of the evolutionary process, the approximation of the Pareto optimal set

generated by the MOEA. In their application examples, the authors solved the

optimization problem for three shape and topology optimization cases: (a) panel

without instruments, (b) panel with instruments at fixed positions, and (c) panel

with instrumental placing. The evaluation of the objectivefunctions comprised

four load cases: (a) quasi-static acceleration, (b) modal analysis, (c) sinusoidal

vibration loads, and (d) ‘pseudo temperature’ load. This latter load case, re-

stricted the positioning of the instruments on the panel, due to limiting operating

temperature for a specific instrument. The first three load cases were evaluated

in parallel using a FEM simulation on a cluster of workstations. In the first appli-

cation example, the Pareto front was approximated and presented small regions

of discontinuity. For the second example, the Pareto front changed radically its

shape,8 with more regions of discontinuity. Finally, for the third case, the authors

8If the problem was transformed into one that considered the minimization of both objectives, this change

in geometry for the Pareto front would correspond to a changefrom a convex to a concave shape. This type

of geometry is challenging to traditional mathematical programming techniques.
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did not present a Pareto front but indicated that this case presented difficulties to

generate feasible solutions, due to the tight constraints defined. This condition

was alleviated by introducing a solution repairing algorithm. Langer et al. [92]

extended the previous MOEA using RSM in order to reduce its associated com-

putational cost. One important feature in this applicationis that a clustering tech-

nique was used to build multiple response surfaces over continuous subspaces of

the complete design space.

- Voutchkov et al. [180] solved a robust structural design ofa simplified FEM jet

engine model. This application aimed at finding the best jet engine structural

configuration minimizing the variation of reacting forces under a range of ex-

ternal loads, the mass for the engine and the engine’s fuel consumption. The

authors considered the minimization of four objectives: (i) standard deviation of

the internal reaction forces, (ii) mean value of the internal reaction forces, (iii)

engine’s mass, and (iv) mean value of the specific fuel consumption. The FEM

model comprised a set of 22 groups of shell elements, and the thickness corre-

sponding to 15 of these groups were considered as design variables. The authors

adopted the NSGA-II. The evaluation of the structural response was done in par-

allel by means of FEM simulations. The computational time was reduced using

a Kriging-based RSM. The first two objectives were computed over 200 external

load variations. The authors reported finding a good compromise (and robust)

design.

- Todoroki and Sekishiro [173] proposed a new optimization method for compos-

ite structural components. The problem consisted of two objectives: (i) mini-

mize the structural weight of a hat-stiffened wing panel, subject to buckling load

constraints, and (ii) maximize the probability of satisfying a predefined buck-

ling load. The problem was described by a set of mixed real/discrete design

variables. The real variables corresponded to the stiffener geometry definition,

while the discrete variables were related to the number of plies for the compos-

ite panel. Constraints were imposed on the dimensions of thestiffener, but they

were automatically satisfied in the definition of the decision variables’ ranges.
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The authors adopted MOGA coupled to a Kriging model, in orderto reduce the

number of objective function evaluations, and to a Fractal Branch and Bound

(FBB) method [172] for the stacking sequence optimization needed in laminar

composites structures. The authors noted that the first objective was not compu-

tationally costly, since it could be computed once the geometry of the design can-

didates was defined. On the other hand, the buckling load constraint demanded

a large computational cost, since it needed a FEM simulation. For this reason,

a Kriging model was adopted and initialized with sampling points obtained by

the LHS technique. The optimization cycle consisted of two layers. The upper

layer was driven by MOGA and the Kriging model, where the optimization of

the structural dimensions took place. At the lower layer, the stacking sequences

of the stiffener and panels were optimized by means of the FBBmethod. From

the results obtained, a comparison of different designs wasmade. The solution

obtained with the evolutionary algorithm was 3% heavier than a previous design

obtained with a conventional (deterministic) method, but required only 301 FEM

analysis compared to the tens of thousands required by the previous design.

- Olympio and Gandhi [121] applied a hybrid MOEA to generate aconstrained

topology optimization design for morphing aircraft structures. The problem con-

sisted mainly on finding the trade-off for cellular structures with voids, meeting

the following four objectives: (i) high recoverable straincapability to allow sev-

eral cycles of morphing, (ii) low work necessary to morph forminimal additional

need on the actuation system, (iii) high bending stiffness to reduce out-of plane

deformation due to surface pressure and (iv) low mass. Constraints were defined

on local strains in order to prevent plastic deformations ormaterial failure. In this

application, comprising the distribution of material in the structural element, a

FEM analysis was performed to evaluate the objective functions related to strain

and stiffness for the material. Mesh elements were considered as the design vari-

ables which are discrete in nature. Special techniques wereused to suppress

non-connected regions of material. The cardinality of the design variables vec-

tor depended on the discretization of the finite element meshused in solving the
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problem. The authors adopted theǫ-NSGA-II of Kollat and Reed [84]. This

MOEA can be seen as an improved version of the NSGA-II, which incorporates

ǫ-dominance [94], dynamic population sizing, and an automatic termination cri-

terion. Theǫ-NSGA-II was hybridized with a local search procedure, which

consisted of flipping elements adjacent to actual structural elements and evalu-

ating its sensitivity. This can be seen as a specialized operator which acts only

on void elements adjacent to structural elements. In the application examples,

this local search procedure was limited to a user-defined number of iterations,

and was incorporated after a specific number of generations.Additionally, the

authors proposed the use of a variable mutation rate, in which the mutation rate

was increased or decreased from its current value, depending on the improve-

ment of the solutions. The authors presented two application examples. The

first corresponded to a one-dimensional flexible skin using amesh grid size of

20 × 20 elements (400 design variables), and the second example corresponded

to a shear-compression flexible skin using the same mesh size.

Analysis of the use of MOEAs in structural optimization:

Table 4 summarizes the application of MOEAs in structural optimization problems.

The problems presented in this section are characterized bythe use of mixed variable

types, which in some cases required that the MOEA adopted special representations

and operators. There were also several problems that involved the solution of a combi-

natorial optimization problem. It is worth emphasizing that traditional MOEAs such as

NSGA-II do not necessarily perform well in multi-objectivecombinatorial optimiza-

tion problems, since they were originally designed to solvecontinuous optimization

problems. Additional elements such as a good local search engine are normally re-

quired when solving combinatorial optimization problems.In fact, there is a wide

variety of MOEAs that have been designed to solve multi-objective combinatorial op-

timization problems (see for example [48, 37]). However, many of them do not support

mixed problems such as those described in this section. Thisseems to indicate that the
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solution of multi-objective structural optimization problems such as those described in

this section is a research line that is worth exploring in thefuture. The use of the so-

called multi-objective memetic algorithms [50], which hybridize MOEAs with power-

ful local search engines seems to be an obvious choice to tackle the problems described

in this section, but they have been scarcely used in this fielduntil now.

Another interesting topic is the use of advanced archiving techniques that allow

us to limit the number of nondominated solutions to be storedin a clever way. The

ǫ-NSGA-II of Kollat and Reed [84] is an example of such clever archiving techniques.

However, other alternatives exist which have not been properly exploited in the context

of aeronautical and aerospace engineering (see for example[151]).

5.5 Multidisciplinary design optimization

As indicated before, aeronautical and aerospace designs are typically multidisciplinary,

involving disciplines such as aerodynamics, structures, propulsion, acoustics, manufac-

turing and economics, among others. Normally, each of the disciplines involved aims

at optimizing one specific performance metric, which makes multidisciplinary design

multi-objective in nature. Next, we present some applications of MOEAs in multidis-

ciplinary design optimization (MDO).

- Obayashi et al. [120, 119] and Takahashi et al. [165] addressed the MDO of

a wing platform. Three objectives were considered: (i) aerodynamic drag, (ii)

wing weight, and (iii) fuel weight. Constraints were imposed on lift and on wing

structural strength. No special constraint-handling mechanism was adopted, and

for any solution that violated the constraints, its rank waslowered, by using a

constant penalty value of 10. Three design variables were considered for the

wing planform: sweep angle, chord length at the kink and chord length at the tip.

Other variables such as the wingspan, root chord length and position of the kink

took a fixed value. The authors adopted MOGA. Two disciplineswere consid-

ered: aerodynamics and structures. The aerodynamic evaluation was performed

with the potential CFD solver FLO27, from which only inducedand wave drag

could be obtained. For the wing weight, an algebraic model was used, and for
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the last objective, the volume of the wing was calculated to estimate the amount

of fuel that could be stored in the wing tanks. The first two objectives were mini-

mized while the third was maximized. The structural analysis, evaluated the skin

thickness required, as well as the stress distributions which was considered as a

constraint in the problem.

- Choi et al. [20] solved a MDO problem involving Supersonic Business Jet de-

sign. The goal was to obtain a trade-off design having good aerodynamic perfor-

mances while minimizing the intensity of the sonic boom signature at the ground

level. Three objectives were considered: (i) the aircraft drag coefficient, (ii) ini-

tial pressure rise (boom overpressure), and (iii) ground perceived noise level. In

this case, the disciplines involved were aerodynamics and aeroacoustics. Con-

straints were imposed on some geometrical parameters, and on aircraft’s oper-

ational conditions. No special constraint-handling mechanism was used other

than discarding infeasible candidates. The geometry of theaircraft was defined

by 17 design variables, allowing the modification of the wingplatform, its po-

sition along the fuselage, and some cross sections and camber for the fuselage.

The authors adopted the NSGA-II. For evaluating the objective functions, a high-

fidelity Euler simulation was obtained with a very fine grid close to the aircraft’s

surface. In order to reduce the computational time requiredby the optimization

cycle, Kriging models were employed, one for each objectivefunction. Its initial

definition was formed with a LHS of the design space with 232 initial solutions

including both, feasible and infeasible candidates. The authors were able to find

solutions that were better than a baseline design.

- In related publications, Chung and Alonso [21] and Chung etal. [22] solved the

same MDO problem described before, but using theµ-GA algorithm from Coello

and Toscano [25]. This change aimed at reducing the total number of function

evaluations performed during the optimization process. The µ-GA algorithm

uses a population of only 4 individuals, an external file and areinitialization pro-

cess. In one study [21], the design cycles were performed using a Kriging model.

Two design cycles were executed, each consisting of 150 solution candidates us-
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ing the LHS technique, around a base design in the first cycle.The second cycle

was performed around the best solution obtained in the previous cycle aiming

to improve it. In the other study [22], the authors proposed and tested the Gra-

dient Enhanced Multiobjective Genetic Algorithm (GEMOGA). The basic idea

of this MOEA is to enhance the nondominated solutions obtained by a genetic

algorithm with a gradient-based local search procedure. One important feature

of this approach was that the gradient information was obtained from the Krig-

ing model. Therefore, the computational cost was not considerably increased.

In both studies, the authors reported obtaining very good approximations of the

Pareto optimal set.

- Kumano et al. [89] addressed the MDO of the wing shape of a small jet aircraft.

In this study, four objectives were minimized: (i) drag at the cruise condition, (ii)

drag divergence between cruising and off-design condition, (iii) pitching moment

at the cruising condition, and (iv) structural weight of themain wing. Addition-

ally, two constraints were considered, related to the wing’s rear spar heights, and

the strength and flutter margins. The wing geometry was defined by airfoil sec-

tions at four wingspan stations, and wing twist at five wing stations. A total of

109 design variables were required. The authors adopted MOGA. Aerodynam-

ics and structures were the two disciplines needed for evaluating the objective

functions. Since high-fidelity CFD and CSD simulations wereused, demand-

ing a very high computational time, the optimization process was performed by

means of a Kriging model. The authors were able to obtain an improved design

with respect to a reference solution.

- Chiba et al. [16] performed a MDO design exploration. The aim of this study

was to find the trade-offs for the design of a wing for its use ina silent super-

sonic transport application. Five objectives were considered: minimization of

(i) pressure drag (ii) friction drag, (iii) boom intensity at supersonic condition,

and (iv) composite structural weight of the wing; and maximization of (v) lift at

subsonic condition. In these objectives, aerodynamics andstructural dynamics

were the main disciplines under consideration. The constraints of this problem
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were mainly geometrical, and no special constraint-handling mechanism was

required other than discarding any solution that violated the geometrical con-

straints. The geometry of the wing was defined by 58 design variables. The

authors adopted a hydrid MOEA consisting of a combination oftwo algorithms:

ARMOGA and a MOPSO. The motivation of this hybridization wasto exploit,

on the one hand, the ability for performing global search of ARMOGA, and, on

the other hand, the ability of the MOPSO for performing localsearch. Both algo-

rithms used real-coded design variables. One half of the population was handled

by ARMOGA, with a further subdivision, assigning one quarter of the popula-

tion to each crossover method indicated above. The other half of the population

at each generation was handled by the MOPSO. The evaluation of the aerody-

namic properties was done via an Euler solution with TAS-Code, coupled to a

simplified model for estimating the friction drag, reducingin this way the com-

putational cost of this discipline. The structural properties (composite strength

and modal analysis) were verified with the commercial code NASTRAN. Fi-

nally, the intensity of the sonic boom was also evaluated. The authors obtained

75 nondominated solutions on which a data mining method was applied, using

ANOVA and SOM methods, in order to reduce them to a set containing only 24

solution from which the designer was able to select only one.

- Chiba et al. [18] addressed the MDO problem of a wing shape for a transoic

regional-jet aircraft. In this case, three objective functions were minimized: (i)

block fuel for a required airplane’s mission, (ii) maximum takeoff weight, and

(iii) difference in the drag coefficient between transonic and subsonic flight con-

ditions. Additionally, five constraints were imposed, three of which were related

to the wing’s geometry and two more to the operating conditions in lift coeffi-

cient and to the fuel volume required for a predefined aircraft mission. The wing

geometry was defined by 35 design variables. The authors adopted ARMOGA.

The MDO process was done with high fidelity CFD/CSD simulations. The dis-

ciplines involved included aerodynamics and structural analysis and during the

optimization process, an iterative aeroelastic solution was generated in order to

50



minimize the wing weight, with constraints on flutter and strength requirements.

Also, a flight envelope analysis was done, i.e., obtaining high-fidelity Navier-

Stokes solutions for various flight conditions. The population (consisting of only

eight individuals) was reinitialized at every 5 generations for range adaptation.

In spite of the use of such a reduced population size, the authors were able to

find several nondominated solutions outperforming the initial design. They also

noted that during the evolution, the wing-box weight tendedto increase, but this

degrading effect was redeemed by an increase in aerodynamicefficiency, given

a reduction in the block fuel of over one percent, which wouldbe translated in

significant savings for an airline’s operational costs.

- Sasaki et al. [144] solved a MDO for a supersonic wing shape.In this case,

four objective functions were minimized: (i) drag coefficient at transonic cruise,

(ii) drag coefficient at supersonic cruise, (iii) bending moment at the wing root

at supersonic cruise condition, and (iv) pitching moment atsupersonic cruise

condition. The problem was defined by 72 design variables. Constraints were

imposed on the variables ranges and on the wing section’s thickness and camber,

all of them being geometrical constraints. Thus, no specialconstraint-handling

techniques were required, other than discarding any infeasible solution, and gen-

erating a new one using the genetic operators, until a valid solution was ob-

tained. The authors adopted ARMOGA, and the aerodynamic evaluation of the

design solutions, was done by high-fidelity Navier-Stokes CFD simulations. No

aeroelastic analysis was performed, which considerably reduced the total com-

putational cost. The objective associated with the bendingmoment at wing root

was evaluated by numerical integration of the pressure distribution over the wing

surface, as obtained by the CFD analysis. The authors indicated that among the

nondominated solutions there were designs that were betterin all four objectives

with respect to a reference design.

- Lee et al. [97] utilized a generic framework for MDO [53] to explore the im-

provement of aerodynamic and radar cross section (RCS) characteristics of an

Unmanned Combat Aerial Vehicle (UCAV). In this application, two disciplines
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were considered, the first concerning the aerodynamic efficiency, and the second

one, dealing with the visual and radar signature of an UCAV airplane. In this

case, three objective functions were minimized: (i) inverse of the lift-to-drag ra-

tio at ingress condition, (ii) inverse of the lift-to-drag ratio at cruise condition,

and (iii) frontal area. The number of design variables was 100 and only side con-

straints were considered in the design variables. The first two objective functions

were evaluated using a potential flow CFD solver (FLO22) coupled to FRIC-

TION code to obtain the viscous drag. The authors adopted theHierarchical

Asynchronous Parallel Multi-Objective Evolutionary Algorithm (HAPMOEA).

The authors reported a processing time of 200 hours for theirapproach, on a

single 1.8 GHz processor. It is important to consider that HAPMOEA operates

with different CFD grid levels (i.e., approximation levels): coarse, medium, and

fine. In this case, the authors adopted different populationsizes for each of these

levels. Also, solutions were allowed to migrate from a low/high fidelity level to

a higher/lower one in an island-like mechanism.

- In further work, Lee et al. [96] solved the same previously defined UCAV MDO

problem, but considering a robust design methodology (the Taguchi method

[163]) to incorporate uncertainties in the operation environment of the UCAV.

The MDO problem considered two cases, each with three objectives. The first

case corresponded to a mono-static RCS and its aerodynamic shape optimiza-

tion, and the objectives to be minimized were: (i) radar cross section for the

mono-static case, (ii) mean value for the inverse of the lift-to-drag ratio, and (iii)

variance for the inverse of the lift-to-drag ratio with respect to its mean value.

The second case was a mono/bi-static RCS and aerodynamic shape optimiza-

tion, with the following objectives to be minimized: (i) mono-static RCS (ii)

bi-static RCS, and (iii) both, the mean value of the inverse lift-to-drag ratio, and

its variance. For this latter objective, an aggregating function was used, instead

of extending the optimization problem to one with four objectives. In both cases,

the robust design considered uncertainties in operating conditions such as fly-

ing Mach number, angle of attack and radar signal orientation with respect to
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the UCAV. In both test cases, the authors adopted HAPMOEA. The MDO prob-

lem comprised more than 100 design variables, with constraints imposed on the

thickness of the airfoil sections for structural concern. From the results, a set of

15 nondominated solutions was obtained in the first case and aset of 10 solutions

was obtained in the second case. From these solutions, the designers were able

to select one which had superior performance in all the objectives with respect

to a baseline design (this happened for the two cases considered).

- Pagano et al. [127] presented an application for the MDO of an aircraft pro-

peller. The aim was to improve the propeller performance. Basically, two con-

flicting objectives were considered: (i) minimizing the noise emission level, and

(ii) maximizing aerodynamic propeller efficiency. For thisindustrial problem,

several disciplines were considered: aerodynamics, structures, and aeroacous-

tics. For each of these disciplines, specialized computer physics-based simula-

tion codes were employed. Each design solution evaluation comprised an itera-

tive procedure among these simulation codes in order to evaluate a more realistic

operating condition. Therefore, the optimization processwas computationally

demanding. In order to reduce the burden of this high computational cost, the

authors opted for the use of design of experiments techniques, and RSM for ef-

ficiently exploring the design space. The geometry for the propeller blade was

considered as the output for this optimization process, andwas parameterized

using 14 design variables which included blade twist, sectional chord and lead-

ing edge line definition, all, at several prescribed blade radial stations. The MDO

problem contained constraints on the geometry design variables, and on propeller

shaft power at two flight conditions: takeoff and cruise, respectively. The authors

adopted The Nondominated Sorting Evolutionary Algorithm+(NSEA+9) as im-

plemented in the OPTIMUS commercial software. The authors were able to

obtain design solutions which performed better than a reference propeller de-

sign. Approximately 20 nondominated solutions were obtained, all of which

9NSEA+ adopts the selection mechanism of the NSGA-II and the mutation operator of the evolution

strategies.
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were better than the reference design in both objectives.

- Nikbay et al. [116] presented a coupling of techniques for multidisciplinary

analysis and optimization, particularly addressing the aeroelastic optimization

problem including aerodynamics and structures as the main disciplines. The au-

thors adopted the NSGA-II and a MDO problem which aimed to improve the

reference experimental wing AGARD 455.6. For this problem,the wing geome-

try was defined in terms of wing taper ratio and wing quarter chord swept angle,

which were considered as the design variables. The objective functions were: (i)

maximization of the lift-to-drag ratio and (ii) minimization of the wing’s weight.

Also, one constraint was included in the maximal aeroelastic wing’s tip defor-

mation, which was prescribed as a function of the wingspan. In this approach,

both the aerodynamic and the structural simulation were performed with high fi-

delity CFD and CSD commercial codes. A special iterative process was defined

in order to couple the multiple-discipline effects presented in the optimization,

i.e., exchanging parametric CAD definition, pressure loadsand deformations,

between the software used for each discipline. From their application example,

the authors obtained 14 nondominated solutions, from whichthe extremes of the

Pareto front were extracted.

- Johnson et al. [75] performed a MOEA-based MDO for the aerodynamic and

heat transfer performances of heat shields for blunt body reentry vehicles. The

authors were interested in obtaining trade-offs among the performance param-

eters (objectives) of the vehicles, which included: (i) peak heat flux, (ii) total

head load, and (iii) maximum cross range. The optimization was performed with

the University of Maryland Parallel Trajectory Optimization Program (UPTOP),

which is based on a differential evolution scheme, and allows the analysis of

reentry trajectory vehicles with three degrees of freedom to be coupled with the

analysis for vehicle’s aerodynamic and heat transfer performances. Even when

three objectives were considered in the problem, the authors performed experi-

ments with only two of them at a time. The design variables forthe optimization

problems were 13 or 14, depending on the definition of the axial profile of the
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vehicle (three different axial profiles were used). The constraints set consisted

of nine constraints, which considered trajectory design limits, theory limitations,

and aerodynamic moments limits. The crossover and mutationrates were varied

randomly from zero to one, with the aim of maximizing the range of the non-

dominated solutions produced. From the results presented,the authors selected

optimal trajectory/vehicle configurations for two reentryconditions.

- Rajagopal and Ganguli [134] addressed the MDO preliminarydesign of an UAV

wing. In their study, the authors aimed at optimizing two conflicting objectives:

UAV endurance and wing’s structural weight. In this case, the involved disci-

plines are aerodynamics and structural analysis. Two objective functions were

considered: (i) the maximization of the endurance (the timean airplane can fly

given a payload and a given fuel weight) and (ii) the minimization of the wing

weight. A total of ten design variables were used for definingthe wing’s geome-

try as well as its structural properties. Constraints were imposed on the aerody-

namic performance and geometry, both for the airfoil shape and for the complete

wing. Also, constraints were imposed on the minimal structural strength and

stiffness of the wing. The authors adopted the NSGA-II, and the objective func-

tions were evaluated using CFD and CSD simulation codes. This required a

very high computational cost, which led the authors to the use of Kriging-based

models. The authors reported finding only 5 feasible nondominated solutions.

- Jagdale et al. [65] applied a MOEA for the conceptual multidisciplinary design

of a bendable UAV wing. Such types of wings, constructed fromcomposite

materials, have two conflicting structural requirements: first, the complete wing

must be able to be folded for its storage in a container and, second, it must be stiff

enough to withstand the aerodynamic loads during flight operation, in order to

avoid buckling, due to an excesive material strength and large deformation. For

the multidisciplinary design, two major analysis disciplines were considered:

aerodynamics and structures. Two objectives were considered: (i) maximize the

lift-to-drag ratio of the wing, (ii) maximize the wing’s buckling speed. Addi-

tionally, a set of four constraints was included comprising: a minimum cruising
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speed, a positive lift coefficient, a stability margin, and the desired rolled wing

diameter range. Both objective functions were evaluated using CFD and CSD

simulation codes. The authors adopted the NSGA-II. Ten design variables were

used: seven to define the wing geometry and three to define its composite plies

orientation. The wing geometry related variables are continuous, but the authors

indicated that they used a discretization for them. The authors reported finding

trade-off solutions that were able to outperform a reference design in both objec-

tives.

Analysis of the use of MOEAs in multidisciplinary design optimization:

Table 5 summarizes the application of MOEAs in multidisciplinary design opti-

mization. A common feature of the applications discussed inthis section was the in-

teraction of two or more disciplines in the evaluation of theobjective functions. This

was combined in some cases with a high-dimensional search space, leading to very

costly computer simulations that required the use of surrogate models and/or paral-

lelization techniques. The need for highly efficient MOEAs specially tailored for this

sort of problems is quite evident. Although some authors reported using very small

population sizes (including micro-genetic algorithms), the computational cost of the

MOEAs adopted remains as their main limitation. Thus, this area clearly needs further

research aimed at producing efficient and effective MOEAs that can produce good ap-

proximations of the Pareto optimal set requiring only a verylow number of objective

function evaluations. The use of advanced archiving techniques can also be advanta-

geous [151]. Finally, the lack of properly designed constraint-handling techniques is

also evident. Such approaches can help to reduce the overallcomputational cost of the

evolutionary process, but has not been properly addressed yet (see for exampe [108]).

5.6 Aerospace system optimization

Apart form atmospheric flight, aerospace engineering dealswith the design of space-

craft and space systems such as satellites. The use of MOEAs in these applications is
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reviewed next.

- Hartman et al. [57] and Coverstone-Carroll et al. [28] presented the applica-

tion of a MOEA to the design of low-thrust spacecraft trajectories. The authors

considered two study cases: a) Earth-Mars rendevouz [57, 28], and b) Earth-

Mercury rendevouz [28]. The authors adopted the NSGA [160] and considered

three objectives: i) maximize spacecraft mass delivery at rendevouz, ii) minimize

the spacecraft mission flight time, and iii) maximize the spacecraft heliocentric

revolutions. Three constraints were also imposed on the MOP, from which two

were related to the minimum and maximum values for the heliocentric revolu-

tions (i.e., they constrain the range value that the third objective can attain). The

third constraint was the convergence error that results from solving a two-point

boundary value problem (TPBVP), which includes two sets of seven nonlinear

and coupled differential equations each. Since for this case there is no closed

form solution, a numerical approximation, based on the calculus of variations

is used. In fact, this latter process corresponds to an optimization process by it-

self, since it involves computing the optimal spacecraft thrust schedule as well as

the thrust orientation, along with the optimal orbit that maximizes the delivered

weight at the rendevouz point, with its specific constraintsat launch/rendevouz

points as well as along the transfer orbit. This last optimization process cor-

responds to the objective function evaluation, which is computationally inten-

sive, since many of the solutions generated by the MOEA mightnot be feasible.

The NSGA was hybridized with a local search procedure10 based on a gradient

method implemented in NASA’s JPL SEPTOP (Solar Electric Propulsion Tra-

jectory Optimization Program) software. So, the MOEA (NSGAin this case) is

used for the global search, and the parameters obtained for each individual in the

population, are used as input parameters for the SEPTOP software. It is interest-

ing to note that, as reported by Hartmann [58], after applying the local search,

10In Hartmann [58] the approach is calledNSMA which stands for Non-dominated Sorting Memetic

Algorithm.
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the individuals are not updated in their parameters, but only in their fitness val-

ues (i.e., the authors adopt a Baldwinian learning strategy). Thus, the authors

argue that diversity is preserved in the population. The authors adopt a penalty

function to handle the constraints of the problem. The authors were able to find

several families of optimal trajectories for the two spacecraft missions analyzed,

including some novel trajectories.

- Lee et al. [99] addressed a low-thrust orbit transfer from ageostationary orbit to

a retrograde Molnya-type orbit. The challenge in this problem is that it requires

to modify five out of six orbital parameters, which is performed with low-thrust

applied during long periods of time. The authors consideredtwo objectives: i)

minimize the required propellant mass, and ii) minimize thetoal flight time. The

authors relied on the Q-law (a Lyapunov feedback control law) theory, which

requires the tuning of 13 control parameters defining the decision vector. Three

different MOEAs were adopted: 1) NSGA [160], 2) The Pareto-based Ranking

Genetic Algorithm11 (PRGA), and 3) the Strength Pareto Genetic Algorithm12

(SPGA). The results obtained by these three MOEAs are compared based on

two performance measures: the size of the dominated space, and the coverage

of two Pareto fronts. For each candidate solution in the MOEA’s population,

an optimal orbital transfer was estimated, using the Q-law,such that it satisfied

the orbital’s initial and final boundary conditions, while minimizing the total

flight time. Once the schedule and orientation of the thrust along the orbit are

obtained, the required propellant mass, and the flight time,allow to evaluate the

two objective functions previously indicated. From their comparative study, the

authors concluded that both NSGA and SPGA had a similar performance with

respect to the measures adopted. These two MOEAs outperformed PRGA. It

is worth noting, however, that the authors performed only three runs with each

algorithm, because of the high computational cost involvedin the evaluation of

the objective functions of this problem.

11The description of this algorithm provided by the authors corresponds to MOGA [46].
12This is really SPEA [189].
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- Luo et al. [104] solved the problem of rendez-vous trajectory parameter opti-

mization. In this case, three objective functions were considered: (i) the time

of flight for the spacecrafts to accomplish the rendez-vouz,(ii) the total velocity

characteristic which is a function of multiple impulses performed by the chaser

spacecraft, and (iii) the trajectory safety performance index, which is a measure

of the distance the chaser spacecraft attains in “free path”with respect to the tar-

get spacecraft, in case the thrust control ceases. A simplified model (linearized)

was adopted for solving the trajectory of the rendez-vouz problem. The prob-

lem consisted of a decision vector that could vary in size dueto the number of

impulses considered in the optimization problem. In the application problems

presented, the authors used either three or four impulses, originating decision

vectors of seven or eight variables, respectively. Constraints were imposed on the

times of applying the impulse and the interval time between two consecutive im-

pulses. The authors adopted the NSGA-II. The constraint-handling mechanism

incorporated into the NSGA-II was adopted without any changes. The evalua-

tion of the objective functions was obtained by an iterativemethod, i.e., a set of

differential equations, governing the spacecraft motion.The example problems

presented by the authors were for three and four impulses rendez-vouz trajectory

optimization. In each case 10 runs were performed and a “global” Pareto front

was constructed considering the Pareto fronts obtained in each execution. The

authors did not report the number of nondominated solutionsobtained in any

case.

- In a similar work, Luo et al. [103] extended their application for the multiple-

impulse rendez-vouz trajectory optimization problem, butin this case using a

more sophisticated model (non-linear) for evaluating the objective functions.

Additionally, constraints on the path were included to solve a problem with more

realistic operational conditions. As before, the NSGA-II was adopted. The prob-

lems that were solved corresponded to a three and four impulses rendez-vouz

trajectory optimization. In both cases, trade-offs were obtained among the time

of flight, the propellant cost, and the trajectory safety forrendez-vouz missions,
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with and without path constraints.

- Ferringer et al. [43] addressed the problem of satellite constellation design. The

authors looked for a three-satellite constellation which minimized two objec-

tives: (i) Maximum Revisit Time (MRT), and (ii) Average Revisit Time (ART).

Both objectives were influenced by satellite orbital parameters: (a) inclination,

(b) right ascension of the ascending node, and (c) mean anomaly, which were

used as design variables. Orbital height was not treated as avariable but fixed at

an altitude guaranteeing horizon-horizon visibility among satellites. The evalu-

ation of the objective functions was obtained by modeling satellite constellation

visibility to ground locations, defined by discrete grid points and overlaying the

land area of interest. The authors adopted the NSGA-II with binary encoding.

- In more recent work, Ferringer et al. [44] addressed the problem of satellite

constellation reconfiguration using a MOEA. The problem solved by the authors

considered the Global Positioning System (GPS) constellation for two degrad-

ing cases: (a) loss of one satellite, out of 24 comprising theconstellation, and

(b) loss of one plane of satellites, out of a total of six planes (loss of 4 satel-

lites). The GPS constellation was designed to provide global average coverage

greater than 99.9% in ideal operating conditions, and greater than 96.9% in the

worst case. This coverage was calculated by considering a visibility of at least 4

satellites above a 5◦ angle over the Earth’s horizon. For the application problem,

a total of six objective functions were defined: (i) four-fold average daily visi-

bility time, (ii) four-fold worst-case-point daily visibility time, (iii) total time of

flight, (iv) maximum∆V13 required by any maneuvered satellite, (v) sum of the

∆V variance of the maneuvered satellites, and (vi) satellites maneuvered. All

these objectives comprised constellation performance objectives, constellation

reconfiguration costs, and satellite maneuver risk. The first two objectives were

maximized, while the others were minimized. The authors adopted theǫ-NSGA-

II algorithm of Kollat and Reed [84]. Additionally, the authors indicated the use

13In orbital mechanics,∆V, corresponds to the impulse or change in velocity needed tomake an orbital

change of the satellite or any spacecraft. This∆V is given by the propulsion system.
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of a technique called time continuation which was applied during several runs

of the algorithm. When using this mechanism, the initial population for every

successive run was formed by keeping 25% of nondominated solutions of the

previous run and the other 75% solutions were created randomly. The optimiza-

tion problem was defined with a vector of 24 or 21 design variables depending on

the degrading cases indicated above. The design variables corresponded to the

mean anomaly and integer phasing orbits for the satellites in the constellation.

- Vasile and Croisard [107] addressed the robust preliminary and multidisciplinary

design for an interplanetary spacecraft mission, namely, theBepiColombomis-

sion. The robust design considered uncertainties in several design parameters,

and aims at reducing the impact of these on the optimal value for the design cri-

teria. Unlike other approaches presented above, which makeuse of the Taguchi

method as the robust design framework, in this case, the authors make use of

Evidence theory [154, 33]. This allows to model both, stochastic and epistemic

uncertainties (i.e., the authors assume a poor or incomplete knowledge of the

design parameters). The latter situation is commonly present in the preliminary

design phase of the spacecraft mission considered. The authors considered two

objectives in this case: i) maximize the Cumulative Belief Function (CBF) (i.e, a

measure of the maximum confidence that a design is better thana certain thresh-

old, in the cost function), and ii) minimize a given cost function, which in the

examples presented, corresponds to minimizing the wet mass(related to the mass

of propellant required to perform the low-thrust transfer)of the spacecraft being

designed. The MOEA used by the authors was the NSGA-II [32]. In the solution

of robust design problems, design candidates are not evaluated at fixed values of

the design parameters, but considering uncertainties in them. In this case, three

uncertain parameters were considered with four threshold intervals and a cor-

responding BPA (Basic Probability Assignment) each. Thus,for evaluating the

CBF, a total of 64Focal Elements(intersection threshold regions for all the un-

certain parameters with different BPAs each), had to be searched for. In each
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of these threshold regions, a local optimizer was used to estimate the maximum

of the system’s function. Thus, if the whole evolutionary process is considered,

it is evident that this is a computationally expensive application. Furthermore,

the authors reported the use of a Kriging model for approximating the relation

between the spacecraft maximum thrust and the power to be generated by the

solar arrays, with the Delta budget (∆V ), which is an important value for the

objective function evaluation. The authors compared the use of the NSGA-II to

a reference (nearly optimal) solution, and concluded that their hybrid approach

was very useful for estimating the optimum and for narrowingdown the search

in the presence of uncertainties.

- Minisci et al. [111] dealt with the robust multi-disciplinary preliminary design of

a small scale Unmanned Space Vehicle (USV), which was planedto be used for

space re-entry operations. In this case, the simultaneous optimization of both,

the spacecraft shape, and its trajectory control profile, are required. The authors

considered three objectives: i) minimize the mean value of heat flux in the USV,

ii) minimize the mean value of the estimated internal spacecraft temperature,

and iii) minimize the weighted sum of the variances of the first two objectives,

which were evaluated along the re-entry trajectory, considering uncertainties in

two aerodynamic forces (lift and drag), and in the thermal conductivity and the

specific heat of the material used for building the spacecraft. Two constraints

were also included in the maximum attainable values for the variance of the heat

flux and in the estimated internal spacecraft temperature. The authors adopted

an approach called MOPED [27], which is based on an Estimation of Distribu-

tion Algorithm (EDA) [93]. MOPED makes use of nondominated sorting and

crowding (taken from NSGA-II [32]) and was used to search on the spacecraft

geometry parameters (six in total). Additionally, an optimal control subproblem

was solved for finding the optimal re-entry trajectory (i.e., to determine the angle

of attack profile along the trajectory), from a set of dynamicequations, formu-

lated by nonlinear differential equations and a set of initial/boundary conditions

that had to be satisfied. The authors adopted variable fidelity meta-models, or
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surrogates, whith the aim of reducing its high computational cost. Artificial

neural networks (ANNs) were used as meta-models, at the beginning of the evo-

lutionary process, being trained only with a low fidelity analytical aerodynamic

model. Towards the end of the evolutionary process, the ANNswere traided with

high fidelity CFD solutions.

Analysis of the use of MOEAs in aerospace system optimization:

Table 6 summarizes the application of MOEAs in aerospace system optimization.

From the above applications described, it is worth noticingthat MOEAs applied to

aerospace systems cover a wide variety of problems, including multiple disciplines and

the use of robust design techniques. Also, it is important toemphasize that most of the

applications discussed in this section involve the use of a coupled global-local search

optimization scheme. This is to say that a MOEA is used to find aset of good solutions,

perhaps at a coarse granularity (e.g., without consideringall the decision variables),

which are further improved using a local search engine (gradient-based techniques are

normally used for this sake). For example in [111], the MOEA is used at an upper

level, with a subset of the decision variables and without incorporating any constraints,

while the constraints and all the decision variables are considered and solved at a lower

level, in which a gradient-based optimization process is used to find feasible solutions.

Although memetic MOEAs have existed for several years in thespecialized literature

[50], the development of specific MOEA-based approaches that properly combine a

global and a local search scheme in an efficient and effectiveway when dealing with

space applications, is still an open research area. Issues such as how to couple the

global search engine with the local search engine, how to handle the constraints (partic-

ularly when dealing with large scale applications having many nonlinear constraints),

how to handle mixed problems that combine, for example, integer and real-numbers

decision variables (which could be handled separately or atdifferent granularities by

the global the local search engines), how to make the search less expensive (computa-

tionally speaking) are some of the possible paths for futureresearch in this area. In this

regard, Vasile and Zuiani [178] have recently proposed an interesting approach based
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on the collaboration of multiple agents. This approach blends a number of metaheuris-

tics, including particle swarm optimization and differential evolution. This approach,

has been succesfully applied to the design of multi-impulsetrajectories [178], to the

robust design optimization of low-thrust transfers, and aerocapture manoeuvres [176];

to the design of an integrated space and terrestrial solar power plant [177] and to the

design of satellite formation [105]. Another interesting issue that arises in the problems

discussed in this section is the size of the feasible region,which can be very small with

respect to the entire search space. In this sense, some techniques for pruning the search

space have been proposed [152] and have been succesfully applied in the context of

low-thrust gravity-assist trajectory design. This constitutes another promising research

topic, to be considered when designing MOEAs for space applications.

5.7 Control system design

In this final group, the applications are those in which MOEAsare used to find the

parameters involved in control systems.

- Chipperfield and Fleming [19] described the use of a MOEA in the design of a

control system for gas-turbine aero-engines. This application evaluated popula-

tions of candidate control systems and modes, aiming at selecting sensors and

defining a suitable controller for a manoeuvre about a particular operating point

while meeting a set of strict design criteria including stability, sensitivity and

the accommodation of degradation with engine ageing. The application exam-

ple presented by the authors considered attaining nine design objectives com-

prising the engine’s time response, thrust level, and turbine blade temperature,

among other criteria, in response to a change in thrust demand. The control sys-

tem was evaluated using a linearized model of a reference engine. The authors

adopted MOGA with mating restrictions14 and fitness sharing in objective func-

tion space. From their results, the authors obtained trade-off information which

14Several researchers within evolutionary multi-objectiveoptimization have experimented with schemes

that impose rules on the individuals that can be recombined.However, there is no clear evidence of the

superiority of this sort of mating scheme with respect to theuse of a traditional one in which no restrictions

are imposed on the individuals to be recombined [24].

64



allowed them to look into the positive and/or negative aspects of different control

schemes.

In a similar research work, Thompson et al. [171] used the same version of

MOGA previously indicated for the multi-objective optimization of an aircraft

engine controller architecture, particularly for a military aircraft engine, where

many inputs and outputs were duplicated, increasing considerably the number

of sensors and actuators inputs (240 approximately) to be considered in the con-

troller design.

- Aranda et al.[6] used a MOEA for the design of an aircraft flight control system.

The application concerned the design of control laws, whichwere further used

for evaluating control designs. The MOEA adopted was based on Pareto rank-

ing. The flight controller took several input signals, and after their evaluation it

returned system performance in a vector of control responsemetrics. This vector

comprised 21 parameters. The design variables for the optimization were the

elements of the two control law gain matrices (2 × 5 and2 × 2 matrices) for the

inner loop controller. 14 design variables were considered, being these variables

floating point numbers. The authors presented results for both, longitudinal and

lateral flight controllers.

Analysis of the use of MOEAs in control system design:

Table 7 summarizes the application of MOEAs in control system design. The appli-

cations described in this section are also computationallyinexpensive, allowing the use

of more elaborate MOEAs and archiving techniques which, apparently, have not been

used so far within this domain. However, another interesting feature of the problems

described here is that the approaches developed to solve them may be extrapolated to

other domains, since control systems are commonly used in a wide variety of engineer-

ing disciplines (see for example [66]). This should motivate the development of more

research within this area.
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6 Future Research Paths

As evidenced in this survey, the use of MOEAs for solving aeronautical and aerospace

engineering optimization problems is already a mature areawhich has spread over a

broad range of application subdomains. Most of the applications reviewed in this pa-

per are based on a genetic algorithm, being MOGA and NSGA-II the most frequently

used (both of them with diverse modifications). All the applications reviewed in this

paper represent real-world application problems, which require, in many cases, the use

of expensive computational simulations to evaluate the objective functions. Addition-

ally, the problems analyzed are typically very high dimensional, having large, complex

and poorly understood search spaces, which make them intractable using traditional

mathematical programming techniques. In fact, the high computational cost associated

to some of these problems makes the use of MOEAs infeasible, unless alternative tech-

niques are adopted. The most common ones are the use of response surface models

(or approximation models), the use of parallel programming(mainly to evaluate the

population’s fitness values), and the use of other metaheuristics that are better suited

for continuous optimization than genetic algorithms (e.g., differential evolution, evolu-

tion strategies and particle swarm optimization). Additionally, other authors have hy-

bridized their MOEAs with gradient-based methods, aiming to combine the strengths

of the global search performed by an evolutionary algorithmwith the local search per-

formed by a gradient-based technique.

From the applications analyzed in this paper, the followingsalient issues have been

identified as requiring further research:

• Alternative chromosome encodings: Most of the applications analyzed here

mention the use of specific chromosome representations but,in general, it is as-

sumed that vectors of real numbers or binary numbers are normally adopted (with

a set of associated crossover and mutation operators). However, other encodings

exist, which could probably help to improve the performanceof a MOEA. Such

alternative encodings include the use of matrix or structured/hierarchical repre-

sentations (see for example [179, 30]), which could be particularly useful for 3D

complex geometries (see for example [12]).
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• Use of small population sizes: One possible choice for reducing the total num-

ber of objective function evaluations performed by a MOEA isto use very small

population sizes with proper mechanisms to maintain diversity. This is normally

not done because the use of such small population sizes normally causes prema-

ture convergence of EAs due to a sudden loss of diversity [129, 72]. However,

with carefully designed mechanisms that can maintain diversity, it is possible to

use very small population sizes. An example of this are the micro-genetic algo-

rithms for multi-objective optimization, which have been already used in aero-

nautical engineering [21, 162]. It is worth noting, however, that several other

metaheuristics that have a high potential in aeronautical engineering have been

only scarcely used with very small population sizes (e.g., differential evolution

and evolution strategies).

• Use of techniques to improve efficiency: The use of response surface mod-

els presents difficulties as the number of decision variables increases, mainly

because the number of samplings required for obtaining a high fidelity model

increases, too. A possible way of dealing with this problem is to build local re-

sponse surface models as proposed by Emmerich et al. [39] andGiannakoglou

[49]. and to use them for a pre-screening process in the selection process (i.e.,

to select promising members at each generation which will beevaluated by the

exact model, reducing, in consequence, the overall computational cost). Another

possible option for improving efficiency is to adopt knowledge extraction tech-

niques and then reuse this information during the evolutionary search. Although

such techniques have been normally used in ana posteriorimanner (adopting

self-organizing maps and ANOVA, as in [125, 126, 18, 159]), it is also possible

to use them as ana priori technique. For example, Gräning et al. [55] success-

fully applied this type of approach to the single-objectiveoptimization of 3D

turbine blade geometries. The extension of this type of approach to aeronauti-

cal/aerospace multi-objective optimization problems is,indeed, a very promising

research path.

There are, however, other approaches that can reduce the number of objective
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function evaluations without having to build an approximate model of the prob-

lem. Perhaps the most well-known choices within the evolutionary algorithms

literature are fitness inheritance [157] and fitness approximation [70]. Both of

them have been used with MOEAs (see for example [139]), but their use in real-

world applications is still scarce (see for example [128]),mainly because prac-

titioners are either not aware of them, or do not trust their reliability in highly

nonlinear search spaces [35]. It is also worth remarking that several other ap-

proaches exist for improving the efficiency of a MOEA, but most of them remain

unused in real-world applications (see for example [166, 1]).

• Efficient constraint-handling techniques: Most of the applications reviewed in

this paper dealt with problems subject to constraints. In most cases, infeasible so-

lutions were discarded and generated again, or a simple external penalty function

was adopted. However, many other constraint-handling approaches exist, which

could be very useful in multi-objective optimization, since they can explore the

boundary between the feasible and the infeasible region in amore efficient way

than traditional penalty functions (see for example [108, 148]).It would also be

interesting to design approaches that can efficiently deal with problems having

many nonlinear constraints.

• Alternative selection schemes: Most modern MOEAs rely on Pareto-based

ranking [51]. However, this sort of selection scheme has certain limitations,

from which its poor scalability is perhaps the most remarkable [82]. Recently,

and mainly motivated by this scalability problem, a number of alternative se-

lection schemes for MOEAs have been introduced in the specialized literature.

From them, perhaps the most remarkable approaches are thosebased on a perfor-

mance measure known ashypervolume(see for example [38]) and those based

on relaxed forms of Pareto dominance (see for example [42]).Such approaches

have been scarcely used in aeronautical/aerospace engineering (see for example

[10]).

• Alternative parallelization techniques: Due to the high computational cost re-

quired by many aeronautical and aerospace engineering optimization problems,
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the use of parallelism is relatively common. However, more elaborate paral-

lelization techniques based, for example, on coevolution [167], cellular comput-

ing [2], GPU-based computing [183] and asynchronous techniques [7] are still

scarce in this area and more work in that direction is expected in the next few

years. These techniques have been adopted in other costly applications arising

in areas such as genetic programming [56].

7 Conclusions

This paper has presented a survey of applications of MOEAs inaeronautical and aerospace

engineering. A taxonomy of approaches together with a a short review of applications

in each of the categories contained in it, have been presented.

The main conclusion from this review is that MOEAs are widelyaccepted as an

alternative numerical optimization tool in this area, mainly because of their ease of

use and their effectivity (several authors reported findingsolutions that improved the

reference design).

The main drawback of MOEAs is clearly the high computationalcost associated to

applications in which these algorithms must be coupled to complex physical simula-

tions such as CFD and CSM. Although several authors report using surrogate models

and parallelization techniques in such costly applications, new approaches are required,

as indicated in the final part of this paper in which some possible alternatives to deal

with this problem have also been provided. Finally, anotherissue that certainly de-

serves attention is the need for stronger theoretical foundations for MOEAs. Issues

such as not being able to (mathematically) prove that the solution produced by some

specific MOEA is optimal may be seen with skepticism by some researchers in this

area. Although some important work has been done in this regard (see for example

[141]), much more work is still needed.
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Figure Captions

Figure 1: Graphical representation of the three stages of design in aeronautical/aerospace

engineering
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Aeronautical/Aerospace engineering design 

Conceptual Design Phase 
 
Characteristics: 

- Explore widest possible 
design space 

- Analysis of numerous 
alternative concepts 

- Extensive trade-off 
analysis 

- Many 
objectives/disciplines 
analysis 

- Use of low order/fidelity 
physics models 

- Low computational cost 
 
Goals: 

- Assess and improve 
design requirements 

- Define few promising 
concepts 

 
Examples: 

- Supersonic aircraft 
design 

- UAV/MAV design 
- Turbine design 
- Satellite constellation 

design 

Preliminary Design Phase 
 
Characteristics: 

- Design/Analysis of subsystems 
- Use of high fidelity CFD and FEM models 
- Multiple-discipline interaction 
- Robust design considerations 
- High dimensional search space 
- High computational cost 
- Need for parallelization 
- Use of surrogate and approximation 

models 
 
Goals: 

- Freeze the design for full scale 
development 

- Establish confidence for building time 
and costs 

 
Examples: 

- 2D airfoil/blade design 
- Wing-Body airplane configurat ion 
- Wing structural/flut ter design 
- Turbine blade aero-thermodynamic 

design 
- Spacecraft orbital trajectory design 
- Aircraft control system design 
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Table Captions

Table 1: Summary of MOEAs applied to conceptual design optimization problems.

Table 2: Summary of MOEAs applied in 2D geometries and airfoil shape optimization

problems.

Table 3: Summary of MOEAs applied in 3D complex physics/shape optimization prob-

lems.

Table 4: Summary of MOEAs applied in structural optimization.

Table 5: Summary of MOEAs applied in multidisciplinary design optimization.

Table 6: Summary of MOEAs applied in aerospace system optimization.

Table 7: Summary of MOEAs applied in control system design.
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[124] 2 s.c. 11 Continuous MOGA Fitness sharing, BLX-α

crossover, uniform ran-

dom mutation, Best-N

selection

Mean line pump flow

modeling

120 30 None

[15] 7 s.c. 64 Mixed

continu-

ous/discrete

SPEA2 Hierarchical crossover

operator

Multiple disciplines low

order/fidelity models

N/A N/A Island based parallel in-

teractive GA with subjec-

tive evaluation

[175] 4 s.c. 14 Mixed

continu-

ous/discrete

NSGA-II SBX crossover and poly-

nomial mutation

Low order models 20 150 Objectives defined by

means of goal program-

ming technique

[135] 2 4 6 Continuous NSGA-II SBX crossover and poly-

nomial mutation

Multiple disciplines, low

order and database mod-

els

N/A N/A None

[88] 2 s.c. 18 Mixed

continu-

ous/discrete

GAME Evolution strategies’ mu-

tation operator

Multiple disciplines with

low fidelity and FEM

models

400 25 None

[74] 5 6 21 Continuous MOGA Arithmetic crossover,

gaussian mutation,

fitness sharing and

steady-state reproduction

Multiple disciplines sim-

plified models

300 300 Constraint handling us-

ing exact penalty method,

and simulated annealing

as a local search operator

[184] 3 s.c. 5 Continuous NSGA-II SBX crossover, polyno-

mial mutation and im-

proved crowding mecha-

nism

Inviscid flow model N/A N/A None

[170] 3 2 20 Continuous NSGA-II SBX crossover and poly-

nomial mutation

Newton impact theory N/A N/A None

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[185] 3 s.c. 12 Continuous MOGA Intermediate crossover and fitness sharing Navier-Stokes 100 30 Robust design optimization

[9] 2 5 9 Discrete (µ + µ)-ES Gaussian mutation, Goldberg’s Pareto rank-

ing, crowding based on euclidian distance in

decision space

Navier-Stokes 100 200 None

[113] 2 s.c. 12 Continuous (1+10)-MODES Adaptive derandomized mutation strategy, se-

lection based on the NSGA-II

Navier-Stokes 1 N/A Use of a maximum of 1,000 designs

[10] 3 2 12 Continuous SMS-EMOA Adaptive derandomized mutation strategy,

steady-state selection based on hypervolume

measure

Navier-Stokes 20 N/A Use of a maximum of 1,000 designs

[133] 2 1 8 Continuous MODE DE’s crossover and mutation operators Navier-Stokes 10 25 Robust design optimization, use of

ANN RSM

[136] 2 2 11 Continuous MOPSO N/A Euler model 100 50 None

[117] 3 s.c. N/A Continuous MOGA N/A Navier-Stokes 64 75 None

[123] 2 1 80 Continuous MOGA N/A Streamline curvature

method

300 1000 None

[29] 2 s.c. 5 Continuous MOPED N/A Coupled boundary layer

potential flow panel

method

N/A N/A Use of Kriging model

[11] 3 2 4 Continuous NCGA N/A Parabolized Navier-

Stokes

100 50 None

[14] 2 N/A 12 Continuous N/A Elitist selective inter-breeding, ranking of so-

lutions according to constraints and user de-

fined preferences, weighted variable recombi-

nation

Navier-Stokes 100 100 None

[26] 2 1 22 Continuous NSGA-II SBX crossover and polynomial mutation Euler flow with ther-

modynamical model for

dense gases

36 24 None

[156] 2 s.c. 12 Continuous MOGA Stochastic universal sampling, blended

crossover, uniform mutation, best-N selection

Favre-Averaged com-

pressible thin-layer

Navier-Stokes

64 100 Robust design optimization based

on6σ

[162] 3 4 12 Continuous ǫµARMOGA SBX crossover, no mutation is used, external

file storage based onǫ-dominance

Coupled boundary layer

potential flow panel

method

4 2000 Reinitialization of population is

used for diversity preserving, in-

stead of mutation

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.

1
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[145] 3 4 66 Continuous MOGA Fitness sharing, BLX-α crossover, best N selec-

tion

Navier-Stokes 64 30 None

[118] 3 4 66 Continuous MOGA Fitness sharing, averaged crossover, best N selec-

tion

Navier-Stokes 64 70 None

[146] 2 3 131 Continuous MOGA Fitness sharing, BLX-α crossover, best N selec-

tion

Euler/Navier-Stokes 64 20 None

[147] 2 3 131 Continuous ARMOGA Fitness sharing, BLX-α crossover, best N selec-

tion

Euler/Navier-Stokes 64 20 Design variables ranges are adapted ev-

ery M generations, based on the statis-

tics of the archive and current population

[115] 2 2 5 Continuous MOPSO Adaptive Search Spacing Operator (ASSO) Euler N/A N/A The ASSO operator allows to extend the

initial design space

[101] 2 1 32 Continuous MOGA Fitness sharing, BLX-α crossover, best N selec-

tion, random uniform mutation

Reynolds-Averaged

Navier-Stokes

N/A N/A Use of RSM

[61] 2 2 66 Continuous MOGA Masking array to activate/deactivate the design

variables, selection based on bins of the nondom-

inated archive, random average crossover, local

and global mutation operators

Potential flow 34 N/A None

[142] 3 4 28 Continuous ARMOGA Stochastic universal sampling, SBX crossover,

polynomial mutation, best N selection, Pareto

ranking incorporating constraints

Reynolds-Averaged

Navier-Stokes

16 20 Grid-enabled parallel computation

[8] 2 1 23 Discrete (µ + µ)-ES Gaussian mutation, Goldberg’s Pareto ranking,

crowding based on Euclidian distance in the de-

cision space

Navier-Stokes 20 100 None

[17] 4 s.c. 71 Continuous ARMOGA Fitness sharing, BLX-α crossover, best N selec-

tion

Reynolds-Averaged

Navier-Stokes

8 30 None

[159] 2 s.c. 33 Continuous NSGA-II SBX crossover, polynomial mutation Navier-Stokes 60 20 Use of Kriging model

[69] 2 1 4 Continuous MOGA N/A Navier-Stokes N/A N/A None

[98] 2 s.c. 80 Continuous HAPMOEA ES mutation operator with Covariance Matrix

Adaptation (CMA-ES), distance dependent mu-

tation, tournament selection

Navier-Stokes * N/A * Population sizes are 20, 40 and 60

for fine, medium and coarse CFD mesh

grids, 1100 design candidates evaluated

[126] 3 2 5 Continuous MOGA Fitness sharing, roulette wheel selection,BLX-

α crossover, random uniform mutation, Pareto

based constraint handling

Navier-Stokes N/A N/A Knowledge extraction from the multi-

objective optimization process

[5] 2 5 10 Continuous NSGA N/A Navier-Stokes N/A N/A ANN model

[168] 3 s.c. 58 Continuous MOGA Stochastic universal sampling, BLX-α

crossover, best N selection

Navier-Stokes 16 50 None

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[91] 2 8 17 Mixed

continu-

ous/discrete

N/A Arithmetic crossover and

Gaussian mutation for

continuous variables,

two-point and uniform

crossover for discrete

variables, Pareto ranking

FEM structural analysis 200 20 Topological shape opti-

mization, use of external

archive for keeping non-

dominated solutions

[180] 4 s.c. 15 Discrete NSGA-II SBX crossover and poly-

nomial mutation

FEM structural analysis N/A N/A Robust design optimiza-

tion, use of Kriging

model

[173] 2 s.c. 7 Mixed

continu-

ous/discrete

MOGA Fitness sharing, SBX

crossover and poly-

nomial mutation for

continuous variables.

Two-point crossover and

uniform mutation for

discrete variables

FEM structural analysis 100 300 Use of Kriging model

[121] 4 s.c. 400 Discrete ǫ-NSGA-II Dynamic population siz-

ing, variable mutation

rate, SBX crossover and

polynomial mutation

FEM structural analysis N/A N/A Topological shape opti-

mization, use of local

search procedure for im-

proving solutions

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.

1
0
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[120]

[119]

[165]

3 2 3 Continuous MOGA Weighted averaged crossover, Pareto ranking,

fitness sharing, best N selection

Potential flow model and

FEM model

100 30 Penalty-based constraint handling

[20] 3 N/A 17 Continuous NSGA-II SBX crossover and polynomial mutation Euler and aeroacoustic

models

N/A N/A Use of Kriging model

[21] 3 N/A 17 Continuous µ-GA N/A Euler and aeroacoustic

models

N/A N/A None

[22] 3 N/A 17 Continuous GEMOGA N/A Euler and aeroacoustic

models

N/A N/A Use of Kriging for gradient calcula-

tion

[89] 4 2 109 Continuous MOGA N/A Navier-Stokes CFD and

FEM structural model

N/A N/A Use of Kriging model

[16] 5 N/A 58 Continuous ARMOGA

and

MOPSO

BLX-α and PCA-BLX-α crossover opera-

tors, fitness sharing, Pareto ranking

Euler CFD flow and FEM

models

20 12 Population is divided among the

algorithms used as well as the

crossover operators

[18] 3 5 35 Continuous ARMOGA Fitness sharing, Pareto Ranking, best N selec-

tion

Navier-Stokes CFD and

FEM models

8 20 None

[144] 4 2 72 Continuous ARMOGA Fitness sharing, BLX-α crossover, Pareto

ranking, best N selection

Navier-Stokes CFD and

simplified structural

models

64 30 None

[97] 3 N/A 100 Continuous HAPMOEA ES mutation operator with Covariance Ma-

trix Adaptation (CMA-ES), distance depen-

dent mutation, tournament selection

Potential flow CFD and

Radar Cross Section

(RCS) estimation models

* N/A * Population sizes are 40, 40 and 60

for fine, medium and coarse CFD

mesh grids, 1550 design candidates

evaluated

[96] 2 1 100 Continuous HAPMOEA ES mutation operator with Covariance Ma-

trix Adaptation (CMA-ES), distance depen-

dent mutation, tournament selection

Potential flow CFD and

Radar Cross Section

(RCS) estimation models

* N/A * Population sizes are 15, 40 and 60

for fine, medium and coarse CFD

mesh grids, 1100 design candidates

evaluated. Robust design optimiza-

tion

[127] 2 2 14 Continuous NSEA+ ES mutation operators and NSGA-II selection

mechanism

Simplified aerody-

namics, FEM and

aeroacoustic models

20 17 Use of RSM

[116] 2 1 2 Continuous NSGA-II N/A Navier-Stokes CFD and

structural FEM models

12 17 None

[75] 3 9 14 Continuous DE based N/A Aerodynamic and ther-

modynamic models

130 N/A Random variation of mutation rate

[134] 2 4 10 Continuous NSGA-II SBX crossover and polynomial mutation Simplified aerodynamics

and structural FEM mod-

els

50 100 Use of Kriging model

[65] 2 4 10 Discrete NSGA-II N/A Simplified aerodynamics

and structural FEM mod-

els

30 70 None

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of generations

1
0
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[28,

57]

3 3 8 Continuous NSGA Single point crosover,

uniform mutation,

stochastic universal

sampling, fitness sharing

in decision space, and

Pareto ranking

Orbital mechanics and

rocket equation models

150 30 Use of binary encoding,

a local search mechanism

and a Baldwinian learn-

ing strategy.

[99] 2 N/A 13 Continuous NSGA, PRGA

(MOGA), and

SPGA (SPEA)

N/A Orbital mechanics and

rocket equation models

1000 200 None

[104] 3 N/A 7/8 Continuous NSGA-II Arithmetical crossover

and nonuniform mutation

Linearized orbital me-

chanics model

100 200 None

[103] 3 N/A 7/8 Continuous NSGA-II Arithmetical crossover

and nonuniform mutation

Nonlinear orbital me-

chanics model

100 200 None

[43] 2 s.c. 3 Discrete NSGA-II SBX crossover and poly-

nomial mutation

Orbital mechanics model 32 400 Island-based parallel im-

plementation of NSGA-II

[44] 6 s.c. 21/24 Continuous ǫ-NSGA SBX crossover and poly-

nomial mutation

Orbital mechanics model 48 250 None

[107] 2 N/A N/A Continuous NSGA-II SBX and polynomial-

based mutation

Orbital mechanics and

rocket equation models

20 N/A Results are presented for

100,000, 500,000, and

1,000,000 total function

evaluations.

[111] 3 2 6 Continuous MOPED Nondominated sorting,

crowding

Analytical, structural,

and CFD models

60 50 Use of ANNs as meta-

model.

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.
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Ref NObj NCons NVars VarType Algorithm Operators Physics Model NPop Gmax Remarks

[19] 9 s.c. 6 Discrete MOGA Structured chromosome

representation, mat-

ing restrictions, fitness

sharing

Control mode analysis 70 N/A None

[6] 20 s.c. 14 Continuous MOGA Binary tournament selec-

tion, multiple crossover

operators, Pareto rank-

ing, fitness sharing

Control mode analysis N/A N/A None

NObj = Number of objectives; NCons = Number of constraints; NVars = Number of design variables; VarType = Type of variables; NPop = Population size; Gmax = Maximum number of

generations; N/A = Not available; s.c. = Only side constraints are adopted.
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