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Abstract

Nowadays, the solution of multi-objective optimizatioroplems in aeronau-
tical and aerospace engineering has become a standarit@rddtese two fields
offer highly complex search spaces with different sourdedificulty, which are
amenable to the use of alternative search techniques sunbtabkeuristics, since
they require little domain information to operate. From segeral metaheuristics
available, multi-objective evolutionary algorithms (M@&) have become partic-
ularly popular, mainly because of their availability, ea$ease and flexibility. This
paper presents a taxonomy and a comprehensive review adaiqhs of MOEAS
in aeronautical and aerospace design problems. The ren@udies both the char-
acteristics of the specific MOEA adopted in each case, asasde features of
the problems being solved with them. The advantages andwdistages of each
type of approach are also briefly addressed. We also prowded general guide-
lines for using and designing MOEASs for aeronautical anasgggice engineering
problems. In the final part of the paper we provide some piatigpaiths for future

research, which we consider promising within this area.
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1 Introduction

Optimal design in aeronautical/aerospace engineeringyisature, a multiobjective-
multidisciplinary and highly difficult problem. Aerodynaecs, structures, propulsion,
acoustics, manufacturing and economics, are some of th@lilies involved in this
type of problems. Even if a single discipline is considemn@@ny design problems
have competing objectives (e.g., to optimize a wing’s liflalrag or a wing’s struc-
tural strength and weight). During the last three decadesptocess of engineering
design has been clearly improved because of the dominamttiat computational
simulations have played in this area [87] e.g., Computatiéituid Dynamics (CFD)
simulations to perform aerodynamic analysis [67] and Caajianal Structural Dy-
namics/Mechanics (CSD/M) through the use of the Finite ElenMethod (FEM) to
process structural analysis [169]. The increasing demandgdtimal and robust de-
signs, driven by economic and environmental constraintsgawith an increasing
computing power, has improved the role of computationautations, from being just
analytical tools until becoming design optimization tools

In spite of the fact that gradient-based numerical optitiiramethods have been
successfully applied in a variety of aeronautical/aerospisign problems [63, 153]

their use is considered a challenge due to the followingadiffies found in practice:

1. The design space is frequently multimodal and highly lhoear.

2. Evaluating the objective function (performance) fordesign candidates is usu-
ally time consuming, due mainly to the high-fidelity and dimmnality required

in the simulations.

3. By themselves, single-discipline optimizations maywmte solutions which not

necessarily satisfy objectives and/or constraints cemsitlin other disciplines.

4. The complexity of the sensitivity analyses in Multidigaiary Design Optimiza-

1it is worth noting that most of the applications using gratiieased methods have adopted them to find

global optima or a single compromise solution for multiedtjve problems.



tion (MDQ?) increases as the number of disciplines involved becomgsiia

5. In MDO, a trade-off solution, or a set of them, are seard¢bed

Based on the previously indicated difficulties, designererbeen motivated to use
alternative optimization techniques such as Evolutionslgorithms (EAs) [86, 34,
122]. Multi-Objective Evolutionary Algorithms (MOEAS) kia gained an increasing
popularity as numerical optimization tools in aeronautarad aerospace engineering
during the last few years [120, 4, 87]. These populatioredasethods mimic the evo-
lution of species and the survival of the fittest, and comgsreraditional optimization

techniques, they present the following advantages:

e Robustness:In practice, they produce good approximations to optimtd eé
solutions, even in problems with very large and complexgtespaces. Instead
of a single-point search with gradient information, MOE/As& & population of
design candidates (i.e., they perform a multi-point s€aaclal are less prone to
get trapped in local optima. Additionally, they can managa-differentiable,

mixed real-discrete and highly non-linear objective fumuas/fitness landscapes.

e Multiple solutions per run: As MOEAs use a population of candidates, they
are designed to generate multiple trade-off solutions im@le run. Evidently,
the generation of more solutions also involves a higher edgatnal time when
dealing with expensive applications. Thus, the number bftems to be gen-
erated by a MOEA in the applications discussed in this pagredd to be low,

unless surrogate models are adopted.

e Easy to parallelize: The design candidates in a MOEA population, at each gen-
eration, can be evaluated in parallel using diverse panagliJ his can be useful
in problems involving objective functions that are costlyetzaluate (something

common in aeronautical and aerospace applications).

2Multidisciplinary Design Optimization, by its nature, che considered as a multi-objective optimiza-

tion problem, where each discipline aims to optimize a paldir performance metric.



e Simplicity: MOEAs use only the objective function values for each desim
didate. They do not require a substantial modification orgeminterfacing for
using a CFD or CSD/M code. This situation substantially cedithe cost related
to code writing and tuning every time a new application isigsyed. Further-
more, designers can easily make use of in-house developkdraiommercial

codes previously validated.

e Easy to hybridize: Along with the simplicity previously stated, MOEAs also
allow an easy hybridization with alternative methods,,exgemetic algorithms,
which additionally introduce specifities to the impleméiata, without influenc-

ing the MOEA simplicity.

e Novel solutions: In many cases, gradient-based optimization techniques con
verge to designs which have little variation even if prodledth very different
initial setups. In contrast, the inherent explorative ¢algaes of MOEASs allow

them to produce, some times, novel and non-intuitive dessign

The important volume of information that has been publistrethe use of MOEAs
in aeronautical and aerospace engineering applicatioaisyrmotivated by the advan-
tages previously addressed) has led us to write this papéchvprovides a review of
this work in an organized and classified manner. As we willlate on, MOEAS have

been used in a variety of design stages and in diverse prgblem

The remainder of this paper is organized as follows. In $a@i some basic con-
cepts on multi-objective optimization are presented. i8e@ briefly describes some
of the MOEAs that have been most commonly used in the speethliterature. Sec-
tion 4 presents a taxonomy of applications of MOEASs in aeutical and aerospace
engineering. Such applications are explained in more ldat&ection 5. After that,
in Section 6, possible future research paths are highlighimally, Section 7 presents

the main conclusions of this review.



2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mattetioally defined as fol-

lows3:
minimize f(z) := [f1(Z), fo(), ..., fx(Z)] (1)
subject to:
g:(Z) <0, i=1,2,....,m (2
wherez = [z1, 22, ... 7xn]T is the vector of decision variableg, : R" — R, i =

1,..., k are the objective functions ang, 7, : R" - R,i=1,..,m,j =1,...,pare
the constraint functions of the problem.

The set of constraints of the problem defines the feasibiemeg the search space
of the problem. Any vector of variableswhich satisfies all the constraints is consid-
ered a feasible solution. In their original version, an EAd&lso a MOEA) lacks a
mechanism to deal with constrained search spaces. This ttasted a considerable
amount of research regarding the design and implementafi@onstraint-handling
techniques for both EAs and MOEAs [23, 108].

Regarding optimal solutions in MOPs, the following defimits are provided:

Definition 1. A vector of decision variableg € IR" dominates another vector of deci-
sion variableg/ € R", (denoted by# < %) if and only if Z is partially less thaw, i.e.,

Swithout loss of generality, minimization is assumed in tbkkofving definitions, since any maximization

problem can be transformed into a minimization one.



Definition 2. A vector of decision variableg ¢ X ¢ R" is nondominated with

— —

respect tov, if there does not exist anoth@&r € X such thatf (z') < f(Z).

Definition 3. A vector of decision variableg* € 7 c R" (F is the feasible region)

is Pareto-optimalif it is nondominated with respect t6.
Definition 4. ThePareto optimal setP* is defined by:

P* = {Z € F|Zis Pareto-optimal

Definition 5. ThePareto front PF* is defined by:

PF* = {f(&) e R*|Z € P*}
The goal on a MOP consists on determining the Pareto optietdi@m the setF of
all the decision variable vectors that satisfy (2) and (3).
Thus, when solving a MOP, we aim to find not one, but the set lotismis repre-
senting the best possible trade-offs among the objectiliessp-called Pareto optimal

set).

3 Multi-Objective Evolutionary Algorithms

It is worth indicating that traditional EAs require some rifmétions in order to deal

with multi-objective optimization problems. The main twmeedhe following:

1. All the nondominated solutions should be considered lbggaod by the se-
lection mechanism. This means that a different notion oéfitnis required for
dealing with multi-objective optimization problems. Thesh popular mecha-
nism to deal with this problem is called Pareto ranking and im&roduced by
Goldberg [51]. This approach assigns a rank to each solbtised on its Pareto
dominance, such that nondominated solutions are all sahglthe same rate.
However, in the early days of MOEAS, several mechanisms aseth on Pareto

optimality were adopted with EAs [24].



2. EAstend to converge to a single solution if run long enqbglcause of stochas-
tic noise [51]. Therefore, a mechanism to maintain divensitrequired. This
component is known as trdensity estimatorFitness sharing [52] was the ear-
liest density estimator, but many others have been propmsadime, including
clustering [189], entropy [41], adaptive grids [81] andwding [32], among

others.

MOEAs can be classified in several ways [24]. However, forghposes of this
survey, we decided to adopt a simple high-level classibicatinat considers only two
types of MOEASs: (a) Non-Pareto-based and (b) Pareto-bdseifirst group contains
MOEAs that do not adopt the concept of Pareto optimality irtiselection mech-
anism, whereas the second comprises those MOEAs that adogtbPoptimality in
their selection mechanism. Some of the most popular noet®ased MOEAs are

the following:

e Lexicographic method The user ranks the objectives of the problem in a de-
creasing order and the optimization proceeds from hightwter order objec-
tives, one at a time. Once an objective is optimized, the aito improve as
much as possible the following objective(s) without desiegthe quality of the
previous one(s) [24]. This sort of approach normally getesra single nondom-
inated solution, but if instead of using a fixed objectivetesrost important, it

is randomly chosen, several solutions can be generatecinuon

e Aggregating functions All the objectives are added up into a single (scalar)
value which constitutes the objective to be optimized. Siobjectives tend to
be defined in very different ranges, a normalization is ndigmaquired. Also,
weights tend to be assigned to each objective in order toalpfieferences from
the user [24]. Varying the weights during the run allows, @mgral, the genera-

tion of different nondominated solutions in one run [71,.59]

e Population-based methodsA number of sub-populations (usually as many as
the number of objective functions of the problem) are getieerfrom a main

population of an EA. Each sub-population optimizes a singiective function



and then all the sub-populations are merged and mixed. Thésathat, when
performing crossover, individuals that are good in one cibje will recombine
with individuals that are good in another one [149]. Thig edrapproach pro-
duces several nondominated solutions in a single run, tygittally misses good
compromises among the objectives because of the way in vitd@¥iduals are

selected in each population [24].

Among the Pareto-based methods, there are two sub-cldlssesn-elitist MOEAs
and the elitist MOEAs. Non-elitist MOEASs do not retain thendominated solutions
that they generate and could, therefore, lose them aftdyiagghe evolutionary oper-
ators. Elitist MOEAS retain these solutions either in areaxal archive or in the main
population.

The most representative non-elitist MOEASs are the foll@yin

e Nondominated Sorting Genetic Algorithm (NSGA): It was proposed by Srini-
vas and Deb [160]. It is based on several layers of classditatof the indi-
viduals. Before selection is performed, the populationaisked on the basis
of nondomination: all nondominated individuals are cffisdiinto one category
(with a dummy fitness value, which is proportional to the dafian size, in or-
der to provide an equal reproductive potential for thes&iddals). To maintain
the diversity of the population, these classified individuaae shared with their
dummy fitness values. Then this group of classified indiviglissignored and
another layer of nondominated individuals is considerdee ffrocess continues
until all individuals in the population are classified. S¥rindividuals in the first
front have the maximum fitness value, they always get a higilection proba-

bility than the rest of the population.

e Niched-Pareto Genetic Algorithm (NPGA): Proposed in [62]. It uses a tour-
nament selection scheme based on Pareto dominance. Tleeidessiof the
algorithm is the following: Two individuals are randomlyaden and compared
against a subset from the entire population (typicallyyarb10% of the popula-

tion). If one of them is dominated (by the individuals randpohosen from the



population) and the other is not, then the nondominatedididal wins. When
both competitors are either dominated or nondominated {here is a tie), the

result of the tournament is decided through fitness sha&gp [

e Multi-Objective Genetic Algorithm (MOGA): Proposed in [46]. In this ap-
proach, the rank of a certain individual corresponds to tiralver of individuals
in the current population by which it is dominated. All nomdioated individuals
are assigned the lowest possible rank (i.e., one), whildmizted ones receive as

rank the number of individuals that dominate them plus one.
Among the most popular Pareto-based elitist MOEAs, we haeddllowing:

e Strength Pareto Evolutionary Algorithm (SPEA): Introduced in [189]. It uses
an archive containing nhondominated solutions previousinfl (the so-called
external nondominated set). At each generation, nhonddedriadividuals are
copied to the external nondominated set, removing the datedhsolutions. For
each individual in this external setsaengthvalue is computed. This strength is
similar to the ranking value of MOGA, since it is proportibt@athe number of
solutions to which a certain individual dominates. The wef each member
of the current population is computed according to the gtieof all external
nondominated solutions that dominate it. In SPEA, instdasimg niches based
on distance (as MOGA and NPGA), Pareto dominance is adoptexdure that
the solutions are properly distributed along the Paretotfrélthough no niche
radius is required, the effectiveness of this approaclesedn the size of the
external nondominated set, since such a set participates iselection process
of SPEA. Because of this, the authors decided to adopt aitpehthat prunes
the contents of the external nondominated set so that iésreinains below a
certain threshold. The approach adopted for this sake wiastgedng technique

called “average linkage method” [112].

e Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has three main

differences with respectto its predecessor [188]: (1)xdbnporates a fine-grained



fitness assignment strategy which, for each individuakgakto account both
the number of individuals to which it dominates and the nurnddeindividu-

als that dominate it; (2) it uses a nearest neighbor densiignation technique
which guides the search more efficiently, and (3) it has aaeoéd archive trun-

cation method that guarantees the preservation of bousdariions.

Pareto Archived Evolution Strategy (PAES): This algorithm was introduced in
[83]. PAES consists of a (1+1) evolution strategy (i.e. gk parent that gener-
ates a single offspring) in combination with a historicalkave that records the
nondominated solutions previously found. This archiveseduas a reference
set against which each mutated individual is being comp&®edh a historical
archive is the elitist mechanism adopted in PAES. Howeveiingeresting as-
pect of this algorithm is the procedure used to maintainrdit)eewhich consists
of a crowding procedure that divides objective space in argde manner. Each
solution is placed in a certain grid location based on thae&bf its objectives
(which are used as its “coordinates” or “geographical limc&). A map of such
grid is maintained, indicating the number of solutions tieaide in each grid lo-
cation. Since the procedure is adaptive, no extra paras@terequired (except

for the number of divisions of the objective space).

Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was
introduced in [32] as an improved version of the NSGA. In tI8&3W-II, for each

solution one has to determine how many solutions dominatedtthe set of so-
lutions to which it dominates. The NSGA-II estimates thesignof solutions

surrounding a particular solution in the population by caotivy the average dis-
tance of two points on either side of this point along eaclthefabjectives of the
problem. This value is the so-calledowding distance During selection, the
NSGA-II uses a crowded-comparison operator which takes ¢onhsideration
both the nondomination rank of an individual in the populatand its crowding
distance (i.e., nondominated solutions are preferred dwarinated solutions,
but between two solutions with the same nondomination rérkone that re-

sides in the less crowded region is preferred). The NSGAsHsdnot use an

10



external memory as the other MOEAs previously discusseste#sd, the elitist
mechanism of the NSGA-II consists of combining the bestmareith the best
offspring obtained (i.e., g4+ A)-selection). Due to its clever mechanisms, the
NSGA-II is much more efficient (computationally speakinigan its predeces-
sor, and its performance is so good, that it has become venylgoin the last
few years, becoming a landmark against which other MOEAg ta\be com-
pared [187].

There are several other multi-objective metaheuristiedi@vle. The two following

are discussed here because they are adopted by some of licatégps discussed here:

e Particle Swarm Optimization: This metaheuristic is inspired on the choreog-
raphy of a bird flock which aim to find food [77]. It can be seeraalistributed
behavioral algorithm that performs (in its more generaki@r) a multidimen-
sional search. The implementation of the algorithm adoisulation of par-
ticles, whose behavior is affected by either the best Idaal, within a certain
neighborhood) or the best global individual. Particle swaptimization (PSO)
has been successfully used for both continuous nonlinebdianrete binary op-
timization [40]. For extending PSO to deal with MOPs, the missues are:
(1) how to select particles (to be used as leaders) in ordgiveopreference to
nondominated solutions over those that are dominated’hd®)to retain the
nondominated solutions found during the search processdier @o report so-
lutions that are nondominated with respect to all the papufations and not
only with respect to the current one?, and 3) how to maintaiardity in the
swarm in order to avoid convergence to a single solution?médy, mecha-
nisms very similar to those adopted with MOEAs (namely, Rabased selec-
tion and external archives) have been adopted in multiedlbge particle swarm
optimizers (MOPSOs). However, the addition of other medras (e.g., a mu-
tation operator) is also relatively common in MOPSOs. Anamant number of

multi-objective versions of PSO currently exist (see foample [140]), and this

11



remains as a very active area of research.

o Differential Evolution: This metaheuristic was proposed by Kenneth Price and
Rainer Storn [161, 130] to optimize problems over contiraomains. The core
idea is to use vector differences for perturbing a vectoupetfpn, and it aims to
estimate the gradient in a region (rather than in a pointjfeBintial Evolution
(DE) performs mutation based on the distribution of the Sois in the current
population. In this way, search directions and possible siees depend on the
location of the individuals selected to calculate the matavalues. Several
DE variants are possible, and they differ in the way in whicl parents are
selected and in the form in which recombination and mutataies place (see
[130] for more information on DE). The high success of DE imgé&-objective
optimization has made it an interesting candidate for sgiWIOPs. The main
issues for extending DE to multi-objective optimizatioe &ery similar to those
of PSO (i.e., how to select parents, how to store nondonminséutions and
how to maintain diversity in the population). As with MOPSQery similar
mechanisms to those adopted by MOEAs have been use with-ofjgtctive
differential evolution (MODE). A variety of MODE approacheurrently exist
(see for example [110]), and this also remains as a veryeaati®a of research.
It is worth noting that MODES are often considered MOEAs [24]

Although many other MOEASs exist (see for example [25, 186]¥ not the inten-
tion of this paper to be comprehensive. The interested rendg refer to [24, 31] for
more information on this topic.

The main advantages of MOEASs are their generality, easeeofnd the fact that
they require little or no specific domain information to oger Also, they are less
susceptible to the specific features of the problem (e.@peator continuity of the
Pareto front) than traditional mathematical programmauaniques [24].

Although the performance of MOEASs has been traditionalseased using a va-
riety of quantitative measures (see for example [24, 19@}), of them have been
adopted in the applications discussed in this paper. Thisdbably due to the high

computational cost of these applications and the few notited solutions that are
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normally produced. This is the reason why the use of suclopeence measures is
not discussed in the applications reviewed here, excepifad them is adopted in the
selection process (e.g., SMS-EMOA adopts a selection nmésrhebased on a perfor-

mance measure calléypervolumg10]).

4 A Taxonomy of Applications

Aeronautical/aerospace engineering design process tsarpree phases: @oncep-
tual design (ii) Preliminary designand (iii) Detailed desigr{13]. In each of these
phases, design concepts are analyzed to determine theplieoce with the perfor-
mance requirements, as well as their manufacturabilityesmmchomical viability. The
design process cannot be considered as serial, but as a pymtiess, in which many
design iterations are required. This iterative processasiy executed between the
first two phases. Applications surveyed in this article ctlie spectrum o€onceptual
designandPreliminary designwhere numerical optimization has its greatest impact,
and where the goal of optimization is to refine the desigrargd theDetailed design
phase in which design production is initiated (see Figure 1)

Although very interesting ways of classifying complex MORwe been proposed
in the past (see for example the approach described in [#8])taxonomy adopted
in this article aims to reflect the optimization problem cdexjty degree in terms of
three main features: (i) physics-model fidelity, (ii) themoer of disciplines involved,
and (iii) the associated computational cost needed to partioe optimization process.

The classes considered are the following:

1. Conceptual design optimization Being this the earliest phase of the design
process, it has an emphasis on finding the Bestign Conceptsensuring de-
signers that they are heading into the correct design patragteeing to meet

all design’s performance requirements.

2. 2D geometries and airfoil shape optimization In these applications the di-
mensionality of the problem is reduced, and the physicshersimulations can

be considered as two-dimensional.
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3. 3D complex physics/shape optimization 3D complex physics, 3D complex

geometries or the combination of both are considered ircthgs of applications.

4. Structural optimization : Considering the design of lighter and stronger struc-
tures as the premise of aeronautical/aerospace desigm;létss of application

looks for the best trade-off between these two objectiMesyly in conflict.

5. Multidisciplinary design optimization : These applications cover those where
two or more disciplines are involved, each one with specliiectives to accom-

plish or to optimize.

6. Aerospace system optimization Applications focused on space systems such

as spacecrafts and satellites.

7. Control system design These applications are used for parametric design in

different control laws.

The different approaches in each one of these classes wdikberibed in the fol-
lowing section. It is worth mentioning that this review oéthktate-of-the-art is focused
on Pareto-based MOEAs. This decision was made based ondhada the number
of references of non-Pareto-based approaches would ot altareful description of

each approach.

5 Applications

5.1 Conceptual design optimization

Traditionally, the aeronautical/aerosp&nceptual Desigphase has been conducted
with the help of databases, statistics, and regressiofdlaler engineering models as
well as company’s/designer’s accumulated experience.nTdia outcome of this de-
sign phase has been to determine a few promiBiegign Concepti be further ana-
lyzed in thePreliminary Desigrphase, in which numerical simulations or experimental
setups are developed to verify and refine the design. Additiy tradeoff analyses are

performed in order to identify unreasonable or conflictiequirements. This latter

14



task has been limited because of the large design spaceadbdtto be explored,
and a holistic (multidisciplinary) vision of the design isquired when multiple dis-
ciplines are involved in the design. Nowadays, with the@asing computing power
available, low-cost/fidelity numerical simulations hayeead toward th€onceptual

Designphase, making it possible to benefit from thelorationof large design spaces
with reduced time and low computational cost. Additionallys possible to envision
performingtrade-off analysis of the multi-objective and/or multidisciplinadgsigns.

Both of these characteristics are inherent in the use of MOBAthe present class of

applications reported next:

- Oyama and Liou [124] addressed the conceptual design kétengine pumps,
for a centrifugal single and multi-stage pump design. Irhbm#ses two objec-
tives were defined: (i) maximization of total head in the pyuam (ii) minimiza-
tion of the pump input power. Side constraints were considiéor the design
variables range, defining the pump geometry. An additiopatating constraint
was imposed for the static pressure at the rotor tip in oldetect the inception
of cavitation, being crucial to prevent this condition fbetoptimal design. The
authors adopted MOGA with fitness sharing [52], blendedsmoesr (BLX«)
and uniform random mutation. Conceptual designs were ateduusing a one
dimensional meanline pump flow-modeling method, which ftes a fast mod-
eling of turbopumps for rocket engines at very low compotai cost. For the
first conceptual design case, a total of 498 different noridatad solutions were
obtained, while 660 were found in the second case. Authdegirtbat improve-
ments in the objective functions were within 1% in both ohjexs with respect

to a reference design.

- Buonanno and Mavris [15] addressed the conceptual desasmall supersonic
aircraft, considering seven objectives: (i) weight, @hge, (iii) takeoff balanced
field length, (iv) loudness, (v) overpressure, (vi) flight dhanumber, and (vii)
cabin size. Some of them were minimized, while others wergimiaed. An

application example presented by the authors compriseta 8p to 64 design
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variables (both continuous and discrete variables wersidered), describing
the aircraft geometry and the mission requirements. Theoasiused a parallel
hybrid subjective/quantitative MOEA, in which the fithegsa individual was a
combination of both quantitative and qualitative metniggh the latter being de-
fined by a human evaluator. A parallel-MOEA) (pMOEA), basadhe injection
island genetic algorithm [36], was adapted for this MOP. $tnategy consisted
on assigning one objective function per island and solvitga@objective op-
timization problem. The second objective for each island wsenstructed as a
goal attainment metric based on the mission requirementkéaircraft. In this
way, each island obtained a set of solutions excelling imssigned objective
and representing a trade-off with respect to the projectsgoAfter a certain
number of generations, the nondominated solutions fronistaads were sent
to a central island which solved the seven-objective problermulated as a
goal attainment problem. Each island used SPEA2. The noimdded solu-
tions from the central island were transferred back to eddheislands and
the process was repeated until satisfactory solutions alasned. The authors
used physics-based analysis tools for performance predidtow-order/fidelity
models were used for the involved disciplines: aerodynanpi@pulsion, stabil-
ity and control, economics, aeroelasticity, manufactyi@md acoustics, along

with modules for weight estimation and geometry paramzadon.

Valliyappan and Simpson [175] solved a conceptual desjgimuization for a
general aviation aircraft product family of small propeliigiven GAA (General
Aviation Aircraft) to be scaled around tt¥ 4, and6 seats configurations, and
which can cruise from50 to 300 knots and have a range fraf0 to 1000 miles.
The aim of this study was to explore the design space in oodiénd the trade-
off between platform commonality and individual productfpemance within
the aircraft family. The MOP comprised four objective fupnaos which were de-
fined by means of a goal programming formulation, where thétiens of each
goal from their targets were minimized. For this sake, a E&étgmals (aspiration

levels), and a set df constraints were defined. The first two objectives measured
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the technical and economical related goals within the famaélspectively; while
the third objective measured the total constraint viotafar the whole family;
finally, objective four measured the variance index or degfecommonality in
variables within the product family. Design candidatesengfined with a set of
14 continuous/discrete design variables, and the evaluafithe aircraft perfor-
mance was done via NASA's GASP (General Aviation Syntheigiam). The
authors used the NSGA-II. A special encoding was adoptedderdo contain a
set of commonality controlling genes (one gene per var)afdfowed by a con-
catenation of genes defining the design variables of eaatuptdn the product

family.

Rajagopal et al. [135] investigated an Unmanned Aerialiélel{UAV) concep-
tual design. Two objectives were considered: (i) the mazértidn of the en-
durance (the time an airplane can fly given a payload and andiwed weight)
and (ii) the minimization of the wing weight. Six design \afries were used,
four of them being wing-geometry related parameters (dsj¢io, wing load-
ing, taper ratio, thickness to chord ratio) and the other hwimg UAV's oper-
ational parameters (loiter velocity and altitude). Adulitally, constraints were
imposed on the performance parameters of the UAV desigrselineluded: (1)
wing weight, (2) rate of climb, (3), stall speed, and (4) nmaxim speed at sea
level condition. NSGA-II with real-numbers encoding and BBX crossover
operator was adopted. This MOEA was coupled to Raymer’'s RijSvare,
which is based on the design methods described in [138]derdo evaluate the
performance of each design candidate. The authors repibided Pareto front

was obtained with a total of 11 solutions.

Kuhn et al. [88] developed a multidisciplinary conceptdasign methodology
for its application to hybrid airship design (aerostatitdind aerodynamic lift).
Two objectives were considered: (i) minimization of theatehass, and (i) max-
imization of the payload. Thirteen constraints were impgpselated to stress
levels in the components. A set of 18 mixed real/discret@aftes were used to

represent the geometry of the airship and its structurgdgnt@s. The optimiza-
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tion tool adopted was a MOEA called GAME (Genetic Algorithon Multicrite-
ria Engineering) [90], which is based on Evolution StragsgiES). The evalua-
tion of the objective functions was done with models varyim§idelity, ranging
from interpolation models to FEM models. The latter was usethe structural
analysis using a FEM commercial software. A Hybrid UniveGeound Ob-
server (HUGO) airship demonstrator was designed, withad ¢6t10,000 design

candidates being evaluated.

- Jing and Shuo [74] presented the conceptual design of amreathing hyper-
sonic cruise vehicle. Five design objectives were consittel(i) maximiza-
tion of the lift-to-drag ratio, (ii) minimization of the sgamation temperature, (iii)
maximization of the thrust-to-drag ratio, (iv) maximizatiof the airframe vol-
ume, and (v) minimization of the Radar Cross Section (RC8nhsBaints were
imposed on variables ranges, flow flux and Mach number at adetitions,
trimmed angle of attack and rolling angle, and static sitgtaihd maneuverabil-
ity margins as well. 21 design variables were used to defieg#ometry of the
design candidates. The authors adopted MOGA with the fatigfeatures: real
numbers encoding, arithmetic crossover, Gaussian motatieady-state repro-
duction and fitness sharing. Constraint handling was doraalaccurate penalty
strategy. Additionally, for further improvement of the sobns, a simulated an-
nealing algorithrfi was adopted as a local search engine. The objectives were
evaluated using simplified models with reduced computatioast. Only three
globally nondominated solutions could be generated. Sakhisns were fur-
ther evaluated and compared against a reference desigrauttners noted that

these solutions were better in all the objectives than tFereace design (i.e.,

“4Kirkpatrick et al. [79] pointed out the analogy between anrfealing” process and optimization: a
system state is analogous to the solution of an optimizgiroblem; the free energy of the system (to be
minimized) corresponds to the cost of the objective fumctmbe optimized; the slight perturbation imposed
on the system to change it to another state corresponds tovammeat into a neighboring position (with
respect to the local search state); the cooling schedutesmnds to the control mechanism adopted by the
search algorithm; and the frozen state of the system camelspto the final solution generated by the search
algorithm (using a population size of one). These analdgio the development of the so-callsichulated

annealingalgorithm.
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they dominated it).

Xiaoging et al. [184] evaluated the multiobjective optzation of hypersonic
waverider shape generation. Three objectives were camsidé€i) lift-to-drag

ratio, (ii) vehicle’s volume, and (iii) vehicle’s volumatrratio. No information
is given, concerning constraints, thus it is assumed thigtside constraints on
variable ranges are considered. The base section of theaidewvevas defined
by means of analytical shape functions (i.e., fourth-optdynomials), keeping
to a minimum the number of design variables. The authorsoezgltwo dif-

ferent techniques: (a) cone derived waverider, and (b)lasog cone derived
waverider. The authors adopted the NSGA-II with an impros@avding mech-

anism.

Theisinger and Braun [170] identified hypersonic entryoakell shapes in or-
der to find trade-off designs with increased landed masshilijEs. Three ob-
jectives were considered: (i) drag-area, (ii) static ditgband (iii) volumetric
efficiency. This particular spacecraft design problem waged by planetary
entry-descent-landing performance requirements andnééstructural limita-
tions, which are naturally conflicting. All objectives wereaximized and two
constraints were imposed to the volumetric efficiency antherlift-to-drag ra-
tio. Side constraints were applied to the design varialilesder to obtain de-
signs fitting with the current launch systems. Aeroshelpghaas described by
a bi-parametric, cubic by quadratic, non-uniform ratioBadpline 3D surface,
allowing them to define the optimization problem with 20 desvariables, in-
cluding the aeroshell angle of attack. The authors adopted/érsion of the
NSGA-II available in theSIGHT commercial software. Additionally, the ob-
jective function evaluations were performed with the eatid flowfield around
the aeroshell using a physics-based simulation, nameljN#vetonian impact
theory. The Mars Science Laboratory Aeroshell was adomeraference de-
sign. The authors found several design candidates thaimpeetl better than the

reference design in the three objectives under considerati
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Analysis of the use of MOEAs in conceptual design:

Table 1 summarizes the application of MOEAS in conceptusigiteoptimization
problems. From this table and the previous review, it canldserved that the NSGA-II
is the most frequently adopted approach. The common useefd?based approaches
seems to corroborate the hypothesis from some authorsdiegahe suitability of
Pareto optimality to drive the search at the preliminargssaof design [181]. It should
be clear that the use of MOEASs is computationally expensiéch is the reason why
analytic and/or low-order engineering models are adoptemhdst cases. Only in a
few applications, researchers seem to rely on low-ordesipghybased models [15],
and variable-fidelity physics-based models [88]. Nevdeds we believe that in the
near future, MOEAs will become a standard practice, as thgpcing power available
continues to increase each year. Itis also worth notingMI@EAs are flexible enough
as to allow their coupling to both engineering models and-¢wder physics-based
models without major changes. They can also be easily ptiraltl, since MOEAs
normally have low data dependency. Finally, it is worth @ading the advantage of
incorporating a subjective evaluation scheme for caseshichwthe search must be
controlled, disallowing the generation of impractical idessolutions as reported by
Buonanno and Mauvris [15].

An aspect that is important to emphasize is the poor scilabil Pareto-based
MOEAs as we increase the number of objectives [82]. Many efapplications pre-
viously described considered a low number of conflictingeotiyes (two or three in
most cases). Although MOEAs can still be used in high-dirteTed objective spaces,
it is required to use mechanisms different from the tradaidPareto-based selection
[64]. This issue, however, does not seem to be a major comeenost of the appli-
cations reviewed above. A remarkable exception is the weplrted in [15] in which
the authors deal with a problem having seven objectives. alitieors adopt in this
case a parallel MOEA based on the concepts of co-evolutionuitiple populations.
This approach seems to produce acceptable results in gtisdiinensional objective
search space. Another issue that seems to be a common camtieisnfirst group of

applications is the encoding of the decision variables.c&itis sort of application
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normally has mixed decision variables (e.g., discrete amdicuous), authors tend to
propose their owad-hocencodings, which also require specialized crossover and mu
tation operators associated to them. It should also be ewtitiat in this first type of
applications, authors paid little or no attention to thefimeing of parameters of their
MOEAs. This may be due to the obvious difficulties to perforraaeful statistical
analysis when dealing with very expensive objective fuori However, other pos-
sible alternatives such as self-adaptation or on-line t&diap have not been properly
addressed by researchers in this area yet [174]. If suckadalftation and on-line
adaptation mechanisms are unaffordable, at least the usdatizely high mutation
rates is suggested, combined with a plus selection mechah& combines the pop-
ulation of parents with the population of offspring and nesathe best half. This will
increase the selection pressure but will maintain enouggrsity as to avoid premature
convergence. Finally, it is worth mentioning the use of exaéfiles (or archives) as
a viable alternative to reduce objective function evatuaiand perform a more accu-
rate search. This sort of mechanism can be particularlyulséfen combined with
relaxed forms of Pareto dominance such-@®minance [94], which allows to regulate
convergence, and has not been adopted by researchers gvarkims first group of

applications.

5.2 2D geometries and airfoil shape optimization

Aeronautic and aerospace systems are, in general, comgi@eering systems. Their
analysis and design is a very complex task. There exist, \ienvenany enginering
design cases where this complexity can be tackled by amgyrasic components of
the complete system, on which reduced/simplified modelsbeansed as the basis
for analyzing the whole system. Examples of these conditeme the design of 3D
complex shapes such as wings and turbine blades, whereahysiarof their 2D build-
ing sections (airfoils) is frequently performed prior t@tanalysis of the complete 3D
geometry. In other cases, the geometry for the system cauodbetksat its operating

conditions can be estimated by analyzing its sectionalgnt@s. Examples of this lat-
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ter condition are the aircraft engine inlets/nozzles, whae flow can be assumed as
two-dimensional or axisymmetrical. In this section, sorppleations of MOEAS for

these types of problems are presented.

- Yamaguchi and Arima [185] dealt with the optimization ofrartsonic com-
pressor stator blade in which three objectives were miranhiZi) pressure loss
coefficient, (ii) deviation outflow angle, and (iii) incidea toughness. The last
objective function can be considered as a robust conditiothie design, since
it is computed as the sum of the pressure loss coefficientgatff-design inci-
dence angles. The airfoil blade geometry was defined by engdgign variables.
The authors adopted MOGA with real-numbers encoding, fitskaring and in-
termediate crossover. Aerodynamic performance evalu&tiothe compressor
blade was done using Navier-Stokes CFD simulations. Thienggation pro-
cess was parallelized, using 24 processors in order to edtheccomputational
time required. In order to promote diversity, during thetffesv generations,
parents were selected from individuals with the first twodstwank values (i.e.,
dominated individuals were also selected) and later oty, mohdominated indi-

viduals were selected.

- Benini and Toffolo [9] addressed the development of higifgrmance airfoils
for its application in axial flow compressors. They minimdz®vo objectives:
(i) nondimensional pressure ratio, and (ii) the pressuse tmefficient reduced
from the unit value. Constraints were imposed on the desigmlitions, and
were evaluated at 5 different flow-field points, in order téadb airfoils being at
least equal in performance to the reference airfoils adbpyethe authors. The
airfoil geometry was defined using three Bézier curvesotalt9 designs vari-
ables were used to define the airfoil geometry, its lengtichpiand incidence.
A special procedure was used to avoid generating eitheesselr invalid air-
foil geometries. The MOEA used by the authors is based onitist €} + 1)
evolution strategy, which adopted binary encoding. Inrtireplementationy
offspring were generated using crossover and were mutdte@wandom-based

mechanism. Repeated solutions (clones) were replacedipmay-generated
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individuals. In the selection process, the combined pdjmriaof parents and
offspring were Pareto-ranked but considering also a diyensetric defined as
a function of the minimal normalized Euclidean distanced@tision variable
space) of each individual to its closest neighbor. The pesidividuals were
retained as members of the following generation. The etialuaf the objec-
tive functions was done by means of CFD simulations with & keigmputational
cost. The nondominated solutions generated by the authers fgund to be

superior in performance to the reference airfoils, using65 family airfoils.

- Naujoks et al. [113] addressed an airfoil design problemtiich extreme Pareto
optimal solutions were defined for two operational designisqtwo competing
objectives): one for high lift performance at low speed dgtod and the other
one for low drag performance at high speed condition. Thieihivas repre-
sented by two Bézier curves, and a total of 12 design varsablere adopted.
No constraints were defined, other than side constrain{sefugnd lower limits
for the design variables). The authors used an approadddslODES (Multi
Objective Derandomized Evolution Strategy). In this cagé+d0)-DES (De-
randomized Evolution Strategy) was adopted, which meaatsotily one parent
was used to produce the offspring. The aerodynamic evaluati the design
candidates is performed using a CFD Navier-Stokes sinmmatith a high com-
putational cost. It is worth noting, however, that for theples presented by
the authors, a budget of only 1000 evaluations was consldekthough this
was a very small number of objective function evaluatiohs,authors reported
the generation of good approximations of the Pareto fronta further paper,
Naujoks et al. [114] proposed to use a (20+20)-MODES styatdgng with an
additional selection mechanism inspired on the NSGA-Ie Tésults presented
with this additional selection mechanism were very sintitethose obtained be-
fore, both in terms of quality of the Pareto approximatiod &mterms of the

spread of the nondominated solutions along the Pareto. front

- Beume et al. [10] poposed the SMS-EMOA (SMS stands for Sioiedelec-

5Thehypervolume (also known as thé metric or the Lebesgue Measure) of a set of solutions messure
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tion) strategy. The approach was used to solve a multi-tibgeairfoil design
problem. As in the previous case, Pareto extreme solutiare wefined by
three operational conditions for lift, drag and pitchingnmrent coefficients. The
optimization problem was to find trade-off solutions mirang the drag val-
ues for the three flow conditions, while not losing lift andepéng the pitching
moment within &% range from the reference design points. Additionally, ge-
ometrical constraints were included for the airfoil shaphkese last constraints
were treated in a direct manner, discarding all infeasiblet®ns, previous to a
CFD simulation. Results for this application were preseiated compared with
those obtained by using NSGA-II, in both cases with a limiedget of 1,000

function evaluations.

- Rai [133] dealt with the robust optimal aerodynamical desif a turbine blade
airfoil shape, taking into account the performance degradaue to manufac-
turing uncertainties. Two objectives were consideredtq(ijninimize the vari-
ance of the pressure distribution over the airfoil's sugfaand (ii) to maximize
the probability of constraint satisfaction. Only one coaistt was considered,
related to the minimum thickness of the airfoil shape. Thest@int-handling
technique adopted was the one developed by the same autthoeported in
[132]. The airfoil shape parameterization consisted ohedgcision variables
but in the experiments presented, only two of them were usegrturbing one
airfoil side (the pressure side). The author adopted a robjective differential
evolution (MODE) approach [130]. Its main features incld@emechanism to
reduce the set of nondominated solutions in case its sizeebed a certain (pre-
defined) threshold. This was done to promote diversity irpthgulation. It also
adopted an intermediate population whose size was twicags &s the original
and which was Pareto ranked so that only the first half waseddor the next
generation. The author used a high-fidelity CFD simulatinragerturbed air-

foil geometry in order to evaluate the aerodynamic charaties of the airfoil

the size of the portion of objective space that is dominatethbse solutions collectively. It has been proved
that the maximization of this performance measure is etgrivdo finding the Pareto optimal set [45], and

this has also been empirically verified by some researc838js [
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generated by MODE. The simulation follows a probability signfunction that
is observed for manufacturing tolerances. This processinedja high compu-
tational cost, which the author attempted to reduce by uaingrtificial neural
network [150] Response Surface Model (RSM).

- Ray and Tsai [136] considered an airfoil shape design apdition problem with
two objectives to be minimized: (i) the ratio of the draghfosquared coeffi-
cients, and (ii) the squared moment coefficient. Constsaivdre imposed on
the flow Mach number and angle of attack. Airfoil shapes werfndd by the
PARSEC representation [158]. This airfoil representatibowed to define the
geometry of an airfoil with 1 design variables which are more related to its aero-
dynamic performance than in other type of airfoil repreagohs. The optimizer
used is a multi-objective particle swarm optimizer (MOP38)}) A particular
feature of this application was that the particle swarm sehevas based on
movements for the particles of one position to another irdés#gn space, rather
than on an update of an individual’'s velocity as done in tlaadard particle
swarm optimization algorithm. The aim of this scheme wasdacéon in the
number of user-defined inputs. The flow solver utilized cgponds to an Euler
code which was able to capture nonlinearities in the flow agbhock waves.
In their results, the authors obtained a set with 32 nondatadhsolutions. In
a related work, Ray and Tsai [137] presented a parallel imptgation of this
MOPSO for airfoil shape optimization. This approach was &lgbridized with
a gradient-based algorithm. Contrary to standard hylat@tin schemes where
gradient-based algorithms are used to improve the nonduedrsolutions ob-
tained (i.e., as a local search engine), in this approachutiers used the gradi-
entinformation to repair solutions not satisfying the digpaonstraints. This re-
pairing algorithm was based on the Marquardt-Levenbergréhlgn [106, 100].
During the repairing process, a subset of the design vasatés used, instead of
the whole set, in order to reduce the dimensionality of thientipation problem

to be solved.

- Obayashi et al. [117] studied the aerodynamic design afagesairfoils shapes.
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The problem considered three objective functions: (i) puesrise, (ii) flow turn-
ing angle, and (iii) total pressure loss. The first two obyes were maximized
and the third one was minimized. The authors used a realecbii@GA. Ob-
jective evaluation was performed using a 2D Navier-Stokeledor flow evalu-
ation. The same MOEA was also used for the design of a fogestampressor
[123, 117]. In this second application, two objective fuos were maximized:
(i) total pressure ratio and (ii) isentropic efficiency. TMEOP consisted of 80
design variables, and one constraint on the flow conditionsyder to avoid
designs with flow separation. The evaluation was done usavg gimulations
based on the streamline curvature method in which soluBoa®btained iter-
atively, causing a high computational cost even when anneeging model is
used. The nondominated solutions obtained by the authtpedarmed a base-

line design in both objective functions by an amount of 1%.

D’Angelo and Minisci [29] solved a subsonic airfoil shapgtimization prob-
lem, in which two objective functions were minimized: (i)ady force coeffi-
cient, and (ii) lift force coefficient difference with respdo a reference value.
The airfoil geometry was parameterized using Bézier cubvath for its cam-
ber line and for its thickness distribution. Five designiafales were used and
constraints were imposed on the extreme values of the dl@dainctions. The
authors adopted MOPED (Multi-Objective Parzen-basedizgion of Distribu-
tion) [27], which uses the Parzen method to build a probstilrepresentation
of the nondominated solutions, with multivariate depemdenamong the deci-
sion variables. The authors included three modificatiomjorove MOPED: (a)
the use of a Kriging model by which solutions were evaluatétiaut resort-
ing to costly computational simulations, (b) the use of atioh control to keep
the evolution from converging to false Pareto fronts, andh(e hybridization of
the algorithm with some mechanisms from NSGA-II (selectiond ranking of
solutions). Aerodynamic evaluations were performed bygisi CFD simula-
tion code, tailored for aerodynamic airfoil analysis. Thethers indicated that

this subsonic airfoil shape optimization problem prese difficulties associated
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to more complex problems: The true Pareto front was discantis and par-
tially converged solutions (when divergence was detecdteljterative process
was stopped) from the aerodynamic simulation code intredircegularities in
objective function space. The approximation model redubechumber of ob-
jective function evaluation in a significant manner (to oix¢hsof their original

value).

Bing et al. [11] presented the aerodynamic shape optimoizdor a 2D Hy-
personic inlet and 2D SERN (Single-Expansion-Ramp Noazsed in scram-
jet engines. Two applications were presented, one with thjeatives and the
other with three objectives. For the first optimization exdera 2D Hypersonic
engine inlet was considered, and the aim was to maximizewbefdllowing
objectives: (i) pressure recovery, and (ii) static presgige. Constraints on
the design variables, inlet geometry and flow condition ét, eere imposed.
The inlet geometry was defined using four decision variablHse evaluation
of the design performance required high fidelity CFD Nadérskes simulations
since the flow physics was highly nonlinear for the operaflog conditions
indicated. The results of both the NSGA-II and the NeighlbodhCultivation
Genetic Algorithm (NCGA) [182] were compared. The secormbpgm consid-
ered the same inlet design previously defined, with the mdidit objective of
minimizing the inlet drag coefficient. From the results preed by the authors,
in both cases, the NCGA algorithm performed better than NSIGAbtaining

more nondominated solutions with a better spread alongahet@front.

Brown et al. [14] addressed the optimization design of areget inlet consider-

ing two objectives: (i) total pressure recovery factor, éindariation of pressure

recovery factor for at 5% change in free stream Mach number. The first objec-

tive was maximized, while the second was minimized. Acaggdo the design
problem, geometric constraints were defined in order to wenphysically un-
realistic solutions. Additionally, operational flow corahts were considered to
guarantee the auto-ignition in the engine. This conditemquired a certain range

for pressure, temperature and Mach number in the flow atféplgations. The
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inlet was considered as a 2-D geometry and consisted of flaeeamps and
a cowl at the combustion chamber inlet. In this case, 12 deggiables were
adopted. The MOEA adopted used a selective breeding priwdssinked solu-
tions according to the constraints, and also on the basteaé¢sirability of the
values of the objectives (according to the user’s prefexend he objective func-
tions consisted of hypersonic flow conditions in which sgrehock waves were
present. The authors did not report the cardinality of theo@ondominated
solutions that they obtained, but they reported the geioeraf a considerably

high number of nondominated solutions.

Congedo et al. [26] dealt with the airfoil shape optimiaatfor transonic flows
of Bethe-Zel'dovich-Thompson (BZT) fluids. In this caseptdesign conditions
were explored, both for a non-lifting airfoil, and for a iifg airfoil. In the sec-
ond case, the MOP considered two design objectives: (i) mization of lift
at BZT subcritical conditions, and (ii) minimization of wandrag while maxi-
mizing lift for supercritical BZT flow conditions. The geotng of the airfoil
shape was represented with a Bézier curve with 16 2D coptinits, i.e., 32
decision variables, from which 10 are constants used tacithe leading edge
and trailing edge positions as well as the leading edge sldpels, the prob-
lem consisted of 22 variables. The only constraint includead the thickness to
chord ratio of the airfoil, which was adjusted to its spedifi@lue, once a design
was generated, and prior to the flow solution. The authord tiseNSGA with
a sigma-share formula given in [131], which takes into aotdhe population
size and the number of objectives. They chose parametehnstatless than
1,000 obijective function evaluations were performed. Tithars reported that
all the solutions that they obtained outperformed the limselesign as well as

the designs obtained using traditional design methods.

Shimoyama et al. [156] developed a novel optimization epph for robust de-
sign. In their approach, a design for multi-objective sprsa (DFMOSS) [155]
was applied for the robust aerodynamic airfoil design of asvploratory air-

plane. The core of the design methodology was, on the one, tlaadoncept
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of Robust Desighand, on the other, its multi-objective nature. The idea ef th
DFMOSS methodology was to incorporate a MOEA to simultasgooptimize
the mean value of an objective function, while minimizirggstandard deviation
due to the uncertainties indicated above. The airfoil slogybienization problems
considered two cases: a robust design of (a) airfoil acraaym efficiency (lift-
to-drag ratio), and (b) airfoil pitching moment constraimh both cases, only
the variability in the flow Mach number was taken into accoufihe authors
adopted MOGA. The airfoil geometry was defined using Bézigwves both for
the upper and for the lower surfaces. 6 control points wees usesulting in
12 design variables. The aerodynamic performance of theilairas evaluated
by CFD simulations using the Favre-Averaged compressititelayer Navier-
Stokes equations. Eighteen robust nondominated solutiens obtained in the
first test case. From this set, almost half of the populatitaireed the6o con-
dition. In the second test case, more robust nondominatetds®s were found,

and they satisfied a sigma level as higl2as.

Sz0llds et al. [162] addressed the aerodynamic shapeaiaation of the airfoil
geometry of a standard-class glider, considering threeatigs: (i) maximize
gliding ratio at high flight speed, (ii) maximize gliding ra@&t average weather
conditions, and (iii) minimize sink rate at low turning sgpse All these objec-
tives are specified in terms of airfoil’s aerodynamic lifdagirag coefficients as
well as flight operating conditions in terms of the Reynoldeber Re) and the
Mach number §/). Constraints are considered for: (a) airfoil’s maximtildo-
efficient at landing flight conditions, (b) maximum airfgithickness to chord ra-
tio, (c) trailing edge thickness, and (d) pitching momergftioient (C,,,) which
is required not to be worse than a reference airfoil desigme duthors intro-
duced a new MOEA callethulti-objective micro-genetic algorithm with range

adaptation, based oa-dominanceor euARMOGA. This approach is inspired

6Robust design takes into account the fact that in real-wemitgineering designs, performance of a design
can vary from its expected value, due mainly to errors an@dainties in the design and/or manufacturing
process, and/or in the operating conditions. Thereforeaim is to find the trade-off between the optimality

of the design and its robustness.
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on the Adaptive Range Multi-Objective Genetic AlgorithmRIOGA) [143].
ARMOGA incorporates two archiving techniques: a globahare, which stores
all the best solutions obtained so far, and a recent archivieh stores the best
solutions of the past previous generations. Solutions ftensecond archive par-
ticipate in the parent selection processARMOGA introduces two additional
mechanisms. The first corresponds to the use of a small papukize (i.e.
the use of a micro-genetic algorithm as in [85, 25]), coupléiti the use of an
external file for storing the nondominated solutions ol#dino far. The second
mechanism corresponds to the use of the conceptdaiminance [95], which
is a relaxed form of Pareto dominance that has been used astavirsg strat-
egy that allows to regulate convergence. The authors liziid the population
using a Latin Hypercube Sampling (LHS) technique, and th& mapulation
was reinitialized at every certain number of generatioasel on the average
and standard deviation of the decision variables. The tilgtunctions were
evaluated using a CFD simulation code. The authors obtdéesible solutions
with improvements on the order of 10%, 8% and 7-10% for thg fiecond and

third objectives, respectively, with respect to a refeeeaicfoil design.

Analysis of the use of MOEAS in 2D geometries and airfoil shag@ optimization:

Table 2 summarizes the application of MOEAs in 2D geometiebairfoil shape
optimization problems. From this table and the previousudision, we can see that,
as before, a wide variety of Pareto-based elitist MOEAs Haen used in this do-
main. It is also worth noting the use of MOEAs iobust designin which solutions
are evaluated with off-design operating conditions andufesturing tolerances. Such
solutions are thus representing more realistic designser8kauthors report improved
designs when adopting MOEAs, but unsuccessful cases hswdaén reported. The
cases in which MOEAs fail to produce improved designs sedpe tassociated to situ-
ations in which the baseline design had been already imgriova significant manner,

or when the search space is so highly constrained that iffisudi to move to better
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regions. Again, the high computational cost associateltidoise of MOEASs is evident.
In spite of the advantages of Pareto-based MOEAs, it is afisieet that, when dealing
with expensive objective functions such as those of the alagyplications, the use of
careful statistical analysis of parameters is unafforelabhus, the parameters of the
MOEAs discussed in this section were simple guesses or fatenvalues suggested
by other researchers. It is also important to note that s@searchers have suggested
clever approaches that allow the use of very small populaizes, although surrogate
models have also been employed, as in the previous sectienertideless, the use
of other simpler techniques such as fitness inheritancermsft approximation [139]
seems to be uncommon in this domain and could be a good alterméhen dealing
with high-dimensional problems. Additionally, the autkof this group of applications
have relied on very simple constraint-handling technigussst of which discard in-
feasible individuals. Alternative approaches exist, Wigan exploit information from
infeasible solutions and can make a more sophisticate@eatfin of the search space
when dealing with constrained problems (see for exampl8])hd this has not been
properly studied yet. Finally, it is worth emphasizing thiat spite of the difficulty
of these problems and of the evident limitations of MOEAs éaldvith them, most
authors report finding improved designs when using MOEAsneavhen in all cases a
fairly small number of fithess function evaluations waswa#ld. This clearly illustrates

the high potential of MOEAS in this domain.

5.3 3D complex physics/shape optimization

Sophisticated aeronautical/aerospace systems possasssincases, complex three-
dimensional shapes and/or are designed to operate in copipysical environments.
Examples of such complex three-dimensional shapes are thfosirbine/propeller
blades, and complete aircraft configurations. Complexetitienensional physics are
present for high speed flow over wings and turbine/propéliades, in which shock
waves can arise, affecting the design performance. Foe tt@ses, the MOP cannot
be simplified by the use of reduced models, such as two-dimealssimulations, as

done in the applications of the previous section. Next, wiediscuss applications of
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MOEAs in which their authors deal with these 3D complex pbsishape optimization

problems.

- Sasaki et al. [145] and Obayashi et al. [118] solved a nuldjective aerody-
namic wing shape optimization problem in which they minietizhree objec-
tives: (i) drag coefficient for transonic cruise, (ii) dragetficient for supersonic
cruise, and (iii) bending moment at the wing root for supeisoruise condition.
The set of constraints comprised lift coefficient at botins@nic and supersonic
cruise conditions, wing area and maximum airfoil thicknebke variables for
this design were 66 in total, and defined the wing planfornpshairfoil chord
and thickness distribution at several wing stations, a$ ageWing twist angles
at the same airfoil locations. The authors adopted MOGA aedlesign can-
didates were evaluated by a high-fidelity Navier-Stokes Gy simulation.
The evaluation process was parallelized using the malstes-paradigm. In a
further paper, Sasaki et al. [146] used the same algorithrthBbaerodynamic
optimization of a supersonic transport wing-body configjora In this applica-
tion, two objectives were considered: (i) drag coefficiemd &ii) difference in
Darden’s equivalent area distribution. Constraints oritheoefficient were im-
posed during the optimization, and on the length and voluitieedfuselage. The
aim of the second objective was to achieve low sonic boomeagitaristics. For
this problem, the number of variables increased to 131 ,@afidelage geometry
was added in this case. The aerodynamic evaluation for thieofijective was
performed by an Euler CFD simulation to considerably redbeeomputational
time with respect to the use of a Navier-Stokes CFD simulatidonetheless,
the optimization process was parallelized using the mata®e paradigm. Two
test cases were considered, each one having different/Agwper limits for the

section nearby the wing-body intersection.

- Sasaki and Obayashi [147] solved a problem similar to tleeipus one [146]
and obtained analogous results, but in this case, the ARM@Igérithm was
used. Also, and in order to incorporate constraints, amebee Pareto ranking

method based on constraint-dominance was used [47].
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- Ng et al. [115] addressed a multiobjective wing platfornd airfoil shape opti-
mization problem. The MOP aimed to redesign the referencERANM6 wing
minimizing two objectives: (i) W/Wo, which is the ratio fohé design wing
weight with respect to the reference ONERA M6 wing weight éi) CD/CDo,
which is the ratio of the design wing drag coefficient withpest to that of the
reference wing. The first objective was evaluated using &@-sempirical equa-
tion, while the second was obtained from a multigrid EuleDCé&tmulation.
Constraints were imposed on the flow Mach number and conktanoeffi-
cient. No special constraint handling technique was usgidhle CFD code was
instructed to vary the angle of attack, subjected to a talsrain order to satisfy
this equality constraint. This technique can be seen as &anéxm to repair
solutions. The wing platform was represented by 5 desigiablas: (a) taper
ratio, (b) wing sweep angle, (c) twist angle, (d) aspecbratnd (e) thickness-to-
chord ratio. The airfoil used for the wing corresponded ®shimmetric airfoil
used in the ONERA M6 wing, and was the same across the wingoptimizer
used was based on the PSO algorithm described in Ray et &l. [[I3e authors
presented results for two test cases: the first with 4 steggrensecond with
8 steps. In the first case 10 nondominated solutions wereéneltawhile 11
were found in the second case. In both cases, all the nondtedidesigns were
better in the first objective function compared to the rafesewing, and for the
second objective, almost half of the population were bettgite the rest were
worse, with respect to the reference wing. An Adaptive Se&pgace Operator
(ASSO) technique was used by the authors to give the algotitie possibility
of adapting decision variables bounds by shrinking/expaptthe boundaries of

the design space.

- Lian and Liou [101] addressed the optimization of a thrememhsional rotor
blade, namely the redesign of the NASA rotor 67 compressatehla transonic
axial-flow fan rotor, which was the first of a two-stage congs fan. Two ob-
jectives were considered in this case: (i) maximizatiorhefdtage pressure rise,

and (ii) minimization of the entropy generation. Consttaiwere imposed on
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the mass flow rate to have a difference less than 0.1% betweeretv one and
the reference design. The blade geometry was construaisddirfoil shapes
defined at four span stations, with a total of 32 design végabThe authors
adopted MOGA. The optimization process was coupled to askooder RSM,
which was built with 1,024 design candidates using the ImgdoHypercube
Sampling (IHS) algorithm. 12 design solutions were sekkdtem the RSM-
Pareto front obtained, and such solutions were verified avitigh fidelity CFD
simulation. The objective function values slightly diterfrom those obtained
by the approximation model, but all the selected solutioesenbetter in both
objective functions than the reference design. Similarkweas presented by
Lian and Liou [102] but minimizing the blade weight insteddte entropy gen-
eration. Similar performance results were obtained wightér blades. More re-
cently, Kim and Liou [78] presented the design of three newBWS, including
addtitional mechanisms to the basic MOGA algorithm indidabefore. Such
mechanisms included: an elite-preserving approach (EREMQa modified
sharing function (EP-MOGAS), and a gradient-based diveeti operator (EP-
MOGAS-D).

Holst [61] presented the aerodynamic optimization of agalimdy configuration
in which two objective functions were maximized: (i) lit-drag ratio, and (ii)
configuration volume. Constraints were imposed on the dipgrédlow condi-
tion at transonic Mach number and at a fixed lift. The problexd 66 decision
variables which controlled the wing geometry, its posit@ong the fuselage and
the section shape of the fuselage at some specified fusa&tgas. The author
adopted MOGA. The proposed approach was able to reduce $b&afie cross
section in the vicinity of the wing-fuselage juncture, whis a common practice

in aerodynamic design for the transonic flow regime.

Sasaki et al. [142] solved an aerodynamic MOP for a turbormapressor stage.
The main aim was to improve three aerodynamic objectivesdéytifying the
trade-offs among them in the baseline condition: (i) isapitr efficiency, (ii)

blockage, and (iii) flow loss. Equality constraints on thsige were imposed,
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intended mainly to maintain the flow and operating condgisimilar to those
of the baseline geometry: Stage loading, mass flow ratee staigg whirl angle
and pressure ratio. Such equality constraints were tremsft into inequali-
ties, and thresholds were reduced as the optimization pdsck The three-
dimensional shape of the blade was re-designed from thdif@aggEometry,
by defining parameters that allowed: (a) axial movement ofiges along the
engine axis, (b) circumferential movement of sections,s(djd body rotation
of sections based on trailing edge position, and (d) comnothe number of
blades. In total, 28 design variables were used per congressge. The au-
thors adopted ARMOGA. The aerodynamic evaluation was perdd with high
fidelity Reynolds-Averaged Navier-Stokes CFD tools to gpala compressor
stage. The CFD analysis comprised the rotor/stator intierac The authors
presented two application examples, the first of which hacedfnumber of
rotor/stator blades. The optimization process was ablenfwrave the baseline
design while 8 designs satisfied all the constraints. Effigjewas improved
within 1%, even when infeasible solutions were consideraéter analyzing
the trade-off among the objectives from the first test casecand test case was
proposed, considering the number of rotor/stator bladas aslditional variable,
and changing the approximation function in the radial dicec In this case, a
B-spline function was used instead of the cubic-spline &b the previous
case. Results from this second test case achieved an affiaraprovement of
1.5%. In this case, 14 feasible designs were generated Vitdoh only 4 were

nondominated.

Benini [8] extended a previous work from Benini and Toff¢8j for a three-
dimensional transonic compressor rotor design optimomngbroblem in which
two objective functions were maximized: (i) total presstato, and (ii) adia-
batic efficiency. Constraints were imposed on the desiguditions as to obtain
the mass flow of a reference design, the NASA Rotor 37. Theebtgbme-
try used in the transonic compressor rotor was parametebyeBézier curves

defining the mean camber line and the thickness distributidhree profiles
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along the blade span were defined: at hub, midspan and tiptahdb23 de-

cision variables defined the 3D compressor rotor geometitye duthor used
the MOEA described in [9], which is based on evolution styas. The perfor-
mance evaluation of the designs was done using high fidedityié¥-Stokes CFD
simulations. The authors noted that the nondominatedisokiproduced were
clustered around the reference design point, due to a tagtgtaint imposed on
the flow mass rate, which did not allow the algorithm to explarwider region
of the search space. Nevertheless, the author was abledio @hprovementsin

both objective functions using the proposed approach.

Chiba et al. [17] explored the trade-offs among four aenaaigic objective
functions in the optimization of a wing shape for a Reusalderich Vehicle
(RLV). The objective functions were: (i) the shift of the adynamic center
between supersonic and transonic flight conditions, (ihphg moment in the
transonic flight condition, (iii) drag in the transonic fligbondition, and (iv)
lift for the subsonic flight condition. The first three objges were minimized
while the fourth was maximized. These objectives were sedefor attaining
control, stability, range and take-off constraints, resipely. The RLV defini-
tion comprised 71 design variables to define the wing platfaring position
along the fuselage and airfoil shape at prescribed wingstagions. The authors
adopted ARMOGA, and the aerodynamic evaluation of the RL¥ dane with
a Reynolds-Averaged Navier-Stokes CFD simulation. A traff@nalysis was

conducted with 102 nondominated individuals generatedh&yMOEA.

Song and Keane [159] performed the shape optimization dfibaircraft en-

gine nacelle. The primary goal of the study was to identig/titade-off between
aerodynamic performance and noise effects associatedvatitbus geometric
features for the nacelle. For this, two objective functiamse defined: i) scarf
angle, and ii) total pressure recovery. The nacelle gegmeis modeled using
40 parameters, from which 33 were considered design vasablhe authors
adopted the NSGA-II with a commercial CFD software for eadilg the three-

dimensional flow characteristics. Due to the large size efdbsign space to be
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explored, as well as the simulations being time consumikgiging-based sur-
rogate model was adopted in order to keep the number of des&jng evaluated
with the CFD tool to a minimum. The authors reported diffi@dtin obtaining
a reliable Pareto front (there were large discrepanciesd®t two consecutive
Pareto front approximations). They attributed this betiato the large number
of variables in the design problem, and also to the assabihiffeculties to obtain
an accurate Kriging model for these situations. In ordelevite this situation,
they performed an analysis of variance (ANOVA) test to find dariables that
contributed the most to the objective functions. After taist, they presented
results with a reduced surrogate model, employing only 7saw®t variables.
The authors argued that they obtained a design similar téeaerece one, but
requiring a lower computational cost because of the useisfédluced Kriging

model.

Jeong et al. [69] investigated the improvement of the &tdynamic character-
istics of a lifting-body type re-entry vehicle in transotiight condition. Two
objectives were minimized: (i) the derivative of the yawimgment, and (ii) the
derivative of the rolling moment. The MOP involved four dgsiariables, and
two solutions were sought: The first one without constraemsl the second one
constraining the lift-to-drag ratio for the lifting-bodype re-entry vehicle. The
authors adopted the Efficient Global Optimization for Mu@tbjective Problems
(EGOMOP) algorithm developed by Jeong et al. [68]. This athm was built
upon the ideas of the EGO and ParEGO Algorithms from Jone d76] and
Knowles et al. [80], respectively. For the exploration af tondominated solu-
tions, the authors adopted MOGA. Due to the geometry of ftindibody and
the operating flow condition of interest, namely high Macimiwer and strong
vortex formation, the evaluation of the objectives was doyeneans of a full
Navier-Stokes solver. Since the objectives were actuadlyvdtives, multiple
flow solutions were required to determine their values insamdite manner, con-
siderably increasing the total computational time due targd number of calls

of the CFD code. The authors were able to find better geometrfigurations
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than the baseline one, with better lateral dynamic chariatitss, both for the

unconstrained and for the constrained instances.

Lee et al. [98] presented the robust design optimizaticamoDNERA M6 wing
shape. The robust optimization was based on the concept diuchi method
in which the optimization problem is solved consideringentainties in the de-
sign environment, in this case, the flow Mach number. Thelprolhad two ob-
jectives: (i) minimization of the mean value of an objecfivection with respect
to variability of the operating conditions, and (ii) minipaition of the variance
of the objective function of each candidate solution, witispect to its mean
value. In the sample problems, the wing was defined by meaits planform
shape (sweep angle, aspect ratio, taper ratio, etc.) ame @fitfoil geometry, at
three wing locations (each airfoil shape was defined withraliination of mean
lines and camber distributions), using a total of 80 deskyiables to define the
wing designs. Geometry constraints were defined by uppetcavet limits of
the design variables. The authors adopted the Hierarchgyaichronous Paral-
lel Multi-Objective Evolutionary Algorithm (HAPMOEA) [5K which is based
on evolution strategies, incorporating the concept of Cianae Matrix Adapta-
tion (CMA). The aerodynamic evaluation was done with a CRDuation. It is
worth noting that HAPMOEA uses, during the evolutionarygess, a hierarchi-
cal set of CFD models, varying the grid resolution of the solfithree levels are
used), as well as different population sizes (dependindhergtid resolution).
The authors presented two solutions, with and without uag#res. In the latter
case the problem considered two design points (at two diftesperating condi-
tions), and the algorithm found the trade-off solutionsametn these two design
points. For the case of the design with uncertainties, thienggation problems
found the trade-off solutions considering the minimizatfor the mean value
of the objective function (the inverse of the lift-to-dragtio for the wing) and
its variance with respect to the mean value. From the repuodtsented by the
authors, the Pareto fronts were continuous a