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Abstract- The portfolio optimization problem uses
mathematical approaches to model stock exchange in-
vestments. Its aim is to find an optimal set of assets to in-
vest on, as well as the optimal investments for each asset.
In the present work, the problem is treated as a multi-
objective optimization problem. Three well-known opti-
mization techniques greedy search, simulated annealing
and ant colony optimization are adapted to this multi-
objective context. Pareto fronts for five stock indexes
are collected, showing the different behaviors of the al-
gorithms adapted. Finally, the results are discussed.

1 Introduction

The big companies of monetary funds management are re-
sponsible for the investment of trillions of dollars annually.
This money is invested on different products like pension
funds, banking insurance policies, stock exchange assets,
and other series of financial assets. The selection of an ap-
propriate investment portfolio is a basic process for these
financial companies. Although many of these decisions fol-
low qualitative criteria, decisions based on quantitative ap-
proaches are appearing nowadays.

In the present problem, the financial assets are modeled
by a probability distribution. This implies that the portfo-
lio profit is completely described by the average individual
profits of those assets; and the risk, by its total variance.

When investing money, companies are interested in ob-
taining the maximum profit of an investment set, which also
minimizes the risk. However, the problem has several con-
straints. Usually, the number of assets a portfolio can con-
tain is fixed at a constant. In the same way, when an asset
is selected to invest in, there are minimum and maximum
amounts of possible investments for that asset.

After fixing these parameters, a problem’s solution is
composed by a curve that compares risk and profit. For
each risk level, it shows the maximum profit that can be
obtained. This is a clear multiobjective design with two ob-
jective functions, one to be minimized and another to be
maximized. The second problem’s output is the asset set to
invest on, and the adequate investment ratios for each one
of them.

Here, we adapt three widely known optimization proce-
dures to a multiobjective approach for the portfolio prob-
lem. Two of them belong to the local search paradigm:
greedy search [1] and simulated annealing [2]. The third
procedure is based on the ant colony heuristic paradigm [3].
Specific algorithms have also been designed for the com-
mon tasks of initialization and neighborhood computing.

Section 2 presents the complete mathematical modeliza-

tion of the portfolio problem. Section 3 covers the ap-
proaches of greedy search and simulated annealing for a
multiobjective problem with two objective functions. Sec-
tion 4 includes the ad-hoc implemented algorithms for ini-
tialization and neighborhood computing. The ant colony
adaptation to this problem is shown in Section 5. The re-
sults obtained are shortly described and discussed in Sec-
tion 6. Last, conclusions are exposed in Section 7.

2 Portfolio optimization

2.1 Multiobjective problems

Multiobjective problems [4, 5] are very common within the
world of engineering optimization. In such contexts, not
only must a unique objective function be optimized, but so
must a set of functions belonging to the different problem’s
characteristics. Hence, an optimal solution does not exist,
since it is not known how to compare two functions that
come from completely different natures. Improving one of
the objectives many times implies worsening some or all
the other objectives. In this case, the idea is to search for a
set of agreements between all the problem’s objective func-
tions. This way, the user of the final results will be the one
that must select a certain solution or solution set of the ones
found.

Let us introduce a briefly mathematical description of a
multiobjective optimization problem:

Let
x1, . . . , xn the variables of the problem

f1, . . . , fm the functions to optimize

We look for

min f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) (1)

Subject to
g1(x1, . . . , xn) 6 b1 (2)

. . .

gr(x1, . . . , xn) 6 br (3)

A solution x is called a nondominated solution when
there is no other solution that can improve the value of
x for some objective function fi without simultaneously
degrading at least one of the other objective functions. On
the basis of this concept, two solutions can be compared in
a multiobjective problem, in such a way that:

given a multiobjective problem

minx=(x1,...,xn) f1, . . . , fm (4)



a solution x
′ dominates another solution x

′′ if

∀i f(x′

i) 6 f(x′′

i ) ∃j ∈ 1, . . . , n | f(x′

j) < f(x′′

j ) (5)

All the nondominated solution sets constitutes the Pareto
optimal set. Grouping all the images of this Pareto opti-
mal set generates a plot, often discontinuous, known as the
Pareto front, or Pareto border. Its name refers to Vilfredo
Pareto [6], who generalized these concepts in 1896.

All the techniques presented in this work try to find the
different Pareto borders for each problem.

2.2 Mathematical modeling

Several different mathematical optimization approaches
have been described for the portfolio optimization prob-
lem [7, 8]. In this study, a multinormal distribution
modeling is chosen: the Markowitz model [9]. On the basis
of this model, the restrictions and objective functions are
defined.

Let

N the available number of assets

µi the expected mean of the ith asset

σij the covariance between the ith and the jth
asset

K the number of assets to invest (K 6 N )

εi the minimum inversion ratio allowed in
the ith asset

δi the maximum inversion ratio allowed in
the ith asset

We define the variable

zi =

{

1 if the ith (i=1,...,N) asset is chosen

0 otherwise

ωi = money ratio (0 6 ωi 6 1) invested in the ith
(i=1,...,N) asset

The optimization problem can be formulated in the fol-
lowing way:

min

N
∑

i=1

N
∑

j=1

ωiωjσij (6)

max

N
∑

i=1

N
∑

j=1

ωiµi (7)

subject to
N

∑

i=1

ωi = 1 (8)

N
∑

i=1

zi = K (9)

εizi 6 ωi 6 δizi with i = 1, 2, ..., N (10)

zi ∈ {0, 1} with i = 1, 2, ..., N (11)

Equation 6 minimizes the total variance (the risk) asso-
ciated with the portfolio assets. Equation 7 maximizes the
profit associated with the portfolio of assets. Equation 9
fixes the number of assets to invest in at K. Lastly, Equation
10 imposes the maximum and minimum inversions allowed
for each asset.

3 Local search algorithms

3.1 Greedy search

The greedy local search [1] is one of the simplest technique
used to solve an optimization problem. Its simplicity has a
great advantage: it offers a solution very quickly. However,
its main disadvantage is also due to its simplicity: when a
local maximum or minimum value is reached, it is impossi-
ble to get out of it.

Starting with a random initial solution, its neighbor so-
lutions are examined. The best neighbor becomes the new
optimal solution. The process is repeated until no better so-
lution is reachable.

Using the original design, the multiobjective modeling
takes into account not only one evaluation function, but
also the two objectives of the current problem.

Let

Ω the feasible set of solutions, or search
space

e a problem’s solution

f(e) the score function of a
solution e for Equation (6)

g(e) the score function of a
solution e for Equation (7)

V (e) the neighbor solution set of e, or
neighborhood of e

The algorithm implemented for the multiobjective
greedy search is described in Figure 1.

choose an initial solution e0 ∈ Ω

do

for each ei ∈ V (e0)

if f(ei) < f(e0) and g(ei) > g(e0) or
f(ei) 6 f(e0) and g(ei) > g(e0) then

replace e0 by ei

until no solution in V (e0) dominates e0

e0 is returned as the solution

Figure 1: Greedy search biobjective pseudocode

When replacing the current search solution, the follow-
ing policy has been implemented: once the neighborhood of
the current solution is computed, the neighbors are visited,
choosing as the new solution the first solution that domi-
nates the current one. This is repeated until all the neighbors



have been visited. Therefore, for the same search iteration,
several new solutions can be selected as the new one, only
the last one of them being kept.

3.2 Simulated annealing

Simulated annealing [2] dates back to the statistical physics
of the mid-1980s, between 1983 and 1985. Its physical
foundation is the annealing of a solid, that is, the process
of exposing a solid to high temperatures and leaving to cool
down so slowly that, their particles look for the lowest en-
ergy positions.

Annealing can be considered an optimization problem
as follows: a particle configuration is a solution to the prob-
lem; a minimum energy configuration corresponds to an op-
timal solution; the energy of a configuration is the objective
function value; and, last of all, the temperature is the search
control parameter.

Using this equivalence, an algorithm able to accept so-
lutions that worsen the objective function is designed. It
makes use of a probability function based on the Boltzman
distribution. Initially, when the temperature is high, this
probability is also high; as the algorithm advances in its
iterations, this probability tends to zero. On the limit, the
algorithm behaves like a local search, only accepting solu-
tions that improve the current one.

In order to apply this technique, a series of annealing
parameters must be defined, that is, an annealing scheme
must be defined. Basically, an annealing scheme is com-
posed of an initial and a final temperature, the temperature
updating function, and the number of iterations that are
made with the same fixed temperature (the chain’s size).

In addition to the notation defined in Section 3.1, let:

chain annealing control variable

ck current temperature value, for a given
iteration k

α the updating parameter for the
temperature ck

γ the chain’s size

aleat a random number

The simulated annealing algorithm adapted to the
present multiobjective problem is described in Figure 2.

The algorithm is a direct adaptation of the classic one. If
a new solution dominates the current one, it is selected as
the current solution. If it does not improve the current so-
lution, it is possible to anneal both objective functions sep-
arately. Thus, some of the objectives can worsen, offering
the possibility of reaching a better solution later. The stop
criterion is reached when the present solution has not been
modified at a fixed number Q of the main loop iterations.

4 Initialization and Neighborhood system

The search approaches presented in Section 3 make use
of two common concepts: the initialization procedure and
the neighborhood system. Both aspects are relevant to the

choose an initial solution e0 ∈ Ω

do

chain = 0

do

choose a solution e ∈ V (e0)

δ = f(e0) − f(e)

ε = g(e0) − g(e)

if δ > 0 and ε 6 0 or
δ > 0 and ε < 0 then

replace e0 by e

else

choose aleat ∈ [0, 1]

if ε > 0 and e
−δ
ck > aleat or

δ < 0 and e
ε

ck > aleat then

replace e0 by e

chain = chain + 1

until chain = γ

ck+1 = α · ck

until e0 does not change in Q loops

e0 is returned as the solution

Figure 2: Simulated annealing biobjective pseudocode

search method’s efficiency and, in this case, they are not
trivial tasks. Thus, their implementation must be put for-
ward in detail.

4.1 Portfolio initialization

Due to the nature of the portfolio problem and its formula-
tion, the selection of an initial random solution is intrinsi-
cally an optimization problem. The investment restrictions
of the problem (Equation 10), the possibility of varying the
number of assets for each portfolio (Equation 9), as well as
the fact of working with proportions in continuous domains
(Equation 8), show that an initialization process is no a triv-
ial task.

Moreover, an initialization process has to be as fast and
random as possible, and it must also be a low computational
cost procedure. Having in mind all these characteristics, a
specific initialization algorithm has been implemented.

Let

= an asset subset of the problem

ai the asset of ith index; ai ∈ =

S the initial solution bias

fi the deviation of the ai asset investment ratio
w.r.t. its high δi, or low εi restriction

mi the ωi asset modifier for ai

The algorithm randomly initializes K assets to invest



on, following the procedure defined in Figure 3.

choose K random assets, ai, to initialize (= set)

for each ai ∈ =

set a random inversion ωi, such that εi 6 ωi 6 δi

calculate the solution’s leftover like

S = 1 −
∑N

i=1 ωi

if S 6= 0 then

for each ai ∈ =

if S > 0 then fi = δi − ωi

else fi = ωi − εi

for each ai ∈ =

mi =
fi

∑K

j=1 fj

ωi = ωi + S · mi

Figure 3: Initialization pseudocode

Initially, the algorithm randomly includes K assets in the
initial portfolio. Next, and sampling a uniformly [0,1] dis-
tributed random variable, random investment proportions ωi

are assigned to each previously selected asset. But the in-
vestment allowed for each asset must comply with the re-
striction of Equation 8. Because of this, the investments are
normalized until they fulfill the restriction. This correction
is made proportionally, so that the investment of each value
increases or decreases in relation to the initial random dis-
tribution.

4.2 Neighborhood solution

One of the most important elements in a local search heuris-
tic optimization approach is the neighborhood system de-
fined. The neighbor system comprises the selection of a set
of solutions, or neighborhood, next to a given one. From
that given solution, a heuristic search procedure examines
the neighborhood and makes the necessary search decisions.

For the portfolio problem, the distance between two port-
folios does not have a clear definition. Trying to help the
search algorithms, a neighborhood system that combines as-
pects of the two objective functions has been implemented.

Notice that the cardinality of the neighborhood system
can slow down the search process. If the number of neigh-
bors is too high, the objective function of a large set of so-
lutions must be computed at each search iteration. Obvi-
ously, if the number of neighbors is low, the search process
is not able to adequately explore the search space. Thus, the
search process stops too early, reaching poor solutions. The
system of neighbors proposed in Figure 4 has a size equal
to the total number of assets, N, of the problem.

The algorithm first looks for the two assets that add the
highest risk to the base solution. Next, it selects which one
of them contributes less to the total portfolio profit. This

inc = 0; neighbors = ∅

given a solution e, calculate the asset ai and aj with
the maximum risk associated

if ωai
· µai

< ωaj
· µaj

then worst = i

else worst = j

v = e

c =
ωaworst

N

do

inc = inc + c

if ωaworst
6= 0 then choose an asset ak 6= aworst ∈ v

else choose an asset ak 6= aworst ∈ (a1, . . . , aN )

if (δak
− ωak

) > inc then

ωak
= ωak

+ inc

ωaworst
= ωaworst

− inc

add v to neighbors

until | neighbors |= N

Figure 4: Neighborhood pseudocode

asset will be the pivot asset from which all the neighborhood
is generated.

Based on the total number of assets, N , the algorithm
computes a coefficient c proportional to the pivot’s invest-
ment. This coefficient is used to generate new solutions:
randomly choosing assets, the pivot’s investment is shared
among them proportionally. In this sharing process, assets
whose investment is zero can be selected. By this way, the
neighborhood is a balance between explotation and explo-
ration.

5 Ant Colony approach

Using the artificial life paradigm known as ant colony
metaheuristic (ACO), firstly proposed by Dorigo in the
nineties [10], we tackle the ad-hoc approximation to the
portfolio problem.

The ACO metaheuristic [3] is based on the collectivity
characteristics of real ant colonies. Its main aim is to find
a good-quality solution to a certain optimization problem,
usually the minimum cost or shortest path that meets the
problem’s restrictions. This paradigm derives from a mul-
tiagent strategy: each ant individually builds a solution or
a part of it, but always taking into account the solutions
which the rest of the colony has previously reached. Com-
munication is indirect: each ant modifies the global state of
the problem, so every ant can notice these changes. This
indirect communication occurs by means of pheromones.
Pheromones are composed of a set of coefficients, one for
each path or edge the ant can take. A pheromone has an
evaporation ratio that makes it to decrease along the search
iteration. When many ants choose the same path, this co-



efficient increases and constitutes the solution of one prob-
lem. All these briefly discussed components can be widely
reviewed in [3].

As said, the ACO metaheuristic paradigm is mainly de-
signed to detect a minimum cost path on a graph. This
makes it unfeasible to compute a multiobjective solution di-
rectly by applying the ACO algorithm. A possible alterna-
tive to this limitation is to build different colonies, each one
involved in the optimization of the functions that conform
the multiobjective problem.

Thus, a complete connected graph is built: the n-th graph
node corresponds to the n-th portfolio asset. The neighbor-
hood of each node is composed of all the other nodes of the
problem. At each main loop iteration, an ant is located at
every node. This way, no asset has any advantage over the
others. The ants behave synchronically, at each step choos-
ing the next asset to visit. The number of steps allowed
is equal to the number of assets to invest in, K. Hence,
an ant’s solution is comprised of the K steps made by its
movements.

For each ant, the asset selection function has a fixed part
aij and a variable part, that is, the pheromone and a ran-
dom weight, f(aij + aleat · τij). Similar to the min-max
ant systems [11], a minimal (τmin) and a maximal (τmax)
pheromone threshold is set out each edge in the graph. This
technique tries to avoid the algorithm to quickly fall into lo-
cal maxima, leaving the possibility of jumping to other solu-
tions, obviously without behaving chaotically. Both values
τmin and τmax are fixed experimentally after the initial runs
of the model.

In order to compute the objective function for each
colony, a prefixed investment value is arranged for those as-

sets included in the portfolios, wi =
δi − εi

K
.

Then, the problem is splitted into three different prob-
lems: three independent colonies with different costs for
the node arcs are defined trying to cover three search space
regions: high profit, low risk, and a trade-off between them.
Therefore, the fixed component aij at each arc between the
i-th and the j-th node includes:

1. The risk associated with both assets, σij

2. The profit associated with the inclusion of the j asset,
µj

3. A function that tries to balance both previous objec-

tives,
µi + µj

σij

Let (12, 13, 14) be the evaluation functions for each
colony. Each ACO algorithm has to minimize one of the

Bm(m = 1, 2, 3) objective functions defined as:

B1 =

N
∑

i=1

N
∑

j=1

wiwjσij (12)

B2 = −
N

∑

i=1

wiµi (13)

B3 = −
N

∑

i=1

N
∑

j=1

wiwj

µi + µj

σij

(14)

Once the evaluation functions are computed, the best so-
lution of each colony is chosen. If there is a draw among
the evaluations of two different solutions, all of them are
considered at that stage of the algorithm. The pheromone is
updated on the basis of the following function:

τij =
1

Bm

+ τij with m ∈ {1, 2, 3} (15)

Notice that the graph is visited in relation to the asset’s
position in the portfolio, from the lowest to the highest in-
dexes. It is also necessary to set the pheromone evaporation
parameter ρ, which is defined as:

τij = (1 − ρ)τij (16)

After the convergence criterion is reached (for instance, a
similar solution over a prefixed number of iterations), a sec-
ondary greedy search begins. Starting with the three asset
sets selected, initialized with the prefixed investments pro-
posed, three different multiobjective greedy searches (fol-
lowing the approach of Section 3.1) are performed. This is
the stage that brings the pure multiobjetive character to the
whole modeling. The neighborhood algorithm presented in
Section 4.2 can select neighbors not included on the ant’s
solution, so the search is not only limited to the asset sets
found by the ants.

Summing up, the ACO approximation implemented
brings a tuned set of assets to start with: three different start-
ing points in the search space, one looking for high profit,
another one looking for low risk, and the last one looking
for a trade-off between them.

6 Experimental results

6.1 Data sets

The data sets used for the experimentation are available on-
line and come from the OR-Library [12]. Five data sets
compose the portfolio problem, named port1 to port5
respectively. Each data set corresponds to a different stock
market of the world. The first index is the Hong Kong, Hang
Seng, the second one is the German, DAX 100, the third one
is the British FTSE 100, the fourth one is the U.S. S&P 100,
and the fifth one is the Japanese Nikkei 225. The values in-
cluded for each index were collected from March 1992 to
September 1997. The data package contains the complete
identification list of the assets included.

The data files are composed of 31, 85, 89, 98, and 225
assets, respectively. For each asset i, the average profit µi,



and the individual risk σi is included. For each pair of assets
i and j, the correlation ρij between them is also included.
The risk of investing in an asset having invested in another
one simultaneously is modeled by the covariance between
both. Then, the risk between two assets, i and j, is given by
the expression:

σij = ρij · σi · σj (17)

6.2 Experimental parameters

Among all the problem’s restrictions presented in Sec-
tion 2.2, there is one that calls our attention. We are inter-
ested in studying the behavior that the Pareto border shows
when the number of assets to invest on increases. Usually,
this number K is set at a fixed number. Here, we relax the
condition and vary its value from the minimum, two assets,
until the maximum, N . This way, we can see the evolution
of the different Pareto borders, one for each K value.

In order to consider a search space as wide as possible,
we set the values of the maximum and minimum invest-
ments at extreme values. For all the experiments, the values
of εi and δi are 0.001 and 1.0, respectively.

For each different K value, the number of performed
runs of the greedy search and the simulated annealing is
1,000. In the case of the ACO approach, and due to its three
simultaneus colonies, this number is 333 for each colony.

Particularly for the annealing, the value of the initial tem-
perature c0 is set at 100, and the updating temperature pa-
rameter α is set at 0.95. The chain’s size γ is also set at 100.
The stop criterion is set at ten iterations (Q=10) without se-
lecting any new solution.

Last, and concerning the ACO modelling, the stop crite-
rion is fixed at 1,000 iterations with the same best solution.
The colony parameters are set at 5,000 for τmax, 100 for
τmin and 0.01 for ρ.

6.3 Results

A portfolio problem solution consists of the asset invest-
ment distribution, and the total amount of risk and profit
that distribution achieves. The second component for all
the runs forms the Pareto border of the multiobjective ap-
proach. The results computed for each run are filtered
by deleting the dominated solutions. All the nondomi-
nated solutions for the three approaches shape the final
Pareto borders. Figure 5 to 14 show, for each stock-
exchange index, two of the Pareto borders obtained. Ev-
ery approach contributes a different number of solutions to
the borders, and, due to space limitations, no more plots
can be included in this work. A selection of the most
relevant Pareto borders of each data set is available on
http://www.sc.ehu.es/ccwbayes/members/ruben/cec2005/.

In all data sets, from a certain K value onwards, the
Pareto borders of each index take very similar forms. More-
over, when increasing the K parameter to its maximum
values, the Pareto borders tend to ’roll-up’ towards special
points that we call attract points. These points fix an aver-
age profit and risk from which the algorithms are not able
to quit. In Table 1, these points, shown in thousandths, are
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Figure 5: Hang Seng pareto border for K = 2
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Figure 6: Hang Seng pareto border for K = 31

depicted. This is the confirmation of a natural behaviour:
the more diverse the investment, the smaller the risk and the
profit.

Hang Seng DAX100 FTSE100 S&P100
Profit 4 2 2.9 3
Risk 0.5 0.1 0.15 0.1

Table 1: Attract points for each index

Notice that for the Nikkei 225 index, from a K value of
50 until its maximum, there are no positive profit solutions.
As a consequence, the approaches detect no attract point.
This is due to the expected mean values for these index asset
profits. There are only 49, from the 225 assets included,
with a positive expected profit.

The highest profits for all cases are obtained when the
portfolio only includes two assets. The algorithm easily se-
lects the two assets with the highest expected profit and,
afterwards, it tries to fit the risks in the best way. Con-
sequently, the risk associated with these solutions is also
the greatest one of all the portfolios found. From a finan-
cial point of view this is also a natural tendency: when the
investment is little diversified, the risk that an active falls
down highly contributes to the profit uncertainty. The max-
imum values found for K=2 are included in Table 2. Values



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.5

1

1.5

2

2.5

3
x 10

−3

PROFIT

R
IS

K

Greedy Search
Simulated Annealing
Ant Colony + Greedy Search

Figure 7: DAX 100 pareto border for K = 2
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Figure 8: DAX 100 pareto border for K = 3

are also shown in thousandths.

Profit Risk Algorithm
Hang Seng 10.7 4.4 ACO
DAX 100 9.8 2.6 ACO
FTSE 100 8.2 1.4 ACO
S&P 100 9.2 2.7 ACO
Nikkei 0.4 0.15 ACO

Table 2: Maximum values for K=2 in each index

As can be seen in the figures, the nondominated results
of ACO approach and the simulated annealing are outstand-
ing. It is easy to check that the ACO technique fits Pareto’s
front parts better when risk and profit are high. On the other
hand, the simulated annealing finds better solutions when
both are lower. It is not possible to state which technique is
better than the other. There are cases in which the simulated
annealing almost found all the nondominated solutions (as
in Figure 9) and others in which the ACO approach is the
only technique capable of finding nondominated portfolios
(see Figure 14).

The randomly initialized greedy search reaches a second
place in this discussion. Its results are quite poor compared
to the robustness of the two other approaches. It is capa-
ble of finding some complementary nondominated solutions
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Figure 9: FTSE 100 pareto border for K = 2
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Figure 10: FTSE 100 pareto border for K = 16

(see Figure 11), but its real power comes when combined
with the ACO.

7 Conclusions

The multiobjective approach to the portfolio optimization
problem proves itself to be very interesting. Usually, a
solution for this problem is tackled by fixing a risk level
and finding the best profit reachable. In our multiobjective
model, no a priori constraint is given, neither for the risk
nor for the profit. Consequently, an external decider has to
fix the acceptance levels for each objective, and select non-
dominated solutions that satisfy the criteria.

From an optimization point of view, we want to briefly
add three other issues to the work tackled:

• For low K values, the number of solutions conform-
ing the possible Pareto borders is quite high. There-
fore, the decider has many options to choose from.

• Usually, the number of assets to invest is prefixed by
hand, and these attract points are not identified. Cov-
ering all the possible assets to invest in has disclosed
the attract points of each index. The K value in-
dicates when the multiobjective makes more or less
sense.
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Figure 11: S&P 100 pareto border for K = 3
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Figure 12: S&P 100 pareto border for K = 4

• ACO modeling has proven itself to be a very compet-
itive approach. Not originally designed for multiob-
jective problems, it has found the most extreme so-
lutions, exploring places of the search space that the
other approaches have not been able to reach.
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