
Proceedings Of The IEE Colloquium On Digital Synthesis, London, UK, pp.7/1-7/5, 15th Feb 1996. - © 1996 IEE. Personal use of
this material is permitted However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEE.

Genetic Synthesis Techniques for Low-Power Digital Signal Processing Circuits

T. Arslan, E Ozdemir, M. S. Bright, and D.H. Horrocks

University of Wales Cardiff
Cardiff CF2 1XH

Introduction

Power dissipation is becoming a limiting factor in the realisation of VLSI systems. The principal
reasons for this are maximum operating temperature and battery life for portable applications.
Because of the relatively greater complexity, the power dissipation in Digital Signal Processing (DSP)
applications is of special significance, and low-power design techniques are now emerging [1]. These
vary depending on the level of the design that they target, ranging from the semiconductor technology
to the higher algorithmic level.
This paper will describe two different techniques which employ Genetic Algorithms for synthesis of
digital circuits. The first employs a multi-objective genetic algorithm for synthesising low power
circuits. A gate-level description of the circuit is encoded into a single chromosome and the GA
evolves by searching for circuit structures that are optimised for both overall capacitive area and
critical path. This in turn will allow operation under reduced power supply voltages [1]. Although, the
technique currently operates at gate-level its main advantages become apparent when used within a
high-level framework. Our results are illustrated with examples at the gate-level by using the adder
and parity checker problems [2]
The second technique operates on a Data Flow Graph (DFG) consisting of high level blocks such as
registers, adders, and multipliers. Operations such as retiming and automatic pipelining are used to
reduce the critical path of the DFG, hence allowing operation under reduced supply voltage. Our
results are illustrated using an 8th order Avenhaus filter with achievement of more than 50% power
saving.

Structural Synthesis Technique

The GA is implemented specifically to suit the structural design synthesis problem. For example, the
chromosome representation in figure 1 is designed to incorporate individual library cells and their
attributes (e.g., inputs and outputs) in a manner which can incorporate circuits of any size.

a

b out1= a + b

 out2= a . b

2 input adder circuit

i,i,g,1 i,i,g,3i,i,g,2 i,i,g,4 i,i,g,5 i,i,g,6 i,i,g,7 i,i,g,8 i,i,g,9i,i,g,0

a

aa
b

b

b

 out2= a . bthe chromosome

input,input,cell,output

 out1= a + b

Fig.1 Structural Design Chromosome

The representation used is compatible with the extracted circuit representation used by the majority of
CAD tools (such as those developed by Cadence, Mentor, Plessy, and ES2). This provides the added
flexibility of integration with such tools, hence providing a valuable tool to the VLSI circuit designer
who is facing increasingly challenging tasks such as designing for low-power, area, speed, etc. In
addition, the genetic operators [2] are specifically designed to take the circuit aspects of the structural
design into consideration. Our representation and the specifically developed genetic operators are
crucial to the flexibility of our genetic algorithm and its superiority over previous implementations.
The GA utilises a given design cell library in the structural design of a multi-input/multi-output logic
function. This is achieved through exercising complete freedom with the design cells and using a
multi-constrained fitness function that aims to optimise hardware aspects such as speed and area, in
addition to that of achieving the correct logic function(s). The GA continuously references one or
more design cell libraries throughout its genetic evolution as the chromosomes are processed for
fitness calculation. In our case only delay and area parameters are required. The use of the design
library within a multi-constrained fitness frame work is illustrated in figure 2.

The target logic function, which is to be structurally synthesised, is processed by the fitness evaluation
section in order to obtain an optimum set of input/output patterns which can test the functionality of
each prospective circuit structure, i.e. a chromosome. A special circuit construction function is used to
encode the chromosome into a form that can be analysed for aspects such as connectivity and
redundancy. The input/output patterns are then used to evaluate the functionality of the constructed
circuit through a sequence of operations which involve propagating logic values through different
paths in the circuit and backtracking when necessary. This is especially needed for the cases of multi-
output circuits and/or where the circuit includes some unused redundancy. The functional fitness
section will award a score depending on the degree to which the target logic function is satisfied. A
score is also awarded for the delay by tracing the gates in the critical path of the circuit. In addition, a
score is awarded for the physical size of the circuit, the area fitness, by summing the number of gates
and scanning their corresponding cell area from the library. Finally, the functional, delay, and area
fitness scores are processed through a weighting function, which considers their relative significance
and produces a single global score representing the final fitness. Currently, this is a weighted sum of
all the sub-fitness’. The above fitness frame work can accommodate additional sub-fitness functions
for considering other aspects in a given circuit.

Target Logic function

Logic analysis

Backtrack & Propagate

Functional Fitness

WEIGHTING

Delay fitness Area fitness

Circuit construction

The Circuit

Connectivity analysis

 Verification pattern

The Chromosome

L
i
b
r
a
r
y

Fig.2 Multi-objective fitness evaluation

High-level Technique

This work concentrates on the implementation of techniques to reduce power dissipation at the
architectural level. The systems are represented as high level Data Flow Graphs (DFG), they are
application specific algorithms implemented in 2µm CMOS technology. A variety of DFG speedup
techniques are used to alter the systems’ power requirements. A Genetic Algorithm is developed to
obtain the optimum power solution from within the large search space.
The main sources of power dissipation are shown in the following equation [1].

Paverage = Pswitching + Pshort-circuit + Pleakage (1)

The short-circuit and leakage terms can be reduced to negligible values through the application of
appropriate design techniques at other levels of the design [4]. The switching component is the power
required to charge/discharge the load capacitor of the CMOS device. The average power dissipation is
therefore the average power required to perform all the switching events across the DSP. For a circuit
represented as a DFG this can be expressed as follows[5].

Paverage = VDD
2 ∗ C* ∗ fsampling (2)

C* is the effective capacitance switched within the circuit (switched capacitance). It is a combination
of the physical capacitance and switching activity. The switching activity can be difficult to quantify

as it depends on many factors such as circuit topology, logic family, etc. [3]. These factors are not
finalised at the high level, making high level power estimation a difficult process.
fsampling is the sampling frequency of the DFG. The aim of power minimisation is to reduce power
while keeping the systems throughput constant, so fsampling is fixed. Therefore the power dissipation
can be decreased by minimising the switched capacitance within the system, reducing the supply
voltage or applying a combination of both techniques.
As shown in equation(2) reducing VDD will result in a quadratic decrease in power. Unfortunately
this power decrease has a penalty. Previous research has shown that reducing VDD results in an
increase in the delay of the system [3]. The relationship between VDD and delay is shown in figure 3.

VDD

N
or

m
al

is
ed

 D
el

ay

0
4
8

12
16
20
24
28

1 3 5

Fig.3 Relationship between VDD and normalised delay [3] . 2µm CMOS technology.

If the systems throughput can be increased then VDD can be decreased to a point where the induced
delay returns throughput to its original value, thus reducing power while keeping throughput
constant. This is known as control step reduction to reduce supply voltage [5].
The speed of the DFG is a changed by applying techniques that alter the longest (critical) path while
maintaining functionality. These techniques may also affect the switched capacitance (C*), which will
affect the power reduction obtained through VDD reduction. The lowest power solution will be a trade
off between speed and capacitance.
Retiming is the process of moving delays around a DFG to minimise the critical path. [6]. Simple
retiming is the process of moving delays from all of the inputs of an element and placing them on all
of its inputs, or moving them from its outputs to its inputs.
Automatic Pipelining is a specialised from of retiming. Unlimited delay elements are assumed on the
DFG inputs, these are then retimed through the DFG to minimise the critical path [6].
Pipelining is performed by inserting delay elements at specific points in the DFG [7]. This can reduce
the critical path but increases the latency of the system.
These are applied to the DFG in an order determined by the search algorithm. The order of
application is important as it can affect the power reduction achieved. For example, a speed alteration
that temporarily increases power may enable the application of another that will achieve a lower
power solution.
The techniques discussed above are those that have been implemented in this work to date.

Implementation

A genetic algorithm (GA) [8] is used to determine the optimum power solution for a specific DFG.
The power minimisation problem is very complex, even with a small number of speed altering
techniques no time efficient algorithm can be developed to obtain the optimum solution [5]. A GA has
the ability to escape local maxima, a quality required in this problem as it may be necessary to
temporarily increase the power to arrive at an optimum solution.
A chromosome within the population represents an entire DFG. The elements in the DFG are
individual genes, the chromosome is shown in figure 4.

D

IN

OUT
e1

e2

e3e4

IN ADD DEL MUL

e1 e2
OUT

e3

e4

DFG CHROMOSOME
Fig.4 Chromosome Structure

The procedure uses a modified standard GA algorithm [8]. Normal bit place mutation and random
point crossover cannot be used as they will alter the functionality of the DFG. The genetic mutation
operators of a GA are replaced with the speed altering techniques as they operate on the genes of the
chromosome, altering the chromosomes’ fitness. Crossover is an operator that combines the
characteristics of two chromosomes. In this case it can be implemented by identifying how two
different DFG’s have been mutated to create a new gene with both mutations.
The algorithm flowchart is shown in figure 5. The initial population consists of randomly mutated
versions of the original specified DFG. The fitness is calculated by estimating the power of the
chromosome, a lower power consumption produces a higher fitness. Chromosomes are selected for
mutation using the Roulette Wheel method[8]. This breeds a new population that will consist of new
DFG’s with new characteristics. This process is repeated to achieve an optimum power solution, that
DFG with the greatest fitness over all generations.

Generate Population

Calculate Fitness

New Population

Apply Speed
Alterations

Fig.5 Flowchart of Genetic Algorithm Optimisation Procedure

Results

Figure 6 illustrates results obatined with the structural design technique. The graph shows a steady
improvement in the circuit solutions evolved by the GA. The GA typically produces a circuit that
satisfies all constraints within 60-65 generations, which is a relatively small number of generations
considering the large solution space.

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

fi
tn

es
s

2 input adder
3 input adder
3 input parity
4 input parity
5 input parity

Fig.6 GA Performance With Example Circuits

Figure 7. shows the power consumption obtained over time for an 8th order Avenhaus filter (parallel
form) [5], expressed as a percentage of its original power consumption. The optimum power solution
was typically found within 150 generations. Other circuits have been investigated and have produced
comparably favourable results, these include 3rd order FIR filters, Lattice filters and the 8th order
Avenhaus filter (direct form).

Generation

P
er

ce
nt

ag
e

P
ow

er

0

20

40

60

80

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fig.7 Normalised Power Consumption Of 8th Order Avenhaus Filter Using High-Level Technique

Conclusion

The results obtained using the genetic algorithm demonstrate that it is capable of optimising circuits
at the high-level and gate-level, under a number of constraints such as speed, area, etc. It provides a
framework for the VLSI designer to investigate the effects of different design parameters.

References

[1] Arslan T., Horrocks D.H., Erdogan A.T., "Overview And Design Directions For Low-Power
Circuits And Architectures For Digital Signal Processing", Proceedings Of The IEE Colloquium On
Low Power Analogue And Digital VLSI : ASICs, Techniques And Applications, London UK, pp.6/1-
6/5, 2 June 1995.

[2] Louis S.J., Rawlins G.J., "Designer Genetic Algorithms: Genetic Algorithms In Structure
Design", Proceedings Of The Fourth International Conference On Genetic Algorithms, San Diego,
USA, July 1991, pp. 53-60.

[3] Chandrakasan A.P., Sheng S., Broderson R.W., "Low-Power CMOS Digital Design", IEEE
Journal Of Solid State Circuits, Vol. 27, No. 4, pp. 473-484, April 1992.

[4] Chandrakasan A.P., Broderson R.W., "Minimising Power Consumption In Digital CMOS
Circuits", Proceedings Of The IEEE, Vol. 83, No. 4, pp. 498-523, April 1995.

[5] Chandrakasan A.P., Potkonjak M., Mehra R., Rabaey J., Broderson R.W., "Optimising
Power Using Transformations", IEEE Transactions On Computer-Aided Design Of Integrated
Circuits And Systems, Vol. 14, No. 4, pp. 12-31.

[6] Lucke L.E., Parhi K.K., "Data-Flow Transformations For Critical Path Time Reduction In
High-Level DSP Synthesis", IEEE Transactions On Computer-Aided Design, Vol. 12, No. 7, pp 1063-
1068, July 1993.

[7] Parhi K.K., "High-Level Algorithm And Architecture Transformations For DSP Synthesis",
Journal Of VLSI Signal Processing, 9, pp. 121-143, 1995.

[8] Goldberg D.E., "Genetic Algorithms In Search, Optimisation And Machine Learning",
Addison Wesley, Reading, 1989.

