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ABSTRACT
Engineering decision making involving multiple

competing objectives relies on choosing a design solution
from an optimal set of solutions. This optimal set of solutions,
referred to as the Pareto set, represents the tradeoffs that exist
between the competing objectives for different design
solutions. Generation of this Pareto set is the main focus of
multiple objective optimization.  There are many methods to
solve this type of problem. Some of these methods generate
solutions that cannot be applied to problems with a
combination of discrete and continuous variables.  Often such
solutions are obtained by an optimization technique that can
only guarantee local Pareto solutions or is applied to convex
problems.  The main focus of this paper is to demonstrate two
methods of using genetic algorithms to overcome these
problems. The first method uses a genetic algorithm with
some external modifications to handle multiple objective
optimization, while the second method operates within the
genetic algorithm with some significant internal
modifications.  The fact that the first method operates with
the genetic algorithm and the second method within the
genetic algorithm is the main difference between these two
techniques.  Each method has its strengths and weaknesses,
and it is the objective of this paper to compare and contrast
the two methods quantitatively as well as qualitatively. Two
multiobjective design optimization examples are used for the
purpose of this comparison.
INTRODUCTION
It is common in engineering decision making problems

to have multiple design objectives (see, for example,
Eschenauer et al., 1990).  There are many methods for
solving such problems, each of which has some advantages
and disadvantages, and most have evolved or been refined
from some earlier version, as discussed in the survey b
Stadler (1979) and Hwang and Masud (1979), Palli et
al.(1998), and more recently b Miettinen (1999).  Most of
these methods generate solutions that cannot be applied to
problems with a combination of discrete and continuous
variables.  Often, such solutions can only be guaranteed to be
locall optimum. However, optimization with Genetic
Algorithms (hereafter referred to as GAs) can obtain discrete,
global, and non-convex solutions.  In this paper, we will look
at two different ways of utilizing GAs to solve multiobjective
design optimization problems.  The first method uses an
existing GA with some modifications external to the GA, and
the second method operates within the GA with more
significant modifications to it.  This brings up the concept of
multiobjective design optimization with and within GAs.

The multiobjective optimization with genetic algorithms
just uses an existing GA (Goldberg, 1989) with some
modifications external to the GA.  The GA basically operates
independently of the optimization problem formulation with
only some minimal data passed to and from it.  However, the
multiobjective optimization within the GA works on the
inside of the GA making some significant modifications to
the algorithm.  Each method has its advantages and
disadvantages with respect to one another.  In general, as it
will be shown in the paper, the multiobjective optimization
with GA requires more computational time but is easier to
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apply, and within GA requires less computational time but
can encounter some difficulties in generating the Pareto set.
So, the overall objective of this paper is to compare and
contrast quantitatively as well as qualitatively two different
methods of multiobective optimization that utilize GAs,
highlighting the strengths and weaknesses of each.
The remainder of the paper is organized as follows.  The
formulation of a general multiobjective optimization problem
and some terminology are given in the next section.  Next, an
overview of GAs is.  The second and third sections explain
the two multiobjective optimization techniques that are to be
compared.  The fourth section includes the application of
these methods to two different engineering design problems
for the purpose of the comparison.  The paper is concluded
with the remarks in the last section.

OVERVIEW OF MULTIOBJECTIVE OPTIMIZATION
PROBLEMS

The formulation of a typical multiobjective optimization
problem with m objective functions is shown below in Eq.(1).
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where x is the design vector containing the n components of
design variables, fi(x) is the ith objective function to be
minimized, gj(x) is the jth inequality constraint and hk(x) is
the kth equality constraint.  The feasible design space or set of
all design vectors that satisfy all the constraints is denoted as
D.  I Eq.(1), the word ‘minimize’ means that: ( i) all
objective functions are simultaneously minimized, (ii) the
objectives are at least partly conflicting with one another, and
(iii) there does not exist a single solution that is optimal with
respect to every objective function. This is the general form of
a constrained multiobjective optimization problem that will
be used in the example problems later on in this paper.  To
facilitate the presentation, a brief overview of some of the
multiobjective optimization terminology in the form of
definitions is given below (see, for example, Chankong and
Haimes, 1983).

Pareto solution: A design solution x*∈ D is said to be
(strongly) Pareto optimal if there does not exist another
solution x∈ D such that fi(x) ≤ fi(x*) for all i = 1, …,m wit
strict inequality for at least one i.  Pareto solutions are ‘non-
inferior’ with respect to each other.  A collection of Pareto
solutions is referred to as a Pareto set. A solution that is not
Pareto is referred to as an inferior solution.

Proper Pareto solution:  A Pareto solution is proper if the
tradeoff rate between the objectives in the neighborhood of
that solution is bounded.  In other words, in the neighborhood
of a proper Pareto point, a finite increase in one objective is
possible only at the expense of some reasonable decrease in
one other objective.  A prope Pareto solution is a good
candidate design solution.

Ideal and nadir points:  If each of the objective functions in
Eq.(1) is individually minimized subject to the constraints
defining the feasible region D, then the components of an
ideal vector (or an ideal point), { f1*, …, fm*}, are obtained.
The ideal point is often used as a reference point in
multiobjective optimization problems and is the best solution
that can be achieved.  However, it is extremely unlikely that
an optimized solution fo Eq.(1) achieves an ideal point.  In a
minimization problem, as in Eq.(1), the ideal point provides a
lower bound of the Pareto optimal set.  In contrast, an uppe
bound of the Pareto set defines the components of a nadi
point.  The nadir point is given by {f1*, …,fm*}.

Good value: A good value for the ith objective is an estimate
of the ith component of the ideal vector, fi*.  It is a value
towards which the decision maker would like a particula
objective to take on.

Bad value: A bad value for the ith objective is an estimate of
the ith component of the nadir vector, fi*.  It is a value awa
from which the decision maker would like a particula
objective to take on.

AN OVERVIEW OF GENETIC ALGORITHMS
In the most general sense, GA-based optimization is a

stochastic search method that involves the random generation
of potential design solutions and then systematically evaluates
and refines the solutions until a stopping criteria is met
(Goldberg, 1989).  The GA software package used in this
paper, originally designed for unconstrained single-objective
design optimization problems, was developed at Argonne
National Labs (Levine, 1996).  A constrained single-objective
optimization problem can be converted to an unconstrained
single-objective form by a penalty method (see, for example,
Papalambros and Wilde, 1988). The GA can be furthe
extended, as will be shown in this paper, to multiobjective
constrained optimization problems.  Figure 1 shows
graphically how the most basic GA operations are performed.
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Figure 1: Graphical Description of Genetic Algorithm Basics
The top block of binary numbers in Figure 1 represents a
population.  Each row is an individual that represents one
solution to the design problem.  One individual is made up of
all of the design variables concatenated.  The GA user can
decide how many binary digits are needed to represent each
design variable.  In Figure 1, there are 3 design variables of
length 6, 7, and 4 binary digits.  Initially, the population is
generated randomly, and then the solutions are ranked from
best to worst and a specified number of the lowest ranked
individuals are replaced with combinations of the highest
ranked individuals.  The process of determining which of the
highest ranked individuals are to be used is called selection.
There are several differing methods of selection that can be
used.  Once selected, two individuals go through a process
called crossover.  The crossover operation is also shown in
Figure 1, wherein two individuals (or parents) exchange a
segment of the binary digits creating two new individuals (o
offspring).  Another basic GA operation is mutation.
Mutation can occur on the two individuals selected fo
crossover or on a single individual.  The mutation operation
randomly mutates or changes the bits within the individual
based on the mutation probability set by the user. Finding
optimal values for the parameters used in the GA operations
can be problematic.  Parameter values that result in a
relatively fast convergence for one problem may be slow fo
another.  However, some general guidelines on the population
size can be made on the basis of the binary string length of an
individual.

This brings up some of the disadvantages of GAs.
Sometimes, the algorithm can generate inferior points if the
design variables are not represented accurately enough, or if
the feasible domain of the problem is irregular.  So, there is
no absolute guarantee that the GA will converge to the best
solution, but in most cases, it will converge to a very good
approximation of the best solution.  The GA may also require
a large amount of computational time and/or function calls to
generate solutions when compared to a conventional gradient-
based optimization method.  Therefore, the main advantage is
that it solves problems in which the gradient does not exist,
problems that include discrete-type variables, problems where
the feasible space is non-convex, and problems where global
rather than local solutions are sought.

In order to extend the GA to a multiobjective problem,
some steps have to be taken.  The methods considered in this
paper are called I-SHOT (Interactive Sequential Hybrid
Optimization Technique) and MOGA (Multi-Objective
Genetic Algorithm), and these are briefly explained in the
following sections (see, Narayanan and Azarm, 1999a and
1999b, for more information).

INTERACTIVE SEQUENTIAL HYBRID OPTIMIZATION
TECHNIQUE (I-SHOT

This multiobjective optimization technique has three
main attributes:  (i) the method guarantees detection of str
and proper Pareto optimal solutions, (ii) it reduces the
feasible region at each iteration with only a brief interaction
with the decision maker, and (iii) it allows the decision make
to have control over the range of solutions generated at each
iteration.  The last attribute isn’t significant for the purpose of
this paper, since the range of solutions generated will be the
3 Copyright © 1999 by ASME



same for both methods and can be set at the beginning of the
optimization process.  The I-SHOT method itself was
developed by Narayanan and Azarm (1999a) based on an
extension to the hybrid method (i.e., a combination of the
weighting and ε-constraint methods) by Chankong and
Haimes (1983) and Steuer’s (1986) Interactive weighted
Tchebycheff (IWT) approach.  The hybrid method was to
improve upon the ε-constraint technique, which turns a
multiobjective problem into a single objective problem b
constraining all objective functions except one and then
minimizing the remaining objective ( Haimes et al., 1971).
By combining the ε-constraint method with the weighting
method and the IWT method, the decision maker can not only
obtain proper Pareto optimal solutions, but also have control
over the optimization process to further refine the Pareto set
according to his or her preferences (Narayanan and Azarm,
1999a).

Note that in the weighting method, the weighted
combination of objectives generally does not detect points in a
non-convex Pareto set. This difficulty, however, is overcome
by the hybrid method that uses a combination of the
weighting and ε-constraint methods.  The interactive stage
can be replaced with a systematic reduction of the Pareto set,
which will also detect non-convex regions of the Pareto set.
The focus of this paper isn’t on the interactive characteristics
of the I-SHOT technique (covered elsewhere by Narayanan
and Azarm, 1999a), but on just the generation of the full
range of Pareto optimal points, therefore, the decision maker
preferences aren’t taken into consideration during the
generation of the Pareto set.

The formulation used to generate each individual Pareto
point is shown below in Eq.(2).
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Here, in addition to converting the multiobjective problem
into a single objective form (i.e., weighted sum of the scaled
objectives), an upper bound (hereafter referred to as ‘objective
constraint’) is imposed on each objective. In Eq.(2), εi,good  is
the good value for objective function i, εi,bad is the bad value
for objective function i, and wi is the weighting facto
(defined in step 2 below).  The good and bad values are used
to scale each of the objectives such that 0 will correspond to
the good, scaled value, and 1 will correspond to the bad value.
This allows the objectives to be compared on an even level,
which may not be possible when the range of values of each
objective can be orders of magnitude apart.  Anothe
advantage of this is that all objective functions, including
those that are to be maximized, are automatically converted to
a minimization form.  Then, the different Pareto optimal
solutions can be obtained by systematically altering the
weighting factor (as shown in step 2 below).  Each iteration
consists of generating a set of Pareto points, obtaining the
decision maker’s feedback, and reducing the range of the
Pareto set for the next iteration by placing constraints on the
objective functions.  The steps in I-SHOT are described
below.

Step 1 – Formulate problem: The problem model is
developed according to Eq.(1) and then converted into the
form of Eq.(2).  The decision maker selects the targets fo
εi,good and εi,bad values for the first iteration.  For subsequent
iterations, these targets may be obtained according to step 5
(see below).  The objective functions are scaled using these
values.  The decision maker then determines the number of
Pareto solutions to be generated.

Step 2 – Generate weights:  The weighting vector is
generated.  The number of elements in a weighting vector, a
collection of (w1, …,wi, …,wm), will correspond to the number
of solutions that will be generated.  The weighting vector will
be generated randomly according to the formulation below in
Eq.(3).  Each individual weighting factor, wi , lies on the
interval between 0 and 1, but not including 0 or 1, and all of
the weighting factors sum to 1.
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Step 3 – Generate Pareto set: Solve the hybrid problem,
Eq.(2), for each of the weighting factors generated.  Since
Eq.(2) is essentially a single objective constrained
optimization problem, any optimization method can be used
depending on the problem characteristics such as the type of
variables, linear or non-linear objective functions and
constraints.  In this paper, however, the GA is used to do the
optimization.

Step 4 – Stop or reduce εεεε-range: If the decision maker is
satisfied with the Pareto set, then the process is stopped.
Otherwise, a new range of εi,good and εi,bad (maximum and
minimum values for the objectives) values are chosen as
follows:
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∆εi = εi,bad  - εi,good
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Here, r is a reduction factor, εi,bad is the old bad value, εi,good is
the old good value, ∆εi is the difference between the old bad
and old good values, and the εnew values are the new good and
bad values for objective function fi.  This modification of the
ε-range together with the ε-constraints allows the detection of
the non-convex points of the Pareto set.

The steps, 1 through 4, represent one iteration.
Additional iterations are implemented until the decision
maker is satisfied with the prope Pareto set that is generated.

MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA)
MOGA is essentially a modification and extension of the

single objective GA. Instead of converting the multiple
objective problem into a single objective form and obtaining
one non-inferior Pareto point at a time, as in I-SHOT, MOGA
obtains the Pareto points all at once. Figure 2 illustrates the
steps in MOGA.  The algorithm initiates in the same way as
in a conventional GA, with the generation of an initial
population.  For the initial population, the non-inferior points
or individuals are identified.  Note that, while these
individuals are non-inferior for the current population, they
are non-Pareto for the problem in an absolute sense.  If these
individuals are non-inferior and feasible for the current
population, then they are given the highest rank in the
population.  These non-inferior individuals become parents
and are set to produce offspring, and then the process is
repeated.  As such, the population is gradually improved as it
approaches the final population and the corresponding Pareto
set for the problem.  A step by step approach fo
implementing MOGA is given below.  The unique features of
this MOGA are discussed later on in the paper in the example
section.   MOGA is described in more details in Narayanan
and Azarm (1999b), and is based on an extension of the
technique b Fonseca and Fleming (1998).

Step 1 – Problem formulation and coding of variables: The
problem model is developed according to Eq.(1).  Each
variable in the problem is represented by a binary string.  The
length of the string is determined by the desired precision.
Strings, representing all variables, are then concatenated to
form an individual.

Initial population

Feasible region

Final population

f1

f2

Figure 2: Graphical Illustration of MOGA
Step 2 – Generation of initial population: An initial
population of individuals is randomly generated.

Step 3 – Population ranking and fitness assignment: All of
the objective functions are evaluated for each individual.  The
ranking of the individuals is substantially different from that
of a single objective GA.  Each individual is compared with
every other individual to determine whether or not it is
inferior with respect to others and to what extent.  All of the
constraints are evaluated for each of the non-inferior
individuals.  For each constraint that is violated, the
individual is penalized and its fitness value is reduced.  Those
individuals that do not violate any constraint are given the
highest fitness value, and all the others are assigned lowe
fitness values.  It may be advisable to be lenient in the earl
generations because all of the individuals in the population
may be violating some constrains. However, the actual fitness
is problem dependent and may need some experimentation to
determine how to best penalize solutions for violation of each
constraint.

Step 4 – Selection: Before the parents are selected to produce
offspring, the population is filtered by deleting some
individuals from each niche.  The number of individuals
being deleted depends on how crowded or how dense the
niche is.  The selected parents are then tested for relative
locations as part of the mating restriction.  This is to prevent
close parents from mating and hence to get a more evenl
spread and uniform sampling of the Pareto set. One way to
implement this would be to compute the distance ( L2 norm)
between the two parents selected for reproduction by:
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where xi and xj are two solutions. If this distance is found to
be less than some limiting distance (tolerance), the parents
shall not be allowed to mate. The limiting distance would
depend on how dense the niches are and what the range of the
population is.  The selection process is carried out until a
sufficient number of parents have been selected to produce
offspring.  The L2 norm was used for the distance for the
results obtained in this paper.

Step 5 – Crossover and Mutation: At this step, the selected
individuals are crossed-over and mutated to produce the next
generation.  That is, each individual exchanges a segment of
its binary string to create two new individuals.  The mutation
operation can occur with crossover or independent of it.  This
is a simple operation where the bits of an individual are
randomly chosen to mutate or change.  After crossover and
mutation occur the next generation is formed.

Steps 3 through 5 are repeated until the decision maker
pauses the algorithm in order to impose/review constraints on
the objectives or until the stopping criterion has been
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satisfied. The stopping criterion in MOGA is formed by using
a scheme for the L2 norm. The scheme is illustrated as
follows:

•  For each individual in the non-inferior set (i.e., the
Pareto set in transition), the L2 distance from a desired
target point (chosen by the decision maker, preferably
an ideal point) is computed. Hence, for each generation,
one set of L2 metrics is obtained.

•  The mean and standard deviation of these L2 norms are
calculated.

•  As the non-inferior set improves across generations, the
points on the set get closer and closer to the target.
Therefore, the distance of each point on the set from the
target decreases. This decrease in L2 metrics can be
measured by the mean.  If the improvement in the mean
is less than some small number, MOGA is assumed to
have converged and stopped.

EXAMPLES
The two methods described in the previous sections will

now be applied to two multiobjective optimization examples
for the purpose of comparison.  The GA package used to
generate these results was slightly modified from a package
developed by Levine (1996).  The first example is a relativel
simple example taken from Kirsch (1981) with some
modifications that involves the minimization of volume and
stress of a two-bar truss.  The second example is taken from
Messac (1996), also with some modifications.  It is a problem
with a vibrating platform,  that involves the maximization of
fundamental frequency as one objective, and the
minimization of cost added in the paper as the othe
objective.

Example 1: Two-Bar Truss
Figure 3 illustrates the two-bar truss that is to be

optimized.    This problem was adapted from the problem b
Kirsch (1981).  It is comprised of two stationary pinned
joints, A and B, where each one is connected to one of the
two bars in the truss.  The two bars are pinned where the
join one another at joint C, and a 100 kN force acts directl
downward at that point.  The cross-sectional areas of the two
bars are represented as x1 and x2, the cross-sectional areas of
trusses AC and BC respectively. Finally, y represents the
perpendicular distance from the line AB that contains the
two-pinned base joints to the connection of the bars where the
force acts (joint C).  The two-bar truss is shown below.
100kN

x1 x2

C

A B

4m 1m

y

Figure 3: Two-Bar Truss

The problem has been modified into a two-objective
problem in order to show the non-inferior Pareto set clearly in
two dimensions. The stresses in AC and BC should not
exceed 100,000 kPa and the total volume of material should
not exceed 0.1 m3.  The reason the objective constraints have
been imposed is that the Pareto set is asymptotic and extends
from -∞ to ∞.  As x1 and x2 go to zero, fvolume goes to zero and
fstress,AC and fstress,BC go to infinity.  As x1 and x2 go to infinity,
fvolume goes to infinity and fstress,AC and fstress,BC go to zero.
Hence, in order to generate Pareto optimal solutions in a
reasonable range, objective constraints are imposed. The
problem formulation is shown below.
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Comparison of Two-Bar Solutions
The two-bar truss results for I-SHOT and MOGA are

shown in Figures 4 and 5, respectively.  For this example,
MOGA outperformed I-SHOT.  It took about 1/30 th the
number of function calls to generate the non-inferior Pareto
set.  However, the actual processing time required to generate
the solution was not as dramatically different.  On a Pentium
II 450 MHz processor, the I-SHOT method required roughl
8.5 seconds to generate the set, and the MOGA method
required roughly 2.0 seconds.  Also, for this example, the
MOGA solution was spread more evenly, giving more
potential solutions to choose from (34 distinct points, see
Figure 5), where the I-SHOT solution had some overlapping
points (21 distinct points, see Figure 4).  Both methods
6 Copyright © 1999 by ASME
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Figure 4: Two-Bar Truss (I-SHOT Solution)
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Figure 5: Two-Bar Truss (MOGA Solution)
generated 37 total points, but some of these were in fact
duplicates, and thus are not shown as 37 distinct points in the
figures.  The GA parameters used to generate these solutions
are shown in the following table.

I-SHOT MOGA
Mutation Prob 0.01 0.01
Crossover Prob. 0.85 0.85
Selection type SUS SUS
Crossover type Two-point Two-point

Table 1: GA Parameters

Noting the differences in the two-bar truss solutions,
another comparison was made with respect to the actual
processing time and function calls for a given population size.
As shown in Figures 6 and 7 below, the two methods were
compared at population sizes of 100, 300, 500, and 1000.
For a population size of 100, MOGA outperformed I-SHOT
in both tests.  However, when the population size increased,
MOGA eventually required more processing time than the I-
SHOT method.  MOGA did require fewer function-calls fo
all of the population sizes.  So, if the function call is
dominant (requires the most time), then MOGA, as shown
here, may be more efficient.  When the problem requires high
precision, generally a larger population size is needed.  If the
binary string representing one solution of the problem
becomes long, then a small population size will only
represent an increasingly smaller portion of the solution
space.  This is analogous to picking 4 integers between 1 and
10.  The 4 selected integers represent 40% of the possible
solution space.  Here, the 4 integers represent the population
size, and 10 are the maximum number of possible solutions
that is governed by the binary string length of one solution.
Next, if 4 integers are picked between 1 and 100, then only
4% of the possible solution space are represented.  With onl
4% of the possible solutions being represented, the
population, in many cases, can not be considered a good
statistical representation of the solution set.  The solution set
distribution can sometimes be highly irregular, and the Pareto
set can be concentrated in a small region, therefore, the
population size required for the algorithm to converge to the
Pareto solution will have to be proportionally larger.  It is, fo
this reason, that there exist some problems that the I-SHOT
method may be more efficient.  For instance, this may include
problems where the objective functions are relatively simple,
but the range of the design variables is large and the required
precision high.
7 Copyright © 1999 by ASME
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Figure 6: Two Bar Truss Processing Time Comparison
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Figure 7: Two Bar Truss Function Call Comparison
Example 2: Vibrating Platform
The vibrating platform example  is shown in Figure 8

below.  This problem used in this paper was adopted from
Messac (1996) with some modifications.  It consists of a
pinned-pinned sandwich beam with a vibrating motor on top.
The sandwich has 5 layers of 3 different materials.  There is a
middle layer, and two sandwich layers.  The distance from the
center of the beam to the outer edge of each layer comprises
three of the sizing design variables, d 1, d2, and d3.  The width
of the beam, b, and the length of the beam, L, are the other
two sizing variables.  Finally, there are three combinatorial
variables for the material type Mi, where i=1, 2, 3, for the
different materials that can be used for each layer. So, there
are 8 design variables, 3 combinatorial variables for the
material types of the 3 layers, and 5 sizing variables.  The
mass density, ρ, Young’s modulus, E, and cost per unit
volume, c, for each material are given in Table 2.
��������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������
��������������������������������������������������������������������������������������������������������������
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d1 d2
d3L

   b

Vibratin
    Motor

Figure 8: Vibrating Platform Apparatus

Material Mi ρρρρI(kg/m3) Ei(N/m2) Ci($/volume)
1 100 1.6 × 109 500
2 2,770 70 × 109 1,500
3 7,780 200 × 109 800

Table 2: Beam Layer Material Properties
8 Copyright © 1999 by ASME
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Figure 9:  Direct Comparison between Solutions
The two design objectives are to maximize the natural
frequency of the beam, and to minimize the material cost.
The maximization of the fundamental frequency will be
converted to a minimization form by minimizing the negative
of the fundamental frequency.  The problem formulation is
shown below
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Here, Ei is the modulus of elasticity of laye i=1,2,3, ρi is the
density of laye  i, ci is the cost of laye i. Each of these
parameters can be for any one of the three materials,
depending on the material type variable Mi.  It is assumed
that the material types for the three layers are mutuall
exclusive.  In other words, the same material cannot be used
for more than one layer.  However, the layers are allowed to
have zero thickness.  The first three constraints refer to uppe
bounds on the mass of the beam, thickness of layer 2, and
thickness of layer 3, respectively, and they are labeled g1
through g3.  The last 5 constraints are the set constraints on
the sizing variables.

Comparison of Vibrating Platform Solutions
The results for the vibrating platform are shown in

Figure 9.  The lines connecting the points are fo
visualization purposes only and do not represent the actual
Pareto frontiers.  The population sizes for MOGA and I-
SHOT are 120 and 450 respectively.  The number of bits used
to represent each variable was the same for both methods, 7.
For this example, MOGA again required considerably less
function calls per Pareto point (406 compared to 7909 for I-
SHOT), but the Pareto set is not quite as good.  The
processing time was not compared because different
parameters were needed to generate each of the Pareto sets.
To objectively compare processing time, solution sets of
comparable quality should be used, which is not the case here.
To generate the solution set using the MOGA method, some
difficulties were encountered.  The following parameters were
varied several times before an acceptable Pareto solution was
generated:

•  Population size.
•  Number individuals to replace per generation.
•  Mutation probability.

This illustrates one of the advantages of the I-SHOT method,
its ease of application.  Generating the solution using the I-
SHOT method worked for a wider range of the GA parameter
values.  Even though it took a couple of trials to find the
Pareto frontier using I-SHOT, its first few were a relativel
good approximation.  However, the first few trials of MOGA
gave very little information about the general form of the
solution, and if the I-SHOT solution did not already exist, the
decision maker might not realize that the MOGA solutions
generated are in fact Pareto solutions.
9 Copyright © 1999 by ASME



CONCLUSION
Each of the two methods, I-SHOT and MOGA,

demonstrated have merit worthy of mentioning.  Neithe
method outperforms the other on all aspects, but each method
has its own strong points for certain types of problems.  In
general, the greatest advantage in using GA-based
optimization is the wide range of applicability.  Both of these
methods demonstrate this advantage by generating design
solutions for the mixed-discrete problem (see, example 2: the
vibrating platform).  For the two-bar truss problem, the
MOGA method has the greatest efficiency.  By working
within the GA, MOGA generated the solution set all at once.
That is, one population was allowed to evolve into the
eventual Pareto set.  However, for certain complex problems
requiring larger population sizes, as in the vibrating platform
example, the modified GA in MOGA was unable to generate
as good of a representation of the Pareto set as did the I-
SHOT method.  The I-SHOT method works with the GA,
thereby generating solutions one at a time.  That is, a
population is formed and evolved for each Pareto point
generated.  Also, the I-SHOT method allows greater control
over the optimization process.  The number of Pareto points
to be generated can be chosen, a priori, and the bounds can be
reduced to refine the Pareto set, whereas the number of points
generated using MOGA cannot be selected upfront.

Modifications of the GA used in the MOGA method
could produce a more reliable generation of the Pareto set,
and this is a topic for future work.  Also, some further work
on allowing information feedback for the I-SHOT method
may result in a more efficient generation of the Pareto set.
Both methods leave some areas for improvement that will be
covered as part of our future work.
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