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Abstract: Real-world applications generally 
distinguish themselves from theoretical developments 
in that they are much more complex and varied.  As a 
consequence, better models require more details, new 
methods and, finally, more complexity. By confronting 
a benchmark evolutionary algorithm with an 
automotive gearbox with hundreds of parameters to 
optimize, we were able to observe new require-ments 
which led us to an additional procedure that uses 
specific knowledge upon gene-objective relations to 
guide cross-over mechanisms. 
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1 INTRODUCTION 
Roughly two years ago we were working on the 
optimization of a complex system (the parameterization of 
an automotive gearbox). A large number of parameters 
(variables) had to be set which, for their part, affected 
several evaluation criteria (objective values). Using 
evolutionary algorithms (EA) proved to be an effective 
optimization procedure which also allowed multi-
objective optimization. 
In the course of our work we examined the optimization 
runs more closely and were able to establish that in parts 
of the system good solutions had been abandoned by the 
optimization. As each individual optimization took many 
hours, even more preparation time and required the 
deployment of substantial resources on the engine test 
bench, we decided to look for the cause of the problem. 
An in-depth analysis showed that the good partial 
solutions were being covered by other not-so-good partial 
solutions in the overall picture – their effect was being 
suppressed. 
In this paper we shall present our reflections on how to 
avoid this phenomenon as well as parallels from the area 
of biology/genetics which served as the starting point for 
further work, see section 2. Effective EAs should take into 
account the structures of the complexity, because these 
structures are a fundamental characteristic of RWAs 
problems, where they carry a signification.  
Based on these reflections we looked for a use and 
implementation of these principles and explored the 

hierarchical behaviour of the problem. The first domain 
which we identified as promising was the connection 
between the incomplete coupling of variables which were 
to be optimized and the system’s objective values. In 
section 4 we describe an implementation of the principles 
outlined in sections 2 and 3. We have called this extension 
complementary selection and variation. It became 
apparent that this extension can easily be incorporated into 
the established procedure without changes having to be 
made to the existing structure. 
The application of complementary selection and variation 
is shown in section 5 using examples constructed from 
well-known benchmark functions. This should make the 
principles presented as well as their positive effects easy 
to understand. We shall also provide the results of our 
real-world application of the gearbox optimization. 
Unfortunately, we cannot give a full account of this as not 
all details have been approved for publication. 
Finally, in section 5, we show how the principle presented 
noticeably improves the scalability of evolutionary 
algorithms for these kinds of incompletely coupled 
systems, making it possible to solve more complex 
problems with the computing technology available today 
or rather to do so in less time or with less effort. In the 
example of gearbox optimization mentioned earlier, one 
can now, with the same amount of effort, simultaneously 
parameterize the gearbox for a greater number of working 
points than was possible at the beginning of our 
optimization work, thus achieving higher quality. This is 
quite apart from the fact that the use of evolutionary 
algorithms clearly facilitates a task which is monotonous 
and prone to error. 

2 BIOLOGICAL CONCEPTS AND 
COMPLEXITY 
If there is a growing number of variables and features as 
well as a lot of interactions between these, the complexity 
of the system under investigation rises considerably. One 
can try to simplify these complex systems by 
compartmentalizing them. In this way, the complex system 
can be seen as a number of simpler systems. These can, on 
the one hand, be analyzed more easily and then, on the 
other, be optimized more easily. It is quite possible for 
features to exist which have only been generated with the 
information from one gene. There are also features 
generated with the information from several genes which 



lie on one and the same chromosome. This kind of 
compartmentalization can, however, only be carried out in 
the rarest of cases. Most features are formed with the 
information from several genes which are distributed over 
various chromosomes. The same genes can simultaneously 
contribute their information in order to generate several 
features. 
This constitutes a borderline situation: we cannot separate 
parts of the system into parts running strictly parallel to 
each other, nor are we able (or do we want) to mix all the 
parts with each other. In figure 1 we have tried to provide 
an idea of what coupling between different 
genes/chromosomes and their dependent features could 
look like. 

Parameters 

Objectives 

 
Figure 1. Association matrix showing the relations between 
genes and objectives. The tree views stress the structure in 
each of them separately, while the clusters emphasize their 
relational structure. The clusters represent intermediary 
objects between parameters and objectives and carry 
additional information.  
   ∆: Parameter influences objective. 

If, for example, we try to consider the human genome with 
its 46 units, it soon becomes clear that this division is only 
an extremely rough approximation of its complexity. 
Consequently, other strategies and data structures must be 
employed in order to reflect the system’s complexity 
within the evolutionary process. The features that appear 
in figure 1 can be considered directly as objective (or 
fitness) values. We can also decompose the relations 
between genes and fitness values into two steps, firstly 
morphogenesis which leads to the constitution of 
structures characterizing individuals, and secondly 
evaluation (testing) which relates structures to fitness 
values, see figure 1. This whole process is called 
phenogenesis. A similar description of mapping between 
“evolved representations” (genes) and “representation that 
is evaluated by the fitness function”, as result of the 
morphogenetic process, is given by Angeline [2]. 
The complexity of the system can be divided into 

 the complexity of the data structure and 
 the complexity of the procedure. 

However, this division cannot be taken too strictly. On the 
one hand, a new procedure can necessitate the storing of 

additional information. On the other, complex data 
structuring can make new administrative functions 
necessary. 
In complementary selection and variation, which we 
would like to propose as a means of faster optimization, 
particular use is made of additional information. An 
evolutionary algorithm works with this information in a 
way which is not only purely stochastic but also 
knowledge-based. The aim is to use the available 
knowledge concerning phenogenesis in the evolution 
procedures. We are still working on extending this 
principle so that it can be applied to new procedures. 

3  COMPLEMENTARY SELECTION AND 
VARIATION 
The basic idea behind complementary crossover is very 
simple. First, form parent couples which complement each 
other well in their respective strengths. Then take the best 
gene from each parent in order to create a new individual. 
We are not making a case for artificial gene selection 
(gene manipulation) or eugenism. Quite the opposite, we 
have attempted to find out how this selection could take 
place naturally. Each person has different character traits 
with different advantages which can complement each 
other well. This more constructive point of view can be 
seen as the counterpart to the competition and struggle for 
life or “for the possession of the other sex” pointed out by 
Darwin and Spencer, or as the transposition of social (or 
ecological) complementarity to the level of the genome. 
Meanwhile, we take Darwin’s definition for use on the 
level of organs or genes: “this preservation of favorable 
individual differences and variations, and the destruction 
of those which are injurious, I have called Natural 
Selection or the Survival of the Fittest” [3]. 
We have tried to challenge some earlier assertions. For 
example, Monod [12] claims that “the selection operates 
on the macroscopic scale, that of the organism”. We, in 
contrast, have selected on gene level. F. Jacob [7] assumes 
that “the program does not learn its lesson from 
experience”. However, we found that this would be an 
unnecessary restriction for efficient optimization. That is 
why we wanted to feed our algorithm with knowledge 
derived from experience. We reconsidered Mayr’s [11] 
words: “There is no link between a molecular event and its 
potential significance. It’s the same for the mix of 
chromosomes (crossing over) or their segregation, the 
selection of gametes or of sexual partners”. 
At the same time, these authors and scientific papers (such 
as Losos’ [10]) confirmed, to some extent, our idea that 
genes could be involved in a lot of intelligent processes of 
evolution. Even though neither the examples mentioned 
nor the textbooks (such as Lodish’s [9] or Reinhard’s 
[16]), or the specific literature in the field of EAs referred 
directly to complementary selection and variation, they 
have inspired us strongly. Schaffer (quoted by Zitzler 
[19]), for example, carries out selection for each objective 
separately. Complementary recombination with the use of 
dominance and diploidy has been studied frequently, see 



for example [8]. Learning from experience has been used 
in different forms, such as in Rasheed’s search control 
[15]. Note that the Lamarckian learning that we use is 
applied to the additional information “dominance”, which 
does not code directly (intergenic regions, introns or 
pseudogenes), see Angeline [2] and Singh [17]. Rules for 
the viability of mating are mentioned in Fonseca [5]. We 
gathered and adapted these ideas in the new procedure. 
Even if the procedure cannot be found in nature, this does 
not keep us from working with it and the evolutionary 
algorithms may well emancipate themselves from this 
paradigm. In any case, we agree with Zwirn [20] that 
biology will continue to be an important source of 
inspiration for work with complex systems. 
The essential reason for biologists’ rejection of 
Lamarckian evolution (heredity of learned characters) 
comes from molecular biology and is based on the 
absence of observation: there is no known molecular 
mechanism that can explain a feed back to the genes, the 
decoding of genetic information is a one-way process 
AND->ARN->Protein. Furthermore, real observations of 
the evolution process can be explained by Darwinian 
selection alone and attempts to prove the heredity of 
learned characters failed. A few recent discoveries seem to 
question this central dogma, e.g. repair mechanisms, 
regulation mechanisms, genetic conversion, 
transformation ARN->ADN in a virus. To the second 
argument, we can counter that a Lamarckian evolutionary 
process should be robust in the face of the hazards of life 
and work very slowly because it takes time to gather solid 
knowledge. Therefore, its effects will be difficult to 
recognize, especially in complex organisms. It would be 
interesting to accelerate this learning process in an 
artificial system, depending on environmental noise.  
During our work, we considered several ways to ascertain 
the information “dominance”. The first possibility is 
through slow mutation and selection in parts of the 
genome that carry this information. Or we could use a 
retarded Lamarckian mechanism by which, for example, 
the corresponding genes of two alleles are alternatively 
compared during individuals’ lives. We chose the third 
possibility, which would be quite incredible in the nature 
but is easy to realize in a program: direct Lamarckian 
learning. The genes of two parent individuals are directly 
compared assuming an information exchange on this level. 
In comparison, refer to the theory of the memes ([4]). 
Dominance would only be an advantage in a stable 
environment or if cyclical changes occur, in which 
“learning” makes sense. This is a common situation in 
industrial applications. 
Perhaps Lamarckian heredity is not necessary for the 
existence of complementary selection and variation in 
nature. However, we thought it necessary to point out its 
role because of its didactic effect on our work and its 
effective use in our algorithms. 

3.1  Procedure on the basis of a simple 
example 
To illustrate the procedure, let us look at an example of 
five individuals which possess two genes each, whose 
expression is identifiable in two features. 
Gene A finds its expression in the f1 feature; Gene B finds 
its expression in the f2 feature. 
 
  Gene A Gene B  f1 f2 
 Ind 1  A1  B1  1 9 
 Ind 2  A2  B2  3 3 
 Ind 3  A3  B3  2 7 
 Ind 4  A4  B4  8 1 
 Ind 5  A5  B5  6 2 
 

A PARETO ranking which has f1 < 7 and f2 < 8 as its 
goals would exclude the individuals Ind 4 and Ind 1 from 
further optimization loops and thus give away valuable 
potential of the genes A1 and B4. Here we can see that in 
the case of genes (and features) being assigned absolutely 
separately, the best solution would combine Gene A1-
Gene B4. 
How do we arrive at this solution? Firstly, all existing 
features are sorted by using a selective, or rather 
complementary, partner search. In the example we sort the 
solutions simultaneously according to f1 and f2: 
 
 Sorting according to:    f1 /   f2 
 f1-Ind1 - f2-Ind4 
 f1-Ind3 - f2-Ind5 
 f1-Ind2 - f2-Ind2 
 f1-Ind5 - f2-Ind3 
 f1-Ind4 - f2-Ind1 
 

In this way, pairs are created which contain a 
complementary potential in their genes. Actually, neither 
individuals nor pairs are sorted here, but rather features, 
since Ind 1-Ind 4 can be seen as the best and worst result 
at the same time. 
If we take the pair Ind 1-Ind 4, we have four possible 
descendants. Gene A1-Gene B1, Gene A1-Gene B4, 
Gene A4-Gene B1 and Gene A4-Gene B4. 
How can the best solution Gene A1-Gene B4 prevail? In 
the course of the next generations after a new selection? 
This seems to be very inefficient. The use of dominance, 
which has been implemented in many EAs with di- or 
polyploidy, can be reemployed here. 
The traits which have received a better rank with the 
corresponding feature will be assigned greater prevalence 
(see Allchin [1]) which we transform into dominance 
using previous knowledge concerning the correlations 
between gene-traits. Prevalence is the fitness of traits 
considered separately and ranked with their respective 
equivalent in the population. It is related to the whole 
population and not limited to the comparison between two 
alleles (or more) in diploid (or polyploid) chromosomes. 
We have called any process (and corresponding 
information) that leads to a stronger or favored expression 
(all-or-none or intermediate) or more frequent apparition 
and heredity of a gene or phene ‘forcing’. While 
dominance tends to be attached to alleles and prevalence 
tends to refer to traits in a population, both contribute to 



forcing solutions which we suppose to be better; note that 
it could be interesting to introduce a third term matching 
the structure evaluated. Here, Gene A1 has the highest 
rank among all f1-rankings and Gene B4 ranks highest 
among all f2-rankings. Gene A1 and Gene B4 become 
dominant. 
During crossover, or genetic conversion, or gene 
expression, only those genes are accepted which have the 
greatest dominance. “The set without any defects assumes 
leadership and hence is able to compensate the defects of 
the other set” [18]. Recessive genes should disappear 
gradually. Dominance will stay with the gene during the 
next generations and is increased or reduced with every 
new generation. Thus, a knowledge base is transferred 
from generation to generation and is possibly updated on 
an ongoing basis. 

3.2  Extension of the procedure - knowledge-
based or knowledge-building 
In our procedure, the connections between the gene and 
the feature are formed by polygenia (a feature is 
influenced by several genes) and pleiotropy (one gene is 
involved in the formation of several features). Figure 1 
tries to give an impression of these connections. 
The allocation of gene to feature is complex. This 
allocation can be predefined if it is already known. In this 
case, a knowledge basis will be defined before 
optimization is started (our implementation). 
If the allocation between gene and feature is not known in 
advance, it can be decided for each generation, with the 
help of a correlation analysis for instance. In this second 
case, which we have not looked at more closely in our 
program realization yet, this knowledge builds up in the 
course of the optimization. Dominance is then a product 
between the correlation factor and the ranking value. 
Genetic interference (silencing) and differentiated gene 
expression (few genes find strong expression; most of the 
genes find weak expression or none at all) show that the 
allocation of gene to feature is not at all trivial. It is quite 
certain that new functional patterns may be found here. 

4  PROGRAMMING 
In technical practice a large number of dynamic systems 
exist which are evaluated by simulating the system for an 
extended time period and analyzing the system reaction, 
see figure 2. The system can be controlled via the input 
variables (variables for optimization). The problem-
specific evaluation of the output signals usually results in 
several objective values rather than just one. 
Consequently, a multi-objective optimization of the 
system must be carried out. 
Real-world systems cannot be evaluated comprehensively 
if only one simulation is carried out but rather a greater 
number is necessary. In the case of a gearbox, several 
working points have to be investigated. Naturally, the 
number depends on the complexity of the system as well 
as the qualitative requirements on the result. 
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(simulation of 
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objective 
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Figure 2. Structure of control and evaluation of a dynamic 
system 

Unfortunately, this increases the number of variables 
which have to be optimized, the number of objective 
values and also the total simulation time. In short, the 
complexity of the optimization problem which is to be 
solved becomes noticeably greater. 
However, the addition of further working points results in 
a situation in which not all the variables affect all the 
objective values. It is often the case that few objective 
values are dependent on a larger number of variables. 
Other objective values, in contrast, depend only on a small 
number of variables (for instance, parameters in a set of 
characteristic curves controlling a certain field of activity). 
It is often known in advance which of these variables 
contribute to which objective values. 
In our first implementation of the principles discussed in 
section 3 we took advantage of this knowledge available 
to the engineer/optimizer concerning the inner couplings 
between variables/parameters and objective values present 
in the system to be optimized. 
Here, we are working on the precept that the user knows 
which variables Var (termed genes in section 2) affect 
which objective values ObjV (termed features in 
section 2). In this way, it is possible to state exactly that 
Var1 affects ObjV1 and ObjV2, Var2 affects ObjV2 and 
ObjV4, etc. 
In this procedure a variable can affect one or several 
objective values. In the same way, an objective value can 
be affected by several variables. As regards all real-world 
applications, we can assume that the user knows this 
allocation. 
By the way, this procedure also covers for the eventuality 
that all the variables affect all the objective values (the 
most ‘general special case’, the only one which has been 
taken into account in all MO applications so far). This 
really is a special case, however, which very seldom 
occurs in practice when optimizing complex technical 
systems. 
 

In order to define the assignment between variables and 
objective values we have employed a cell array. (As we 
carried out our work using Matlab we have used the 
Matlab notation here. The principles can, however, be 
transferred to any other kind of implementation.) The first 
column contains the indices of variables Var, each of 
which affect the same group of objective values ObjV. 
The second column contains these corresponding 
objective values. 



 
  %Assignment  Var    to  ObjV 
  Var2ObjV = { [1],     [1 2]; 
               [2],     [2 4]; 
               [3 4],      [3 5 6]  }; 

This information allows us to break open the normal 
process of ranking, selection, recombination and mutation 
which, up till now, had been carried out for all variables 
and objective values simultaneously. With the new 
procedure, a separate loop is run through for each row in 
Var2ObjV, see figure 3. This is always done for exactly 
each of those variables and objective values that belong 
together. In the beginning, the individuals are divided into 
separate variable groups. New sub-individuals are 
generated for these groups, which are joined together 
again at the end. As a variable can only ever occur in one 
variable group, the variables do not overlap. Nevertheless, 
it is possible for an objective value to appear in one or all 
variable groups. 
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Figure 3. Structure of the extended evolutionary algorithm 
employing complementary selection and variation 

By using this procedure we are able to make sure that one 
variable is influenced by only one or a few objective 
values. That means that during ranking (and the 
subsequent selection and production of offspring), only 
those objective values are used which influence this 
variable. This allows the locally good features/variables to 
assert themselves relatively easily, rather than being 
suppressed by other bad variables in the same individual. 

5  APPLICATION OF COMPLEMENTARY 
SELECTION AND VARIATION 
For all our experiments we used an extended evolutionary 
algorithm previously employed successfully in many of 
our other real-world applications (see for instance [13]). 
The structure and the main operators are shown in 
figure 3. We employed the following evolutionary 
parameters: 
•  discrete recombination, recombination rate of 1, 
•  real valued mutation with medium sized mutation steps 

(mutation range of 0.03, mutation precision of 20), 
•  multi-objective ranking using PARETO ranking and goal 

attainment, sharing between individuals, selection pressure 
of 1.7, stochastic universal sampling and elitist selection by 
employing a generation gap of 0.9, an archive for good 

solutions found (currently without reinsertion into the 
population). 

Normally, we use multiple subpopulations with migration, 
different strategies for each subpopulation and 
competition between subpopulations. However, the 
experiments for this paper involved a very small number 
of individuals (25-35 individuals) and it would make no 
sense to use multiple subpopulations for such a small 
number of individuals. 

5.1  Example using extended benchmark 
functions 
We constructed an example function using a number of 
standard benchmark functions. Each of the multiple 
objective values is calculated by one well-known test 
function. The special characteristic is that only a few of 
the variables are used for the calculation of one objective 
value. In addition, some variables are used for the 
calculation of more than one objective value. 
In this example we employed the following two test 
functions: hypersphere function (DeJong’s function 1) and 
'Moved axis parallel hyper-ellipsoid 1c' (the minimum of 
this function is located at Var = [5, 10, 15, 20, 
25, 30, ...]). We used 10 variables calculating 2 
objective values. ObjV1 is calculated from variables 1 to 
5, ObjV2 from variables 4 to 10. This results in the 
following assignment between variables and objective 
values: 
 
  % Assignment Var       to       ObjV 
  Var2ObjV = { [1, 2, 3],          [1]   ... 
             ; [4, 5],          [1 2] ... 
             ; [6, 7, 8, 9, 10],   [2] }; 
 

Our optimization runs were terminated after 30 
generations. This is quite early and the optimization has 
not really converged to the PARETO front. We are, 
however, looking for a quick return. Our real-world 
application cannot be run for a longer time (the current 
application must use less generations because of running 
time and available resources). Thus, it would not make 
sense to compare long running optimizations. 
The results presented compare representative runs for two 
types of optimization, which are identical except that some 
used and others did not use our new principle: 
complementary selection and variation as presented in 
section 4. The runs with complementary selection and 
variation are labeled ‘with ComplSV’, the others are 
labeled ‘without ComplSV’. 
In figure 4, four different runs are presented for each type 
of optimization. We selected the non-dominated 
individual from each run and calculated the (limited) 
PARETO front formed by these individuals (in the 
solution space). These fronts are plotted on the same 
diagram. 
We used minimization for both objective values. Thus, 
solutions which are more to the left and lower down 
represent better solutions. 
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Figure 4. Comparison of PARETO front (formed from non-
dominated individuals) of different optimization runs over 30 
generations employing complementary selection and 
variation (labeled ‘with ComplSV’) or without 
complementary selection and variation (labeled ‘without 
ComplSV’) 

 
When analyzing the diagram we can see that the runs 
using complementary selection and variation performed 
better than the runs which did not use this principle. 
Unfortunately, we do not have a statistical evaluation or 
performance assessment of these results at hand. This will 
be part of our further work. 
Our main goal with these (simple) experiments was to 
open up the discussion on the principle presented, using 
examples accessible for everyone. We see this as only the 
beginning of many more experiments using other (more 
complex) functions, gauging the influence of the many 
parameters and operators used in evolutionary algorithms 
and implementing performance assessment for a more 
rigorous comparison of the optimization results. 

5.2  Optimization of the automotive gearbox 
Depicting complexity is no easy matter and examples from 
industrial practice are particularly difficult to compare 
because they cannot be reproduced exactly. Hard facts (in 
a mathematical sense) cannot be shown. Many more tests 
will be necessary in order to be able to better quantify the 
advantage of the new procedure in technical applications. 
With regard to our long-term objective of optimizing 
several thousand parameters, we will have to make 
compromises and limit the scope. When carrying out 
experiments which require a day’s preparation on 
expensive equipment and in the case of calculations which 
take 10 to 20 seconds per individual, experience can only 
be gathered very slowly. 
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Figure 5. Depicting working points of the gearbox 
application looking for the goodness in each working point; 
each ‘dot’ represents a working point consisting of 2 
objective values (x and y axis respectively), one individual 
consists of 3 working points/6 objective values (an allocation 
of the working points of each individual was not carried out 
in this diagram). The individual (triangle) outlined is 
dominated if we consider only one working point (2 obj. val.) 
but non-dominated if we take all of them into account. 

After successfully completing first, basic tests with 12 
variables two years ago, we became braver and today are 
able to observe a total of around a hundred values, 
distributed over 6 chromosomes with the aid of 
complementary selection and mutation (within the 
chromosomes). We also use many attributes to compare 
the results and fix the optimization targets. 
The effort needed to check the optimization methods 
grows disproportionately. Currently we tend to use 
samples to assess the behavior of the optimization during 
an optimization run. The final results are used to check the 
overall quality of the runs. 
The illustration in figure 5 shows that with procedures 
becoming increasingly complex, extended visualization 
methods must be employed. 
If we consider only two or very few objectives, an 
optimization along the Pareto front as proposed in many 
EA makes sense. When the number of objectives increases 
(see figure 6), the number of dominated individuals drops 
and individuals that were considered dominated become 
non-dominated. In other words, there is a high probability 
of finding all the individuals on the non-dominated Pareto 
front, which therefore loses its significance. There is no 
longer any possible differentiation; all individuals have 
the same rank. In this case, selection without pressure is 
equivalent to a random selection. For this reason it is 
important for complex real-world applications to have 
extended MO strategies. 



6  CONCLUSION 
When optimizing complex, real-world systems the 
question of the scalability of the optimization procedures 
used arises time and time again. It is often the case that no 
concrete statements exist regarding their scalability. Even 
at the speed of today’s computers, time-consuming 
comparisons of these real-world systems cannot be made 
or are difficult to make due to extremely long computing 
times. 
In order to manage large systems, therefore, an attempt is 
made to decompose them. Unfortunately, this can only be 
done easily in very few cases since interactions existing 
between different areas prevent complete decomposition. 
However, in many real-world applications there is no 
complete coupling of all sub areas. Thus, partial 
decomposition is possible. 
We have presented an approach for this kind of partial 
decomposition. The utility of the method was 
demonstrated employing extended, standard benchmark 
functions. We have also presented an overview of our 
results from the parameter optimization of an automotive 
gearbox system. Given the limited resources available and 
the high cost of a full optimization, the application of 
complementary selection and variation produced notably 
better results than our (already very good) extended 
evolutionary algorithm [14]. In particular, the much 
improved scaling of the problem size regarding additional 
parameters and objective values (employing the 
simulation of additional working points) allowed us to 
derive better results in the very limited time available. 
The further development of complementary crossover will 
connect the following fields of knowledge: behavioral 
psychology, genetics and bioinformatics. The latter can 
help to check the efficiency of hypothetical procedures 
before time-consuming trials or observations in other 
areas are undertaken. 
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Figure 6. By increasing the number of objective values, the 
Pareto front loses its selective significance 


