
Figure 1. Proportion between dominated and non-
dominated individuals depending on the number of 
objectives involved, for population size 100, 1000, 10000 
and 100000. Each objective value has been chosen 
randomly. For large numbers of objectives (number in 
brackets), all individuals in the population are non-
dominated. Therefore, Pareto ranking gets impossible. 
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ABSTRACT 
The definition of the right goal constitutes an essential 
part in Evolutionary Algorithms. The best EA is no use 
if the defined and calculated purpose does not 
correspond to a real need. Human needs are generally 
complex. That is the reason why users of EAs should be 
interested in utility theory and psychological 
mechanisms, up to the core of the single neuron. In this 
paper we show that the harmonic decision matrix opens 
a new way to model human decisions and basically, 
neuronal computation, that goes beyond the weighted 
sum and the polynomials. 
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1. INTRODUCTION 
Evolutionary Algorithms (EAs) do succeed in solving very 
complex problems. Indeed, many real world applications 
already proved the robustness, flexibility and effectiveness 
of this method. In many cases, the difficulty of an 
optimization depends on the number of variables that can 
be adjusted as well as the non-linearity of the relations 
between many variables and a certain goal. However, the 
first and generally most important difficulty already appears 
in the ability to recognize and define a problem. 
Consequently, at least as much attention should be devoted 
to setting the right goals as to the other steps in the process, 
namely the choice of the regulating parameters and the run 
of an optimization method itself, including its practical 
aspects.  

Multi-Objective Optimizations (MOO) focus on the 
complexity of the possibly conflicting goals as an essential 
part of the whole complexity. Evolutionary algorithms have 
been recognized as a promising method to solve MOO 
problems. In this field, they can be classified in at least four 
groups: 

First group. Objectives are divided into smaller ones and 
optimized separately, either in successive optimization runs 
(lexicographic ordering, following the users priorities) or 

parallel in different sub-populations (as in VEGA, Vector 
Evaluated Genetic Algorithms, proposed by Schaffer [26]). 
Of course, this way to come back to a single objective is 
reserved to complicated, but not complex problems.  

Second group. Optimizations that exclude the obviously 
worst solutions and postpone a part of the difficulty by 
preserving diversity among the better solutions. In 
particular, this includes all strategies based on Pareto-
ranking, see Laumanns et al. [14], Zitzler and Thiele [27]. 
Most of these strategies now include niching, clustering or 
fitness sharing to preserve diversity; these techniques 
however are not necessarily specific to MOO, they also 
apply in single objective optimizations. Unfortunately, 
Pareto-ranking doesn’t work for a large number of 
objectives (figure 1), see Bagot and Pohlheim [2]. The fact 
that almost all the Pareto based MOO deal with two or three 
objectives is not the result of hazard or just a visualization 
problem; it is a necessity. Quite similarly, constraints 
exclude a part of the solutions without realizing a real MOO 
on the others. 
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Figure 2. Association matrix showing the relations 
between genes and objectives. The tree views stress the 
structure in each of them separately, while the clusters 
emphasize their relational structure. The clusters 
represent intermediary objects between parameters and 
objectives and carry additional information.  
∆: Parameter influences objective. 

Third group. The generalized MOO divide a problem in 
smooth clusters and use fuzzy relations or separations 
between variables and objectives in tricky functions like 
greedy cross-over or complementary selection and 
variation, see Bagot and Pohlheim [2]. Such strategies 
imply a knowledge of the relations between genes and 
objectives (see figure 2) that can be previously given or 
built during optimization. 

Fourth group. The most common and historically oldest 
function (for an overview of MOO, see Coello Coello [4], 
Fonseca and Fleming [8], [9], Jaszkiewicz [12], Purshouse 
and Fleming [22]) used to deal with numerous objectives is 
a formula, called aggregating function or target vector 
function, with several inputs and a single output. The 
popular weighted sum allows many objectives to be 
reduced to a single one. The calculated distance to a target 
point offers another alternative. The last leads to the 
equation of a circle (or hyper sphere), or of an ellipse, 
which was the starting point for the discovery of the 
harmonic decision matrix. Such a reduction limits the work 
in EAs to the dimension of the genes (the X-axis in figure 
2). If not the most effective concerning the optimization 
speed, compared in particular to the preceding category, it 
secures the observance of a compromise along the whole 
evolution process. Because of the limits of the Pareto-
ranking, this category keeps its significance. 

 

Parameters 

Objectives 

 

 

 

 

 

 

In this paper, we will present a mathematical and logical 
function (belonging to the above group 4) that helps to 
combine different, partly opposed criterions in a global 
assessment. Bagot [1] presented this function or group of 
operators from a point of view of the fuzzy logic, games 

and decisions, utility and economic theories. In particular, 
he resolved a fifty years old enigma in economics known as 
the Allais’ paradox. Here, we will present the Harmonic 
Decision Matrix (HDM) as a model of the single natural 
neuron.  

The convexity in the representation of the data sets strongly 
affects the way a linear combination works, regardless of 
the weights used, see Das [5]. A possible solution is to 
change the scale of the evaluations, e.g. to apply a rotation 
of the Pareto front or a logarithmic transformation to some 
of the objective values. The HDM takes another way: while 
keeping the same range for all the objective values, it 
changes the convexity of the ranking logic, visualized 
through the iso-curves of an operator.  

At first, we will define the new function that we are 
introducing, building our explanation step by step on the 
base of the biological structure of the neuron. In the section 
3, we will compare this to other existing models of the 
neuron. A short but important focus on the continuous 
character of neural computation in section 3.2 will 
introduce in the section 3.3 a theoretical hypothesis on the 
background computation mechanism. Leaving the core of 
the neuron, we consider in section 4.1 its interactions in a 
structured net. At that point, the calculations cumulate in a 
global decision, where our purpose is reached: make the 
right decision by the choice between different solutions in 
an evolutionary algorithm. We complete in 4.2 the details 
concerning the implementation in practical applications and 
show the possible combination with or alternative to other 
procedures building the evolutionary algorithm. In a last 
section 4.3, we describe a procedure for the practical 
validation of the model. 

2. DEFINITION OF THE HARMONIC 
DECISION MATRIX 
If we want to reduce several objectives to a general, single 
one, we will realize a logical operation or series of 
operations, in order to obtain a result we consider useful in 
the sense that it helps us to take a “good” decision: select 
the right option(s), eliminate others. What is “good” or 
“bad” generally depends on personal scales of values as 
well as on the environment. As an illustration, imagine 
several buyers who try to find the best car model. The first 
one wants first of all a sporty engine, the second pays more 
attention to the room inside, a third one would pay more for 
an open top for the coming summer, while another buyer 
wants to have a good looking design able to amaze his 
neighbors. Moreover, living in a hot country, they need the 
air-conditioner. If they buy together e.g. as members of the 
same family, they will find a compromise. If not, the 
salesman should propose different models and parameterize 
some options individually. In any case, they take a decision. 
Consciously or not, they use their brain; compute some 
sensory information in a net of neurons. How can we 
reproduce this computation in a program? 



Figure 3. Simplified Model of the natural neuron.  

Figure 4. Sigmoides. S-like functions  

Figure 5. Fuzzy AND.  

Figure 6. From AND to OR in small steps. In the 
middle: the mean value.  

For a better understanding of the harmonic decision matrix, 
let us first represent in figure 3 the involved variables as 
they appear in a simplified model of the natural neuron. We 
can forget for a while that we deal with objectives and just 
consider quantified values to compute. On the left part of a 
brain cell soma with the nucleus, several dendrites vehicle 
inputs variables X1, X2, …Xn arriving via synapses from 
other neurons or sensory cells. On the right hand side, the 
axon forwards the result Z of the computation to other cells 
via synapses. Z can be seen as a compromise at this level of 
decision. It secures the balance inside the decision unit: 
F(X1, X2, …Xn, Z) = 0. 
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Now, suppose that X1, X2, …Xn take continuous values. It 
is then more convenient in a case study to reduce the 
number of inputs and choose another type of representation. 
For the maximal reduction to a single input, we can take the 
frequently used representation of a sigmoid, figure 4. 

In fact, other transformations are possible, sensory cells in 
particular may also use bell functions. 
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Now what happens if we take two inputs? Again, the choice 
of an appropriate representation helps to understand what 
could happen. We need to graphically represent three 
continuous variables. In figure 5, two axes indicate the 
possible values for X1 and X2, while the third quantity, Z, 
is proportional to a color or ticked by iso-curves in the 2D 
diagram.  

Imagine again the reflections of the car buyer: what use is 
the best engine in a tiny car if I can not take my girlfriend 
with me for a drive? Does a large boot make sense if the 
engine is too weak to carry any additional luggage? 
Between these extremes, the figure proposes - as fuzzy 
AND - a result for each possible combination. 
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Inspired by this representation, we can express a 
corresponding mathematical expression: 

(X,Y) ∈  [0 10]*[0 10], Z is the smallest solution ∈ [0 10] of  

(X+f1(X)-Z)(Y+f2(Y)-Z)-f1(X)*f2(Y)=0 

In a first step, the weights w1=f1(X) and w2=f2(Y) can be 
taken as constants. Then, other continuous functions can 
sophisticate the model. We can study different 
parameterizations of the weights (figure 6) and extend the 
equation to higher dimensions. 
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Figure 7. Spikes and Time.  

For N input values ∈  [0 10], the HDM is written: 

N                                                                    N 

Π( µn(x n) +fn(µn(x n))-Z ) - Πfn(µn(x n))=0 
n=1                                                               n=1 

µn are sigmoid functions. fn are weight functions that are 
possibly constants fn=cn or linear fn=cn* xn+ε in case of 
Fuzzy AND. For Fuzzy OR, fn(x n)=fn’(x n-10). 

3. COMPARISON TO EXISTING MODELS 
Numerous models of the brain cell, beginning with the 
representations given by Ramon Cajal at the beginning of 
the twentieth century, already exist. We give here a short 
review and, in comparison, point out the main specificities 
of the newcomer. 

3.1 Descriptive, Electric, Chemical and Mathematical 
models 
Descriptive models 
The first representations of a neuron show the structure of 
the cell that appears by observation under a microscope, 
helped by different techniques of coloration, see Dudel, 
Menzel and Schmidt [7], Nicholls, Robert Martin and 
Wallace [20]. Such studies underline the role of the single 
neuron anatomy, taxonomy, localization and connections 
within the brain network, see Rolls and Treves [25]. 

Electric models 
Another kind of representation results from electrical 
measurements on the neuron or axon and takes its 
inspiration from cable theory, see Koch [13]. Here, 
dissipation on long distances, transmission velocity and 
summation of currents play a predominant role.  

Chemical models 
Molecular biologists explain how the neuron functions with 
models of the ionic currents at the synapses, in the dendrites 
or axons, at the cell membrane, see Koch [13]. 

Mathematical models 
Among the mathematical models, the weighted sum and the 
sigmoid are found very frequently in the specific literature. 
Moreover their combination in the integrate and fire model, 
is commonly used in artificial neural nets. However, the 
sigma-pi unit or polynomial models, see McKenna, Davis 
and Zornetzer [15] and Koch [13], make supplementary use 
of multiplication 

Most of the proposed models can be seen from several 
points of views. For example, the famous Hodgkin-Huxley 
model of action potential generation accounts with a 
mathematical expression for ionic concentrations in the 
axon and its membrane electrical potential. For an 
overview, see Gerstner and Kistler  [10], Rieke et al. [24], 
Koch [13].  

We do not have sufficient chemical and neurological 
knowledge to complete the harmonic decision matrix with 
its equivalent molecular description. Does the harmonic 
decision matrix, as McKenna et al. [15] asks, “capture the 

essential computations of real neurons in models that will 
provide processing elements for the next generation of 
biologically inspired neural networks?” 

An important particularity of the HDM is the move of the 
sigmoid to the input side.  The polynomial expression 
z=P(x1,x2,..xn) is abandoned in favor of a more general 
F(z,x1,x2…xn)=0. 

3.2 The frequency modulated nature of neuronal 
signals 
Today, many authors recognize the modulated nature of 
neuronal signals. Strangely, the most common 
representation of the transmitted information remains a 
succession of spikes figure 7 top.   

This kind of representation concentrates on the question as 
to how information is transmitted between neurons. But it 
does not visualize properly the essential: how much? In 
fact, a modulated signal is wrongly assimilated to a digital 
code that transmits only zeros and ones. This confusion let 
the pioneer John von Neumann [19] to qualify the nervous 
system as “prima facie digital”. The spikes used for the long 
distance transmissions just set a frame to the real 
information unit that is frequency, or the time between two 
of them. 
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Time is generally considered as a continuous value. 
Activation thresholds and the minimal response time 
between two spikes just limit the values between a>0 and 
b<∞, they do not suppress their continuous characteristic in 
this range. Recognizing this, a growing number of 
researchers consider that the brain computes prima facie 
continuously and uses different mechanisms from analogue, 
chemical transmission in the synapses, to modulated (rather 
than digital), electric transmission in the axon or dendrites. 



Figure 8. Automatic gear Box.  The optimization of 
software parameters in the control unit is performed by 

an online Evolutionary Algorithm on a test bench 

Of course, this does not exclude all-or-nothing answers seen 
as particular cases of a general rule.  

The following remark to the minimal level of precision in 
synapses is to be noted: according to J. Dudel, Menzel and 
Schmidt [7], the delivery of 500 quanta contained in small 
vesicles or 1 Million Ach-molecules manage the 
transmission of excitatory impulses at the synapse. 

However interesting the question of the neural code may be 
(see Gerstner [10]), we will not discuss that point more in 
detail. Let us just point out for the further argumentation the 
role of time.  

3.3 Computation algorithms in the natural neuron 
Even without detailed molecular understanding of the 
computation mechanisms in single neurons, we can test 
some assumptions from a theoretical point of view.  

The preceding chapter already gives us a clue. A 
calculation process using a simple operation and in which 
time plays an essential role is very likely iterative.  

Each time the neuron sends a spike, it performs an iteration 
with the purpose to find a balance in an equation like the 
HDM. The spike – or, on a basic level, ionic movements - 
carries out a calculation step towards the solution to the 
equation. This idea revealed itself from the experience of 
programming: coding the function for two entrances, it was 
possible to use a direct formulation of the solution. Trying 
to generalize the function to greater dimensions, we chose 
an iterative zero search available in every mathematical 
library.  

The principal consequence of such a supposition is that the 
neuron can compute advanced solutions to complex 
problems, far away from the simple sum or product.  

It is probably too early to confirm or reject this theory. The 
most important work towards an answer concerning the 
validity of the mathematical model probably consists in 
realizing artificial synapses. With them, it will be possible 
to draw a precise map of the answer intensity by different 
combinations of input values. On the other side, a more and 
more accurate understanding of the ionic movements in the 
brain cell, linked to mathematical hypothesis, will deliver 
new clues. 

4. APPLICATION IN EVOLUTIONARY 
ALGORITHMS 

4.1 Single neuron and neural net 
After half a century of computer development and decades 
of progresses in artificial neural networks, the single neuron 
remains “at the eye of the hurricane”, to quote Churchland 
in his foreword to [19]. However, beyond the single neuron 
computation, specific knowledge (e.g. about the Helmholtz 
machine in Dayan and Abbott [6]) increases around the 
neural nets. We could not explore yet all the possible 

applications in this field. We used the harmonic decision 
matrix in a supervised, feed-forward neural net, embedded 
(for goal definition) in an evolutionary algorithm. The 
number and structure of the intermediary layers have been 
chosen according to specific knowledge. The purpose of 
our program is to deliver a specific product assessment 
(decision function) and product improvements (EA) that 
can both compete with the judgment and action of an 
expert. The objective function performs in real time an 
intensive signal analysis, calculates basic decision variables 
and combines them with the HDM. The relevant topics 
include vehicle comfort, spontaneity and load limits by 
shifts with an automatic gear box, figure 8; they are 
measured and optimized automatically in an online 
procedure on a test bench. We achieved qualitatively better 
results with this method, compared to the manual 
optimization by an expert, however with a significantly 
greater number of tests. Concerning the optimization speed, 
see the remark in the introduction, fourth item. 

 

 

 

 

Intermediary neurons deliver non-requested, but meaningful 
information. They usually work like a black box, but it is 
every time possible to look inside and understand what 
happens. Therefore, modifications or fine tuning can be 
performed easily. Furthermore, the subtle tuning of the 
logics in the single neurons already brings good results by a 
simple (understandable) global structure of the net. Here is 
the key advantage of the new model. As Bishop [3] 
judiciously reports, it has been proved that “feed-forward 
neural networks with threshold units can generate arbitrarily 
complex decision boundaries. The proof is of little practical 
interest, however, since it requires the decision boundary to 
be specified in advance, and also it will typically lead to 
very large networks.” The question of the theoretical order 
of the error, depending on the number of intermediate 
neurons in a neural network and for a finite and randomly 



Figure 9. Comparison of ranking methods: HDM 
parametrized to match the expert’s choice (up left), 

weighted sum (up right), distance to a target (middle left), 
weighted distance (middle right) rescaling and weighted 
sum (bottom). The iso-lines separate ten ranking levels. 
The plain points show the best ranked values, above a 

chosen threshold. 

created dataset, is not essential here. The purpose is rather 
to model datasets derived from real human decisions, 
without asking (or at the most afterwards) why these 
decisions are good or effective. Therefore, the advantages 
of the HDM will be primarily experienced in practice.  

Theoretically, it will be possible in further developments to 
introduce the HDM in different architectures of neural nets, 
including back-propagation, simulated annealing or 
different learning methods. The use of the HDM as radial 
basis function, even if not obvious, should be considered as 
well. For a good overview of all these possibilities, see 
Nauck, Klawonn and Kruse [18].  

4.2 MOO 
From this experience in a multi-objective optimization, we 
retain the following observations. With the HDM, we have 
a rational method to recognize, structure and ponder our 
real needs in a complex problem. This way, we reduce the 
dimensionality of the Pareto front (see number of objectives 
figure 1) to hierarchically important criteria. We spend 
more time in the target definition before the optimization. 
The final result and its overall assessment are considered in 
advance as the best result and right decision. Thus, 
unnecessary repetitions of the optimization process are 
avoided. We can still keep a representation of the Pareto 
front for two particularly important criteria. One sometimes 
changes his mind and his priorities. Then it is still possible 
to find new good solutions among other Pareto-optimal 
ones that were created during the optimization. Generally, 
the priorities are just slightly modified, and the new choices 
will be localized near the first output. Therefore, even in 
this case, the new solution picked out of the previous test is 
considered as good enough and the optimization is not 
repeated. 

The figure 9 compares for real test data (a Pareto front 
extracted from a bigger measurement) different ranking 
methods that all use a function F with several inputs x1, x2 
and a single output z. The last function in the figure, 
rescaling and weighted sum, can be expressed as  

z=F(x1,x2) = ((k1x1
α+k2x2

α / (k1+k2))
1/α.  

z is considered as a kind of radius. We want and have the 
idempotency property: x1=x2⇒z=x1=x2. If we define f1 as 
the distance between a point A: x10=x20=z0 and B: x1, 
x2=10, z=z0, we can prove (with l’Hospital’s rule) that 
f1(α→0) = z-exp((k1+k2)ln(z)-k2ln(10))/k1) for given k1, k2 
and z. This means, there is a limit in the convexity that can 
be obtained with this method. Or we have to abandon the 
idempotency (the term 1/α in the previous equation) to get 
any desired convexity. In fact, among all these methods, the 
HDM is the only one that both can match the expert’s 
choice and verify the idempotency property, which is 
important when the function is used several times 
successively in a net. 

There is only one best solution of the HDM in the example 
figure 9. However, four other solutions (on the Pareto front) 
get a very similar ranking value and may be reconsidered 
for an in depth analysis of the results.   
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In a large and complex problem, an evolutionary algorithm 
that takes into account only the global assessment of each 
individual works too slowly. With the HDM, a larger 
number of criteria are calculated: basic values, intermediary 
objectives and global objective can be all considered in 
multi-objective optimization techniques mentioned in the 
introduction in the first, second and third item. 

Supervised learning. 

Take your own problem; focus, in the beginning, on only 
two criteria (e.g. physical measurements) about which you 
feel very concerned. Define a scale of scores to assert them 
individually by different imaginable or already experienced 
occurrences. Then, take different combinations of these 
criteria and assert these combinations globally in an 
intuitive manner. Now, report all these values in a diagram 
and draw matching iso-curves. With a little experience, it is 



Figure 10. Graphical determination of the HDM weights 

possible to find very quickly manually approximated 
parameters for the mathematical expression of these curves.  
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If your problem appears more complicated, structure the 
items in a decision tree and repeat the same principles at the 
nodes. More generally, a net structure with the HDM as 
nodes can be parameterized in a procedure called 
supervised learning in the same way as any other neural 
network. For given inputs, the outputs of the net are 
compared to corresponding desired outputs. The error 
between them (e. g. sum-of-squares error) is taken as goal 
in optimization techniques (inclusive EAs!) to determine 
the adaptive parameters of the net more precisely. 

Verification of the predictive power. 

To control the validity of the model, we proceeded in the 
reverse sense. We submitted some events and the results of 
the calculation to several users and asked them if they could 
agree the judgments or at least consider them as an expert 
opinion. They did in 94% of our tests. Of course, the HDM 
applies to the real world… no more than an arithmetic or 
any other utility function. It cannot force people to behave 
rationally according to its particular logic. Therefore, the 
new results will certainly arouse ardent discussion upon the 
kind of problems concerned or not.  

Alan Turing proposed a similar and famous test. In a 
hypothetical situation, an observer asks two partners, the 
one a human, the other a computer. If the observer can not 
determine who the human is, who the computer is, without 
asking this question directly, the test succeeded.  The same 
test can be realized by limiting the subject to a very specific 
field and does not need any particular equipment. 

5. CONCLUSION 
This work has grown from and in an industrial context. Our 
success in a specific problem encouraged us to propose 
them to the scientific community. We thank Manfred Bek 
who made this presentation possible.  Readers acquainted 
with the vast subjects of neural computation, neurobiology, 

neural circuits and networks, will recognize in the second 
part of this paper an extreme short resume of established 
knowledge. In this state of the art context, the harmonic 
decision matrix that we introduced in the first section 
clearly appears to be a decisive improvement. This formula 
and its practical application support the reflection about the 
iterative computation in the single neuron. We also would 
like to insist in conclusion on the practical advantages of 
the function, which we could implement in many situations: 
it is easy to understand thanks to the proposed visualization, 
general enough to cover a very broad (and even infinite) 
spectrum of logical decisions, flexible through simple 
parameterization, saving many lines of code in a program. 
Many functions developed for MOO, like weighted sum, 
optimization under constraints, Pareto ranking, can be 
completed by using the harmonic decision matrix in a 
unique decision function structured as a neural network. 
Simultaneously, the HDM can compute sub-criteria 
building a complex structure of objectives in generalized 
MOO mentioned in the introduction.  

The HDM provides one among many other ranking 
strategies.  After three years of use, it appears to be a good 
model for human decisions, at least in the specific area 
where it has been tested, namely the quality assessment of 
gear shifts with an automatic gearbox.  It is quite intuitive 
to think that decision patterns statistically confirmed by 
simple psychological tests should correlate with basic 
computations of the natural neuron. Psychological 
experiments inspired by this new concept will show its 
potential and its limits. Further research will reveal if really 
a realistic model of the natural counterpart, the brain cell, 
has been discovered. Today, it seems that this will arouse a 
passionate debate. 
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