
   
Abstract-- Path planning for an underwater vehicle can be 
formulated as a multiobjective optimization problem, which 
can be solved by modern heuristic techniques. For assessment 
of a trajectory, three crucial criteria are used: a total length 
of a path, a smoothness of a trajectory, and a measure of 
safety. A multiobjective evolutionary algorithm for finding 
Pareto-optimal solutions is proposed. Then, the underwater 
vehicle and navigation in three dimensions is considered. 
Some results of numerical simulations are presented. 
 
 
Index terms—underwater vehicle, multi-criterion 
optimization, evolutionary algorithms 
 

I. INTRODUCTION 

 
Path planning for an underwater vehicle can be formulated 
as a multiobjective optimization problem, which can be 
solved by modern heuristic techniques. We focus on the 
Super Achille M4 that is a remotely operated vehicle 
designed for underwater observation in hostile 
environment [16]. The main characteristic of the vehicle is 
its power capability and its compactness.  
 
The vehicle consists of two parts. The upper part ensures 
the vehicle positive buoyancy and houses the sonar head. 
The lower part consists of a watertight frame made of 
welded pressure-resistant tubular stainless steel. The 
underwater vehicle is equipped with four three-phase 
asynchronous thruster motors with propellers. A vehicle 
weights 120 kg. Its length is 720 mm, the width 600 mm, 
and the height 520 mm. There is a surface control unit 
with its power cable. It is possible to extend unit’s 
capabilities by finding trajectory of the vehicle.      
 
Evolutionary strategies and genetic algorithms are the 
alternative approaches compare to the other heuristic 
multiobjective optimization methods such, as simulated 
annealing, tabu search, Hopfield models of neural 
networks, and Lagrangean relaxation [10].  
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Both, evolutionary strategies and genetic algorithms can 
combine with recurrent neural networks for solving 
optimization problems [2]. This approach is very efficient 
because of the massively parallel processing. Recently, 
interest has risen in the application of evolutionary 
algorithms to solving combinatorial optimization problems. 
Evolutionary algorithms develop genetic algorithms for 
solving optimization problems by another chromosome 
representation, more complex operators, and a specific 
knowledge related with the optimization problem [8].  
In the paper, an evolutionary strategy and genetic 
algorithm are developed as a novel approach to 
a multicriteria path planning of the underwater vehicles.  
 
For evaluation of a path (trajectory) three main criteria are 
used: a total length of a path, a measure of safety, and 
a smoothness of a trajectory. A multiobjective evolutionary 
algorithm for finding Pareto-optimal solutions is proposed. 
A navigation of the underwater vehicle in three dimensions 
is considered. Some results of numerical simulations are 
presented. 
 

II. EVOLUTION STRATEGY 

 
For solving optimization problems an evolution strategy 
was proposed and developed by Rechenberg [9] and 
Schweffel [13]. An extension of evolution strategy on 
multi-objective optimization was introduced by Kursawe 
[7].  
 
Chromosome in evolution strategies consists of two main 
parts, as follows: 

 ),,( σxX =                                (1) 

where  
x - decision variable vector, 
σ - deviation standard vector for x. 

 
Figure 1 shows the diagram of evolutionary strategy EA in 
a version (µ+λ) [8]. A strategic mutation of chromosome 
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BEGIN 
¾ t:=0, set the size of population µ and the number of 

offspring λ 
¾ generate an initial population of chromosomes P(t) 
¾ calculate fitness of solutions )(),( tPxxf ∈  

¾ finish:=FALSE 
WHILE NOT finish DO 
BEGIN {* generating of a new population *} 

¾ t:= t+1, )1(:)( −= tPtP  

¾ an uniform random choice of λ parents pairs from the 
population P(t-1) 
FOR i:=1 TO λ DO 
BEGIN (* a reproducing cycle *) 
¾ strategic crossover of the parents pair (a,b) with the 

high probability pc and obtaining offspring a’ 
¾ strategic mutation of offspring a' with the low 

probability pm and obtaining offspring a'’   
¾ calculate fitness of mutated offspring f(a’’ ) 
¾ P(t):=P(t)∪{a’’ } 
END 
¾ elitaristic selection of µ solution from the set P(t) 
IF (P(t) converges OR t≥Tmax) THEN finish:=TRUE 
END 

END 

Fig. 1. Diagram of evolution strategy  

changes a value of decision variable xm by randomly chosen 
number ∆xm representing value of random variable with 
a normal distribution N(0,σm). 
 
 

III. QUALITY CRITERIA FOR ANTI-COLLISION CONTROL 

 
An underwater vehicle should plan a path between two 
specified locations in a three dimensional space, which is 
collision-free and satisfies optimization criteria. If (x1,y1,z1) 
is the starting point and (xM,yM,zM) is the destination point, 
then the path can be represented as follows: 

                                                                                      (2) 

The point (xm,ym,zm) is feasible, if an segment from (xm1,ym-

1,zm-1) to (xm,ym,zm) and an segment from (xm,ym,zm) to 
(xm+1,ym+1,zm+1) do not cut forbidden areas for the vehicle. 
A path x can be either feasible (collision-free) or infeasible. 
A path with at least one unfeasible point is non-feasible, 
too. We assume that at the time t the forbidden areas are 
given, and it is possible to determine if any trajectory is 
feasible or not. The number M of points defined a 
trajectory x can be changed. There is a maximum number 
of points Mmax and a minimum number of points Mmin . 
Moreover, some formal constraints for including 
trajectories in the given water area are formulated, as 
follows: 
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where  
maxmin,XX – area constraints for the coordinate xm, 

maxmin,YY – area constraints for the coordinate ym, 

min
mZ – a deep of water on the position (xm, ym). 

For evaluation the quality of the planning underwater 
vehicle path several criteria can be used. Usually, the total 
length of the path x is discussed because of the time and 
economy of motion [14, 15]. Let pm=(xm,ym,zm) denotes 
a point of trajectory direction changing. The total length of 
the path x can be expressed, as follows: 
 

          (4) 
 

where d(pm,pm+1) denotes a distance between two adjacent 
path points pm=(xm,ym,zm) and 
pm+1=(xm+1,ym+1,zm+1). 

The distance d(pm,pm+1) between two adjacent path points 
can be calculated, as below: 
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A. The length of a trajectory is the same from formula 
(3), (4) and (5), if it goes through a forbidden area or 
through a clear field. So, a safe aspect of navigation is 
considered. 

IV. SAFE MEASURE OF TRAJECTORY 

 
The second criterion F2 for evaluation the quality of 
a trajectory is a safe measure, which can be defined 
according to the following formula [14]: 
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where b(pm,pm+1) denotes the penalty value for the line 
segment from the point pm to the point pm+1, if the segment 
cuts any forbidden area.  

The penalty value b(pm) is defined as follows: 
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where 
r(pm, pm.+1) – the smallest distance from the line segment 

connecting path points (pm, pm.+1) to an object from all 
detected objects created forbidden areas, 

dmin – a parameter defining a minimal safe distance from 
the underwater vehicle to another object, 

β – a positive penalty coefficient. 
 
If the smallest distance from the line segment connecting 
path points (pm, pm.+1) to an object from all detected objects 
is non-smaller than the save distance dmin, then the penalty 
b(pm, pm.+1) is negative. When the distance between a path 
segment and the closest obstacle is smaller than dmin, then 
the penalty b(pm, pm.+1) is positive and it grows 
exponentially. The function F2 is defined as a maximum of 
b(pm, pm.+1) for all segments to make sure that if a certain 
segment of a path is dangerously close to an obstacle, i.e. 
within distance dmin , then the path is penalized strongly 
even if all other path segments are safe. The safe criterion 
F2 should be minimized to obtain a trajectory as safe as 
possible. 
 

V. SMOOTHNESS OF TRAJECTORY 

 
The third criterion F3 should maintain a smooth trajectory 
to avoid large changes of direction according to the 
following formula [15]: 
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where s(pm) denotes the measure of a trajectory “curvature” 
at the point pm.  

The trajectory curvature at the point pm can be defined as 
follows: 
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where αm. is the angle between the extension of the line 
segment (pm-1, pm) and the line segment (pm, pm.+1) on 
a plane determined by both above segments.  

We assume, that αm∈[0,π]. For the same distances the 
trajectory is smoother, if the maximal angle in it is smaller. 
If the minimal length from distances d(pm-1, pm) and 
d(pm, pm.+1) is longer, then there are less points pm, where 
the direction of trajectory is changed. The criterion F3 
should be minimized. 

 
Another approach for improving the smoothness of 
trajectory is related with the consideration of the sum of all 

trajectory curvatures at points Mmpm ,1, = , as follows: 
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Moreover, the minimization of sum-squared function can 
be carried out, as below; 
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VI. MULTICRITERIA PROBLEM FORMULATION 

 
The standard problem of the mobile robot path planning in 
two-dimensional plane was formulated as one criterion 
minimization problem by Yap [15]. A transformation of 
above three criteria in one global criterion for a two-
dimension plane trajectory was carried out in [14]. Some 
evolutionary algorithms for navigation of mobile robots are 
presented in [8]. So, the formulation of the trajectory 
finding problem in a three dimension space as 
a multiobjective optimization problem is the next step for 
finding a short, safe and smooth trajectory of mobile robot 
or another object such, as an underwater vehicle. 
 
There are several classes of multiobjective optimal 
solutions related with the preferences for criteria. If criteria 
are ordered from the most important criterion to the least 
important criterion, then a hierarchical solution can be 
found. In a multicriteria navigation of the underwater 
vehicle the safe measure F2 seems to be the most 
important.  
 
If all criteria have the same priority, then Pareto-optimal 
solutions can be considered [1]. Because of the great 
number of Pareto-optimal solutions some reducing 
techniques can be used. For instance, the compromise 
solutions with the “democracy” parameter p equal 1, 2 or ∞ 
may be extracted from Pareto set. Moreover, an additional 
criterion can be used. If the anti-collision situation permits 
on a dialog with the navigator, then some dialog 
techniques can be introduced, where the navigator choose 
the best trajectory from the proposed set of trajectories 
during several iterations.  
 
Let us consider the multicriteria optimization problem for 
finding optimal trajectory for the underwater vehicle as the 
Pareto solution in the following form: 

),,,( RFX                             (12) 

where 
X – the set of admissible trajectories, 
F – the vector criterion, 
R – the relation for finding Pareto-optimal trajectories. 

Because of the variable number of points in trajectory, a set 
of all trajectories (admissible or non-admissible) consists of 



vectors with no more than 3Mmax coordinates. It can be 

denotes as 7; 2= , where max3M
57 =  and 5  

is a set of real numbers. 

 
The set of feasible trajectories is defined, as follows: 
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The vector criterion 3: 5;→F  has three scalar 

criteria, as follows: 

,)],(),(),([)( 321 XxxFxFxFxF ∈=         (14) 

where )(),(),( 321 xFxFxF  are calculated according to (3), 

(6) and (8). 
 
The relation R for finding Pareto-optimal trajectories is a 
subset of Y×Y, where Y=F(X). If a∈Y, b∈Y, and 

Nnba nn ,1, =≤ , then the pair of evaluations (a,b)∈R. 

Above definition of the Pareto relationship respects the 
minimization of all criteria. For Pareto-optimal trajectory 
x*∈X  there is no trajectory a∈X such, that 
(F(a), F(x*))∈R.  

 

VII.  MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 

 
Evolutionary algorithms based on genetic algorithms can 
be an alternative approach for evolution strategies. For 
solving multiobjective optimization problem (12) with the 
considered three criteria an evolutionary algorithm can be 
used. Genetic algorithms are applied for solving several 
optimization problems. Holland [6] developed this 
approach and its theoretical foundation. Rosenberg noticed 
abilities of GA for development many criteria [11].  
 
Schaffer [12] considered GA for solving multiobjective 
optimization problems by a vector evaluated genetic 
algorithm VEGA. VEGA is an extension of system 
GENESIS prepared by Grefenstete [5]. VEGA uses 
dividing of the population on N subpopulations, where N is 
the number of criteria. For each nth subpopulation the 
criterion Fn is a fitness function. But, selection, crossover, 
and mutation are carried out for whole population. This 
method for fitness evaluation has the disadvantage related 
with the discrimination of Pareto solutions situated in the 
interior of the Pareto frontier. Indeed, mainly lexicographic 
solutions are preferred. An overview of evolutionary 

algorithms for multiobjective optimization problems is 
presented by Fonseca and Flaming [3].  
 
To avoid the discrimination of the interior Pareto solutions 
Goldberg introduced the ranging system for non-dominated 
individuals, which is similar to the Baker’s ranging system 
for one function [4]. In [1] the evolutionary algorithm for 
finding Pareto-optimal trajectories of the underwater 
vehicle is presented. At the beginning L randomly chosen 
trajectories from the given point A to B are generated. Each 
initial trajectory performs the coordinate constraint, 
according to the formula (3). 
 
Above constraints are satisfied, when an evolutionary 
algorithm is in progress. According to the considered 
vector criterion all trajectories in the population are 
evaluated. If F2(x)>0, then the trajectory x is non-feasible, 
and it gets the fitness function value f(x)=1. If the 
trajectory x is feasible, then the fitness function value is 
calculated, as below: 

1)()( ++−= Lxrxf .                       (15) 

where r(x) denotes the rank of a feasible solution. 

(a) If there are some feasible solutions in a 
population, then the Pareto-optimal trajectories are sought, 
and they get the rank 0. Then they are temporary 
eliminated from the population. From reduced population 
the new Pareto-optimal trajectories are found and get the 
rank 1. This procedure with increasing of the rank is 
repeated until the set of feasible solutions will be 
exhausted. That is why, all non-dominated solutions have 
the same rank and the same fitness to reproduction.  

 

VIII. CROSSOVER AND MUTATION 

 
During selection a new multicriteria competition approach 
is introduced because of its advantage to the proportional 
selection or the other standard selections. Two trajectories 
are randomly chosen to the competition with respect to 
their fitness. If the trajectory A dominates the trajectory B 
in the Pareto relationship R sense, then A is a winner, and 
A is recommended to a reproduction. The dominated 
trajectory B is not recommended. If both trajectories are 
non-dominated each to other, then they are accepted, too.  
Figure 2a) shows two trajectories chosen from a population 
to crossover. At the beginning, the point C was chosen 
from the trajectory points represented by gray dots with the 
same probability 1/M for each point in this trajectory. 
Then, the point D from the co-parent trajectory is matched. 
D is the closest point to C from the closer points to B. The 
first offspring is created from part (A,C) of the first parent 
trajectory, an additional edge (C,D), and from the part 
(D,B) of the second parent trajectory.  
 



BEGIN 
t:=0, set L the number of trajectories in population  
generate the initial population  of trajectories P(t) 
calculate the evaluation for each trajectory  in population 

)(),( tPxxF ∈  

calculate the rank for each trajectory  in population 
)(),( tPxxr ∈  

calculate the fitness for each trajectory  in population 

)(),( tPxxf ∈  

finish:=FALSE 
WHILE NOT finish DO 

BEGIN /* generation of a new population */ 

t:= t+1, ∅=:)(tP  

calculate probability of trajectory selection 

)1(),( −∈ tPxxps  

FOR L/2 DO 
BEGIN /* reproduction cycle */ 

♦ selection with multicriteria competition to obtain a 
potential parent pair (a,b) from population P(t-1)  

♦ crossovering a pair of parents (a,b) with the 
crossover propability pc  

♦ mutation of a pair of offspring (a',b' ) with the 
mutation propability pm 

♦ calculate the fitness for each trajectory offspring 
F(a'), F(b' ) 

♦ P(t):=P(t)∪(a',b'}  
END 

calculate the rank for each trajectory  in population 

)(),( tPxxr ∈  

calculate the fitness for each trajectory  in population 

)(),( tPxxf ∈  

IF (P(t) MHVW ]ELH*QD 25 t≥Tmax) THEN  finish:=TRUE 
END 

END 
 

Fig.4. An evolutionary algorithm for finding subset of 
Pareto-optimal trajectories 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. A crossover operator in the evolutionary algorithm 

for randomly chosen point C 
a) two parent trajectories, 
b) two offspring trajectories.  

A crossover of two accepted trajectories is carried out with 
the low probability from 0.1 to 0.2. If the crossover point is 
pm, then the first offspring is created from the first part 
trajectory of parent A and from the second part trajectory of 
parent B. The first part of trajectory starts from the point p1 
and finishes in pm. Similarly, the second part of trajectory 
starts from the point pm and finishes in pM .. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. A mutation operator in the evolutionary algorithm: 
a) a shift of a point on a trajectory, 
b) removing a point from a trajectory, 
c) insertion a point to a trajectory 

A mutation is carried out with the high probability from 
0.6 to 0.8. For randomly chosen trajectory several versions 
of mutation are taken.. The mutation changes elementary 
parameters of the trajectory such, as node coordinates or 
insert/delete node to satisfy constraints.  

On Figure 3, there are some examples of a mutation. 
A shift of a point on a trajectory can reduce the trajectory 
length, avoid a collision situation, or improve the 
smoothness of a trajectory. On Figure 3a), the point E is 
shifted to the randomly chosen position F from the non-
collision neighborhood of a point E. Then, two additional 
edges are inserted.  

Removing the point from trajectory can produce similar 
results as a point shift. On the fig. 3b), the point H is 
removed, and a new trajectory without a conflict with an 
obstacle is obtained. In some collision situation the 
insertion of a new point to a trajectory can be necessary as 
shown on the fig. 3c). Mutation operators can fail in some 
admissible trajectories, but in a population of trajectories 
greater chances have individual with higher rank in 
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Pareto-optimality sense. That is why, the Pareto-
suboptimal solutions are obtained after enough number of 
new generations.  
 
Figure 4 shows an evolutionary algorithm for finding 
Pareto-optimal trajectories with using like-Pascal notation.  

 

IX. SIMULATION RESULTS FOR UNDERWATER VEHICLE 

 
The multicriteria evolutionary algorithm was applied for 
finding trajectories of theoretical objects in different 
environments. Another approach based on models of 
neural networks was developed, too [1]. Let consider 
finding trajectory at the time t for the real object the 
underwater vehicle called Koral 100, which was designed 
by Technical University of GdD�VN. It can operate on the 
deep up 100 m with the maximal speed 1,5 meters per 
second. It uses five electrical engines. 
 
Its weight is 90 kilos and the size is 0,7 meters in each 
dimension. It is equipped with a board computer and a 
vision system consisted of a TV-camera, a photo-camera, 
and reflectors. It can penetrate water space in three 
dimensions. The vehicle can be controlled from the ship or 
it can work alone with using the board computer and the 
navigation system. The multiobjective optimization 
problem (11) can be adapted for the motion of the 
underwater vehicle by using trajectory x.    
 
The Pareto-optimal trajectory of the underwater vehicle 
model for a simulated water environment with some 
obstacles is presented in [1]. The evolutionary algorithm 
performed 250 new generations, and from the last 
population all trajectories were admissible. 4 trajectories 
were Pareto-optimal. Also, an evolutionary algorithm starts 
from different randomly chosen initial point, but after 
enough number of generations it reaches admissible 
trajectories, and the P-suboptimal trajectories can be found. 

 

X. CONCLUDING REMARKS 

 
Techniques for solving related multiobjective optimization 
problems can use the proposed evolutionary strategy “with 
plus” or the evolutionary algorithm. The presented 
approach seems to be very elastic for adaptation in the 
other cases.  
 
In the evolutionary algorithm some new mutation operators 
can be introduced to satisfy a local collision situations. 
Moreover, evolutionary strategies can be compared to 
evolutionary algorithms. A canonical genetic algorithm 
gave worse results, because it is more general and it do not 
use the knowledge related with the specific optimization 
problem. 
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