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In this paper, three evolutionary algorithms have been discussed for solving

three-criteria optimization problem of finding a set of Pareto-optimal program module
assignments. An adaptive evolutionary algorithm has been recommended for solving an
established multiobjective optimization problem. Moreover, a multi-criterion genetic
algorithm and an evolution strategy have been considered. Some numerical results have
been submitted.
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1. Introduction
Finding allocations of distributed program modules is a significant design problem
for a distributed computer system (Chu and Lan 1987). Program component
allotments may reduce the total time of a program execution by taking a benefit of
the particular properties of some workstations or an advantage of the load
computer states. Three criteria are utilized for a quality evaluation of the module
allocation: a processing load of the bottleneck machine, the cost of computers, and
the total performance of workstations.

Stone applied the efficient network flow algorithm for the minimization of the
operating cost of a distributed program execution in a two-computer system
(Stone 1977). If the number of computers is greater than 3 or the memory in
a computer is constrained, then the problem of the program completion cost
minimization is NP-hard (Bokhari 1987). But, if the structure of the module
communication can be a specific graph representation such as a tree or the
parallel-sequence graph, then efficient algorithms based on the shortest path
procedure can be exploited (Kafil and Ahmad 1998).

In this paper, three evolutionary algorithms for solving three-criteria
optimization problem of finding a set of Pareto-optimal assignments are discussed.
Finally, an adaptive evolutionary algorithm is recommended for solving an
established multiobjective optimization problem of program module assignments.

2. Model of parallel processing
A module can be activated several times during the program lifetime. With the
program module performing are associated some processes (tasks). In results, a set
of program modules { M1,...,Mv,...,MV}  is mapped into a set of tasks
{ T1,...,Tm,...,TM} . We assume each module is performed as one task.



Let us assume the module Mv is executed on several sorts of computers taken
from the set },...,,...,{ 1 �� πππ=Π . Workstations are dispensed to the nodes

from the set },...,,...,{ 1 ��    !
= . The computer in the node wi is selected

from the set },...,,...,{ 1 "# πππ=Π .

We assume one and only one computer should be allocated in each node. It
implies the computer allocation constraints, as follows:
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Because each program module is allocated to one node, then the module
allocation constraints are devised, as below:
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The below vector defines the assignment of program modules to computers:
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Restrictions (1) and (2) reduce the number of allotments x from 2I(V+J) to I VJ I .

3. Evaluations of program module assignments
The cost of the parallel program performance is the most common used measure
of an allowance evaluation. Another measure is a load of the bottleneck computer
(Kafil and Ahmad 1998). The workload Zi

+(x) of a computer allotted to the ith
node for the allocation x is provided by the subsequent formula:
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where
WYXZ – the overhead performing time of the vth module by computer πj,



[
\τ – the total communication time between the vth and the uth module.

A computer with the heaviest load Zi

+(x) is the bottleneck machine in the
system, and its workload is the critical value that should be minimized.

The weight of the bottleneck computer is analyzed, as below:
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The other measure of the module assignment is a cost of computers that can be
calculated according to the subsequent formula:
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where κj represents the cost of the computer πj.

The third measure of the module assignment is a total amount of computer
performance that can be calculated according to the following formula:
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where qϑ  represents the numerical performance of the computer sort πj .

A computer performance can be measured by an assumed benchmark for
performance evaluation of modern computer systems.

4. Multiobjective problem formulation
An optimal component allocation for the cost of the parallel program performing
does not assure the load balance for computers in some assignments, because the
workstation with the heaviest load might have a heavier consignment than another
bottleneck machine for the other program module allocation in a distributed
system. The workload of the bottleneck computer can be employed as an
assessment measure of an allotment quality in real-time systems or in systems,
where the minimization of a response time is required, too (Balicki 1999).

The relation r for finding Pareto-optimal solutions is a subset of s × tvu wherewyx{z
( | )} If ~ ∈ � , � ∈ � , and ���� �� ,1, =≤ , then the pair of evaluations

( �f��� )∈��� The definition of the Pareto relation respects the minimization of all
criteria. For the Pareto-optimal assignment ��� ∈� , there is no program module
allocation � ∈� such that (� ( � ), � (� *))∈�  and � ( � ) ��� (� *).



Let (X, F, P) be the multiobjective optimization problem for finding the
Pareto-optimal solutions. It can be established, as follows:

5. Adaptive genetic algorithm
Evolutionary algorithms are divided on genetic algorithm GA, genetic
programming, evolution strategies, evolutionary programming, and classification
systems (Michalewicz 1996).

A ranking procedure for non-dominated individuals was introduced to avoid
the prejudice of the interior Pareto alternatives by Goldberg (1989). If some
admissible solutions are in a population, then the Pareto-optimal individuals are
determined, and after that they get the rank 1. Subsequently, they are temporary
eliminated from the population. Next, the new Pareto-optimal alternatives are
found from the reduced population and they get the rank 2. The level is increased
and the procedure is repeated until the set of admissible solutions is exhausted.
Thus, all non--dominated individuals have the same reproduction fitness.

The fitness for a non-feasible solution is equal to the difference between the
maximal penalty � max in a population and the solution penalty. If �  is admissible,
then the fitness function value is estimated, as below:
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where r(x) denotes the rank of an admissible solution in the population.

The quality of attained solutions in optimization problems with one criterion
increases, if the crossover probability and the mutation rate are changed in an

1) X – an admissible solution set
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2) F – a vector quality criterion
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where F(x) = [Zmax(x), F2(x), )(
~

2 ·¸
] T for x∈X

Zmax(x) is calculated by (5),

F2(x) is calculated by (6),

F2(x) is calculated by (7),

3) P - the Pareto relation.



adaptive way proposed by Sheble and Britting (1995). Let this approach be
introduced to a multi-criterion genetic algorithm with ranking procedure (Fig. 1).

A proposed adaptive multiobjective genetic algorithm AMGA may be applied
for solving a spacious class of multicriteria optimization problems. Binary vectors
represent solutions in this algorithm. Let us discuss the adaptive changing of
a crossover probability ¹ c and a mutation rate º m. At the initial population, the
crossover probability is 1. A crossover operation supports the finding of a high-
quality solution area in the search space. It is important in the early search stage. If
the number of generations »  increases, the crossover rate decreases, according to

the formula .max/ ¼½¾À¿Á −=  where Â max is a maximal number of generations

Figure 1: An adaptive multi-criterion genetic algorithm AMGA

A mutation rate is 0 at the initial generation. It is an operation that can support
finding a local optimal solution. The value of pm increases with respect to the

formula 1max/05.0 −= ÃÄÅ ÆÇ , exponentially. In the final population, 5.13% bits are

chosen to a bit mutation.

6. Convergence to Pareto front
The AMGA can be used for solving several multiobjective optimization problems,
where the set of P-optimal solutions is searched. In particular, the AMGA can be

BEGIN
t:=0, set the even size of population L
randomly generate initial population P(t)
calculate ranks r(x) and fitness )(),( ÈÉÉÊ Ë

∈
finish:=FALSE
WHILE NOT finish DO
BEGIN /*  new population * /

t:= t+1,
 

∅=:)( ÌÍ
calculate selection probabilities

 )1(),( −∈ ÎÏÏÐ Ñ Ò
FOR L/2 DO
BEGIN /*  reproduction cycle * /

• ;1:;: maxmax /05.0/ −== − ÓÔÕÓÔÖ ×Ø×Ø
• proportional selection of potential parent pair (a,b) from P(t-1)
• crossover of a parent pair (a,b) with the adaptive crossover rate p

c

• bit mutation of an offspring pair (a’,b’) with the mutation rate p
m

• P(t):=P(t)∪(a’,b’}
END
calculate ranks r(x) and fitness )(),( ÙÚÚÛ Ü

∈
IF (P(t) converges OR t≥T

max
) THEN finish:=TRUE

END
END



applied for the problem (8). Simulation results corroborate that it is capable for
finding the set of Pareto-suboptimal solutions.

The quality of obtained set of solutions by the AMGA is measured by the level
of convergence to the Pareto front that is a closeness measure for the obtained
efficient points to the known Pareto points { Ý 1Þàß 2áãâäâäâäáæå�ç } . The level è of
convergence is a particular measure for module assignment problems, only. It can
be use for instances for which the Pareto points may be determined by an
enumerative technique.

Let an algorithm finds the point (éëê 1, ì�í 2, îëï 3) for the cost ð�ñ 2 . It has the same
cost of computers as the ò th Pareto result (ó�ô 1, õ�ö 2, ÷ùø 3). The distance between

these points is ( ) ( ) .2
33
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 is the maximum load of the bottleneck computer for the instance of

problem (8), and min
3


�
 is the minimum performance of computers for the

instance of problem (8). The relative level of convergence to the Pareto front is
calculated, as follows:
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The smaller value of the convergence level, the better front of non-dominated
module assignments. An average of these deviations over 20 runs is calculated as

the measure �  for comparing different algorithms. Thus, it is clear that an
algorithm with the smaller average level is better, in terms of its ability to obtain
Pareto-optimal solutions.

7. Adaptive evolutionary algorithm
An overview of evolutionary algorithms for multiobjective optimization problems
is submitted in (Zitzler ���������  2000). Some specific knowledge about the
considered optimization problem is respected in an evolutionary algorithm
(Michalewicz 1996). Outcomes are usually much better for evolutionary
algorithms.

In the adaptive multicriteria evolutionary algorithm AMEA, the preliminary
population is constructed to satisfy constraints (1) and (2) by introducing integer
representation of chromosomes, as follows:
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where 1for == !"$#!" %&'
 and 1== ππ ( )( *+, -/.10

. Besides, 23546 ≤≤1  and

.1 78:9
≤≤ π

The crossover point is randomly chosen between coordinates in X. Mutation is
the random swap of the integer value by another one from a feasible discrete set. If

the gene ;<=  is randomly taken for mutation, then the positive integer value is

taken from the set }.,...,1{ >  If the gene π?@  is randomly chosen, then the value is

selected from the set }.,...,1{ A  Mutation rate is constant and it equals to 1/l,

where l – the length of chromosome.
In the AMEA, the two-weighted binary tournament has been development. In

the two-weight tournament selection, the roulette rule is carried out twice. If two
potential parents (a, b) are admissible, then a dominated individual is eliminated.
If both solutions are non-dominated each other, then they are accepted. If two
potential parents (a, b) are non--admissible, then an alternative with the smaller
penalty is selected.

Let the instance be considered, where there are 10 program modules, 2 nodes,
and 5 computer types. It induces 30 binary decision variables and 1 073 741 824
binary program module assignments. Zmax is a value from [26;75] [time unit], F2 is

from [2, 10] [money unit], and 2

~B
 from [200, 600] [Mflops].

The AMEA gives better results than the standard multicriteria evolutionary
algorithm SMEA (Balicki 1999) and much better than the AMGA (Fig. 2). After
200 generations, an average level is 1,3% for the AMEA, 3% for the SMEA, and
43% for the AMGA. 30 test initial populations were prepared, and each algorithm
was started 30 times from these populations.
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Figure 2: Convergence to Pareto front for the AMEA and the AMGA
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In the AMGA, the solutions are coded as a binary vector (3). It causes the
search space consists of 1 073 741 824 elements for the test instance. Standard
crossover and bit mutation may result in unfeasible offspring. There are three
reasons for improving quality of obtained solutions by the AMEA. For integer
constrained coding of chromosomes, there are 12 decision variables in the test
optimization problem. The crossover operation and the mutation ensure the search
space consists of 25 600 feasible solutions, only. Moreover, the two-weighted
binary tournament permits of consideration both feasible and infeasible solutions.

8. Evolution strategy
An extension of evolution strategy towards multiobjective optimization has been
introduced by Kursawe (1991). A chromosome in the multicriteria evolution
strategy MES for problem (8) consists of two main parts, as follows:

),,( σMM
= (12)

whereN
– the integer decision variable vector given by (11),

σ – the standard deviation vector for OQP
The new population is created from the µ individuals in the current generation

by 3 steps. In the step 1, λ individuals are randomly chosen from the current
population to the temporary parent set. In the step 2, crossover is carried out by
the gene recombination between randomly chosen module assignments in a pair
from the parent pool. Each mth gene is or mth gene from the parent A or mth gene
from the parent B.

The temporary offspring set is transformed by mutation, in the step 3. It
changes a value of each decision variable Xm of each offspring by adding the
random value ∆xm that represents a random variable with a normal distribution
N(0,σm). ∆xm is rounded to the integer number. Each new decision variable Xm is

bounded by one of the equations RS5TU ≤≤1  and .1 VWYX
≤≤ π  Next, the

standard deviations are changed by the similar way. An extended set of µ
individuals from the old population and λ mutated offspring is narrowed to the µ
individuals by an elitist selection according to the values of a fitness function. For
the benchmark problem, this evolution strategy gives a bit worse products as the
AMEA (Fig. 3).

For the benchmark instance, a maximal level of convergence to Pareto set was
6,4% for the MES versus 5,3% for the AMEA, but the average number of proper
optimal solutions was 45,3% for the MES versus 41,6% for the AMEA. An
average level of convergence, an maximal level, and the average number of proper
optimal solutions became worse, if the number of modules, number of nodes, and
number of computer types increase. An average level of convergence to Pareto set
was 38,6% for the MES versus 37,3% for the AMEA, if the instance includes 50
program modules, 4 nodes, 5 computer types, and 220 binary decision variables.



9. Concluding remarks
The adaptive evolutionary algorithm AMEA and the evolution strategy MES are
capable techniques for finding program module allocations that minimize
a workload of the bottleneck computer, the cost of machines and maximize
a performance of system.

Introducing two additional criteria can modify an established problem: an
overhead cost of program execution and the probability of program performing. In
this extended approach, the scheduling of tasks for each computer should be
considered (Weglarz 1998).
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