

Real-Parameter Genetic Algorithms for Finding
Multiple Optimal Solutions in Multi-modal


Optimization


Pedro J. Ballester and Jonathan N. Carter


Imperial College London, Department of Earth Science and Engineering, London
SW7 2AZ, UK


Abstract. The aim of this paper is to identify Genetic Algorithms
(GAs) which perform well over a range of continuous and smooth multi-
modal real-variable functions. In our study, we focus on testing GAs
combining three classes of genetic operators: selection, crossover and re-
placement. The approach followed is time-constrained and thus our stop-
ping criterion is a fixed number of generations. Results show that GAs
with random selection of parents and crowding replacement are robust
optimizers. By contrast, GAs with tournament selection of parents and
random replacement perform poorly in comparison.


1 Introduction


Genetic Algorithms (GAs) have proven to be a useful approach to address a wide
variety of optimization problems. However, different problems usually require
different combinations of GA parameters (population size, number of genera-
tions, choice of genetic operators, etc.). Unfortunately, GA parameters interact
in complex ways, making the task of finding a suitable parameter set not always
straightforward. In addition, a GA which excels with a given class of problems
might yield poor results when applied to another class (Hart and Belew [11]).


This situation has given rise to the need for studies providing guidance in
setting the GA parameters for different class of problems. As taking into account
all the parameters is impractical, one usually focus on two or three parameters
and try to understand their interactions. For instance, Deb and Agrawal [4], using
a fixed set of binary genetic operators, studied the influence of population size,
crossover probability and mutation probability over several classes of functions,
which are known to be difficult to optimise.


The aim of this paper is to identify GAs which performs well over a specific
class of functions: continuous, smooth, multi-modal real-variable functions. We
say that a GA performs well if it has a good chance of finding the global min-
imum (we restrict without loss of generality to the minimization case). We are
also interested in GAs that are able to find alternative good minima while reach-
ing the global minimum too. There are two main reasons to set this secondary
goal. First, real-world functions do not come without errors, which distort the
fitness landscape. Therefore, a secondary minimum might actually be the global
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one. Second, the optimal solution represented by the global minimum might
be impossible to implement from the engineering point of view. In this case, a
secondary good solution can be used as an alternative.


In our study, we focus on testing the performance of GAs combining three
classes of genetic operators: selection, crossover and replacement. The approach
followed is time-constrained and thus our stopping criterion is a fixed number of
generations.


We arrange the rest of the paper as follows. In section 2, we describe the
problem of multi-modal optimisation and present a set of test functions. Section 3
describes the structure of the GAs tested in this paper. In section 4, we explain
the experimental setup introducing a performance measure. Results are discussed
in section 5. Lastly, we present our conclusions in section 6.


2 GAs in Multi-modal Optimisation


Most of the traditional approaches to optimisation such as gradient-based meth-
ods are local optimisers. These sort of methods find the minimum of the basin
of attraction in which the initial point is situated. Multi-modal optimisation is
characterized by having a high number of attractors. Therefore, it is unlikely
that the initial point lies within the basin containing the global minimum.


GAs are known to be a particularly good approach for multi-modal opti-
misation. Unlike local optimisers, GAs are stochastic approaches and thus are
not strongly influenced by the initial population. The choice of GA parameters
determines the balance of exploration of search space and the exploitation of
information contained in the population. It is the adequacy of this balance that
leads to the successful application of a GA.


Traditionally, the success of a GA run is verified by checking if there are
individuals within a tight ε-neighbourhood of the minimum. By contrast, we
are interested in finding the basin of attraction that contains the minimum.
The motivation behind this definition of success is that of reducing the number
of function evaluations needed. In practice, it is normally faster to find the
minimum basin and then apply a fast local optimiser. This is a useful approach
when the fitness evaluation carries a high computational cost.


Our main purpose is to find a robust optimiser for continuous, smooth, multi-
modal real-variable functions. A particular GA is said to be robust if performs
well on a given class of functions. As we cannot possibly consider every function
in a class, we restrict our tests to a set of functions which represent the class.
These test functions are defined in Figs. 1 to 6. The right-side plots corresponding
to their two-dimensional views have been inverted in all cases to allow a better
visualisation.


Each of these test functions has many local minima and one single global
minimum. Functions 1, 2 and 3 are taken from previous studies [1] [8], while
functions 4, 5 and 6 were constructed to be non-symmetric and composed by
subfunctions which do not share minima with the whole function.
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Fig. 1. F1(x1, x2) = x2
1 + 2x2


2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7


Fig. 2. F2(x1, x2) = x2
1 + 2x2


2 − 0.3(cos(3πx1) cos(4πx2)) + 0.3


Fig. 3. F3(x1, x2) = x2
1 + 2x2


2 − 0.3 cos(3πx1 + 4πx2) + 0.3


3 Real-Parameter GAs


In this section, we describe the genetic operators used in our study. We aim
to investigate the effect of three GA parameters (choice of selection scheme,
replacement scheme and crossover operator) on the performance in multi-modal
optimisation.
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Fig. 4. F4(x1, x2) =
∑2


j=1(x1 − dj)2 + (x2 − dj)2 − cos(π((x1 − dj)2 + (x2 − dj)2)) + 1
with d1 = 0 and d2 = 0.75.


Fig. 5. F5(x1, x2) =
∑2


j=1(x1 − dj


2 )2 + (x2 − dj


2 )2 − cos(π((x1 − dj)2 + (x2 − dj)2)) + 1
with d1 = 0 and d2 = 0.75.


Fig. 6. F6(x1, x2) =
∑2


j=1(x1 − dj


2 )2 + (x2 − dj


2 )2 − cos(π((x1 − dj)2 + (x2 + dj)2)) + 1
with d1 = 0 and d2 = 0.75.


It has been discussed elsewhere [2] that real-parameter GAs are ideally suited
to handle problems in a continuous search space. The encoding scheme is that
the genome of each individual is composed of two real variables (x1, x2), whose
values represent a location on the search space. In order to avoid favouring a
particular solution, the initial population is generated at random within the
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range −10 ≤ x1, x2 ≤ 10. All the functions have their global minima within this
range. An individual fitness is given by its function value.


In our GA architecture, a population of individuals enter the following loop
for a fixed number of generations. First, three groups of parents are selected
among the actual population. Second, each group of parents breeds two children,
giving place to an offspring population of six new individuals. Lastly, offspring
and parent populations are combined following a given replacement scheme to
form a new population. We use a population size of 20, and terminate the process
after 100 generations. This results in a total of 620 function evaluations.


We now present the different GA operators that we test in this paper:


3.1 Selection Schemes


We test two schemes: random (S1) and tournament (S2) selection [9]. In each
scheme we generate three groups of parents. The parents within any of the groups
are different from each other, although an individual may occur in more than one
group. The number of parents within a group depends on the crossover operator
used.


In random selection, the three groups of individuals are selected at random
from the parent population. Whereas in tournament selection, two members of
the parent population are picked at random and the fittest among them selected
as a parent. The latter procedure is repeated until the required number of parents
have been selected.


3.2 Crossover Schemes


Each of the three groups of parents produce two children, through the crossover
operator, which are bred independently. This results in six new individuals per
generation, which is an arbitrary choice and no claim about its optimality is
made. Crossovers for real-parameter GAs have the interesting feature [2] of hav-
ing tunable parameters that can be used to modify their exploration power.
Thus, we use three different arbitrary parameter values for each crossover. The
following four crossover operators are tested:


BLX. The Blend crossover (BLX) operator [7] randomly selects a value for each
offspring gene yi, using a uniform distribution within the range


[x(1)
i − α(x(2)


i − x
(1)
i ), x


(2)
i + α(x(2)


i − x
(1)
i )]


where x
(1)
i and x


(2)
i are the parental genes, and α is the tunable parameter, we


use α ∈ {0.1, 0.5, 10}, the higher the value of α the more explorative the search.


SBX. We use the Simulated Binary crossover (SBX) operator [3] [5] with in-
dependently bred children. Therefore, for each children, we choose at random
between the equally likely expressions yi = 0.5((1 + βi)x


(1)
i + (1 − βi)x


(2)
i ) and
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yi = 0.5((1 − βi)x
(1)
i + (1 + βi)x


(2)
i ), where yi is the offspring gene, x


(1)
i and


x
(2)
i are the parental genes, and βi a parameter. Then, we generate, for each


coordinate, a second random number ui ∈ [0, 1] with βi given by


βi =


{
(2ui)


1
η+1 0 < ui ≤ 0.5


(1/2(1 − ui))
1


η+1 0.5 < ui ≤ 1


where η is the tunable parameter. A restricted search is achieved with a large
value of η (we use η ∈ {0.1, 10, 150}). A plot of the distribution of children is
given by Fig. 7.


vSBX. In SBX, children have zero probability of appearing in some regions of
the parameter space, as shown in Fig. 7. A version of the latter crossover, called
vSBX, is proposed that does not exclude any regions of the parameter space,
while preserving the good SBX properties. This may allow a better exploration
of the search space. In vSBX, you generate a random number u ∈ [0, 1] to make
the two following choices (only one value of u is needed per child). First, you
choose between


y
(1)
i =


{
0.5((1 + β1i)x


(1)
i + (1 − β1i)x


(2)
i ) 0 < u ≤ 0.5


0.5((1 − β1i)x
(1)
i + (1 + β1i)x


(2)
i ) 0.5 < u ≤ 1


with β1i = (1/2ui)
1


η+1 . Second, you choose between


y
(2)
i =


{
0.5((3 − β2i)x


(1)
i − (1 − β2i)x


(2)
i ) 0 < u ≤ 0.5


0.5(−(1 − β2i)x
(1)
i + (3 − β2i)x


(2)
i ) 0.5 < u ≤ 1


with β2i = (1/2(1 − ui))
1


η+1 . ui is a second random number that is used to
choose between y


(1)
i and y


(2)
i . The latter provides the offspring gene value yi. A


restricted search is achieved with a large value of η (we use η ∈ {0.1, 10, 150}).


UNDX. The Unimodal Normally Distributed crossover (UNDX) operator [13]
changes every gene simultaneously by making use of a multivariate normal dis-
tribution. UNDX is unusual in that it needs three non-identical parents. The
first two parents are used to define a dominant axis through the search space
of real numbers. The crossover is carried out on a co-ordinate system that is
rotated to coincide with this dominant axis. The distance between the two par-
ents is used to define the standard deviation of a normal distribution along this
dominant axis. The first parameter, a, is introduced as a non-negative real num-
ber multiplying the latter standard deviation. The distance of the third parent
from this dominant axis is used to define the standard deviation used in that
direction. The second parameter, b, is a non-negative real number multiplying
the latter standard deviation. The reader is referred to the original paper (Ono
and Kobayashi [13]) for details of the implementation.
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Fig. 7. Children bred from parents x(1) = (1, 1) and x(2) = (3, 3) for a) SBX (η = 1)
and b) vSBX (η = 1)


The authors recommend a = 1 and b = 0.5. We keep the latter ratio between
these two parameters, while changing the value of a. We test UNDX with pa-
rameter duples (a, b) equal to (1, 0.5), (0.5, 0.25) and (0.25, 0.125), with the first
(1, 0.5) carrying the higher exploration and (0.25, 0.125) the lower one.


3.3 Replacement Schemes


Five replacement schemes are tested: random (R1), tournament (R2), modified
probabilistic crowding (R3), classic probabilistic crowding (R4) and determinis-
tic crowding (R5). In each of them, the offspring population is combined with
the parent population to form a new one for the next generation. This new
population is constructed to have the same size as the original population.


In Random replacement, six individuals from the current population are se-
lected at random and completely replaced by the offspring population.


Tournament and crowding schemes operate in two steps. First, a part of the
parent population is preselected at random. The size of this preselected group
is taken as two in this work. Thereafter, the chosen scheme is followed to find
out whether the offspring replaces one of the preselected individuals or not. The
described operation is repeated for every offspring.


In the tournament scheme [10], the least fit of the preselected group competes
with the offspring. Then, the fitter among them remains in the population. In the
deterministic crowding [6], the preselected individual with the lower euclidean
distance to the offspring competes with it. The fitter of them remains in the
population.


The probabilistic crowding scheme [12] identifies the closest preselected in-
dividual (xcst) to enter a probabilistic tournament with the offspring (xofp),
with survival likelihoods given by p(xofp) = f(xofp)/(f(xofp) + f(xcst)) and
p(xcst) = f(xcst)/(f(xofp) + f(xcst)).


Note that if the global minimum has a very high value with respect to the
differences in fitness across the population, these likelihoods would be very sim-
ilar in all cases. The modified probabilistic crowding is introduced to avoid this
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situation. It operates with survival likelihoods p(xofp) = f(xofp)/(f(xofp) +
f(xcst) − 2fworst) and p(xcst) = f(xcst)/(f(xofp) + f(xcst) − 2fworst), where
fworst is the fitness of the worst individual in the offspring and preselected group.


4 Experimental Setup


We define a ‘GA experiment’ by the ith selection scheme Si (see section 3.1),
the jth replacement scheme Rj (see section 3.3), the kth crossover operator Ck


(see section 3.2) and the lth objective function Fl (see figures 1, 2, 3, 4, 5 and
6). As an experiment has some dependence on the initial conditions, we repeat
each possible experiment with a different initial population (50 different sets of
initial population are used).


We need to set boundaries to the main basins of attraction in order to evalu-
ate the success of a run. This is done by adjusting an ellipse to the projection of
the basin onto the search space. Thus, an individual lies within a basin defined
by (c1, c2, θ, a, b) if


((x1 − c1) cos θ + (x2 − c2) sin θ)2


a2 +
((x2 − c2) cos θ − (x1 − c1) sin θ)2


b2 ≤ 1


(1)


where a and b are the ellipse semiaxis, (c1, c2) is the ellipse center and θ is the
angle between the ellipse and search space coordinate systems. Figure 8 shows
the contour of function 1 with the global basin (represented by the central ellipse)
and a set of basins containing the best alternative minima. In table 1 are the
basins used for all of the test functions.


Fig. 8. Basins containing the best minima of function 1.


Finally, we define some performance indicators to study the success of each
experiment. First, we define the primary success ratio (psr) for an experiment
(Si, Rj , Ck, Fl) as one, if at least one individual in the final population is within
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Table 1. Defining values of each of the marked basins. The name of a basin has a G
if includes the global minimum or L if includes a local minimum. θ is in radians.


F1 F2 F3 F4 F5 F6


G L1 L2 L3 L4 G L1 L2 L3 L4 G L1 L2 G L1 L2 G L1 G L1
c1 0 -.6 0 .6 0 0 -.3 -.3 .3 .3 0 -.35 .35 .37 -.15 .9 -.12 .35 -.03 .41
c2 0 0 .47 0 -.47 0 -.2 .2 .2 -.2 0 -.25 .25 .37 -.15 .9 -.12 .35 .22 -.32
θ 0 0 0 0 0 0 0 0 0 0 .9 .9 .9 π/4 π/4 π/4 π/4 π/4 -.89 -.89
a2 .35 .22 .22 .22 .22 .2 .15 .15 .15 .15 .2 .2 .2 .4 .3 .3 .3 .35 .3 .35
b2 .3 .15 .15 .15 .15 .25 .1 .1 .1 .1 .9 .9 .9 .5 .8 .8 .8 .45 .85 .45


the basin containing the global minimum and zero otherwise. As we are also
interested in multiple solutions, we introduce the secondary success ratio (ssr)
for an experiment (Si, Rj , Ck, Fl) as one, if psr = 1 and, in addition, at least one
individual in the final population is within any of the marked alternative basins
and zero otherwise.


5 Results


In this section, we present performance results of the several GA simulations
carried out.


In order to investigate the performance of each crossover, let us take the
case of the indicator primary success ratio (psr) as example and proceed as
follows. First, for each of the 12 crossover operators Ck considered we sum over
all possible Si, Rj and Fl to dissipate the influence of selection, replacement
and function over the crossover operator performance. Thereafter, we divide by
the number of available schemes to normalise the resulting number (we do not
include the case of random selection combined with random replacement). This
procedure is contained in the following expression


psr(Ck) =
1


(NSNR − 1)NF


∑
i


∑
j


∑
l


psr(Si, Rj , Ck, Fl) (2)


As each experiment was run 50 times, we can assess the uncertainty in equation 2
by providing an average and an standard deviation. Figure 9 shows the average
of both psr and ssr (represented by ‘x’) and their corresponding estimation of
uncertainty as twice the standard deviation (represented as a vertical interval).
We also trace an horizontal line in each plot with the value of the highest average
minus its standard deviation in order to allow an easier comparison. From Fig. 9,
we see that those operators with the higher exploration power in their respective
groups (ie. BLX-10, SBX-0.1, vSBX-0.1 and UNDX-(1,0.5)) outperforms the rest
both in terms of psr and ssr. This result suggests that multi-modal optimisation
requires extensive searches in order to find good minima.


Let us now compare the available combinations of selection and replacement
schemes stated at the legend of Fig. 10. For each of these combinations (except
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Fig. 9. Average and standard deviation of both performance indicators for each
crossover.


again for combination one), we now dissipate the influence of crossover and
function as follows


psr(Si, Rj) =
1


NCNF


∑
k


∑
l


psr(Si, Rj , Ck, Fl) (3)


Figure 10 shows the average and standard deviation over 50 different realisa-
tions of each available combination. It is observed that the GA with tournament
selection and random replacement (combination 6) has the lowest probability of
finding the global minimum. In addition, it does not perform well in finding more
than one good minima, as we see from its ssr value. By contrast, random selec-
tion of parents combined with crowding replacement strategies (combinations 3,
4 and 5) seems to be more advisable approach for the class of problems we are
dealing with. On the other hand, our proposed modified probabilistic crowding
has a similar performance to the classical probabilistic crowding. Lastly, combi-
nations 3, 4 and 5 perform better than 8, 9 and 10, which might be caused by
too much exploitation in the latter group. Next, we want to study the perfor-
mance of each GA implementation individually. Hence, for each combination of
selection, crossover and replacement, we sum the indicator value over all possible
functions as described in equation 4


psr(Si, Rj , Ck) =
1


NF


∑
l


psr(Si, Rj , Ck, Fl) (4)


Thereafter, we calculate the indicator average and standard deviation for
each of these tripartite combinations. This operation leads to two remarkable
findings. For all of the crossover operators, the combination tournament selection
(S2) and random replacement (R1) gives poor results. On the other hand, the
highest psr (0.997±0.024) and ssr (0.847±0.138) is achieved by S1, R3 and C12.
Followed by S1, R5 and C12, with psr=0.993 ± 0.033 and ssr=0.810 ± 0.151.
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Fig. 10. Average and standard deviation of performance indicators for each combina-
tion of selection and replacement.


It is worth noting that all these results might depend on the number of gen-
erations. For instance, the GA with the best performance after 100 generations
might be outperformed by another as the number of generations increase. This
situation would be due to distinct convergence rates. Also, none of the imple-
mented GAs is expected to indefinitely maintain subpopulations. Therefore, ssr
would eventually reach the zero value, again at different rates for each GA.


In order to examine this question, we repeated our experiments with 300
generations (1820 function evaluations). Our main results are very similar to
those with 100 generations. In general, all psr are marginally improved while
ssr undergoes a large drop. Specifically, S2 and R1 has again the worst psr for
most crossovers (all except C11 and C12). The highest performance (psr=1 and
ssr=0.150 ± 0.118) corresponds still to S1, R3 and C12, but now is shared with
S1, R4 and C12 (psr=1 and ssr=0.567 ± 0.165). These two followed by S1, R3
and C12 (psr=0.997 ± 0.024 and ssr=0.233 ± 0.154), which previously obtained
the second position.


6 Conclusions


Based on the set of experiments carried out, we arrive to the following conclusions
for the multi-modal function optimisation problem:


– GAs using crossover operators with the highest search power obtain the best
performance.


– GAs with tournament selection of parents and random replacement are not
recommended because they have a poor performance.


– GAs with random selection of parents and crowding replacement are robust
optimisers for this class of functions. In addition, they have a good chance
of finding alternative good minima.
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In this work, the number of new individuals per generation is fixed. We
consider that future work analysing the influence of this variable is worthwhile.
In addition, we plan to reproduce this benchmark for multi-modal functions in
higher dimensions.
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