

 


 


Abstract  Reactive Power Compensation in Electric Systems 
is usually studied as a constrained Single-objective Optimization 
Problem where an objective function is a linear combination of 
several factors, such as, investment and transmission losses. At 
the same time, constrains limit other parameters as reliability 
and voltage profile. 


This paper presents a new approach using Multi-objective 
Optimization Evolutionary Algorithms. It proposes a variant of 
the Strength Pareto Evolutionary Algorithm (SPEA) that 
independently optimizes several parameters, turning most 
traditional constraints into new objective functions. That way, a 
wide set of optimal solutions, known as Pareto set, is found 
before deciding which solution best combines different features. 


Several sets of solutions calculated by different methods are 
compared to a Pareto set found with the proposed approach 
using appropriate test suite metrics. Comparison results 
emphasize outstanding advantages of the proposed 
computational approach, such as: ease of calculation, better 
defined Pareto Front and a larger number of Pareto solutions. 
 


Index Terms  Reactive Power Compensation, Multi-
objective Optimization, Evolutionary Algorithms. 
 


I. INTRODUCTION 
EACTIVE Power Compensation is commonly addressed as 
a constrained Single-objective Optimization Problem [1-


3]. It basically consists in determining an adequate location 
and size of shunt capacitor/reactor banks. In this context, the 
objective function is a linear combination of several factors, 
such as: investment and transmission losses, subject to 
operational constrains such as reliability and voltage profile 
[4]. Traditional Single-objective Optimization Algorithms 
usually provide a unique optimal solution. On the contrary, 
Multi-objective Optimization Evolutionary Algorithms 
(MOEA) independently and simultaneously optimize several 
parameters turning most traditional constraints into new 
objective functions. This seems more natural for real world 
problems where choosing a threshold may seem arbitrary [5]. 
As a result, a wide set of optimal solutions (Pareto set) may be 
found. Therefore, an engineer may have a whole set of 
optimal alternatives before deciding which solution is the best 
compromise of different (and sometimes contradictory) 
features. This approach has already been treated as a Multi-
objective Optimization Problem (MOP) with two conflicting 
objective functions [6]. 
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To solve the Reactive Power Compensation Problem, this 
paper presents a new approach based on the Strength Pareto 
Evolutionary Algorithm (SPEA) [7], which is a MOEA with 
an external population of Pareto Optimal solutions that best 
conform a Pareto Front, provided by a clustering process that 
saves the most representative solutions. 


 


II. MATHEMATICAL FORMULATION 
For the purposes of this paper, the following assumptions 


where considered in the formulation of the problem: 
 


• shunt-capacitor/reactor bank cost per MVAr is the same 
for all busbars of the power system;  


 


• power system is considered only at peak load. 
 


Based on these considerations, four objective functions Fi 
(to be minimized) have been identified [4, 8]: F1 and F2 are 
related to investment and transmission losses, while F3 and F4 
are related to quality of service. The objective functions to be 
considered are: 


 
F1: Investment in reactive compensation devices 
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s.t.: F1  F1m ; 
 
where: F1 is the total required investment; F1m is the 


maximum amount available for investment; Bi is the 
compensation at busbar i measured in MVAr; Bm is the 
absolute value of the maximum amount of compensation in 
MVAr allowed at a single busbar of the system; α is the cost 
per MVAr of a capacitor bank; β is the cost per MVAr of a 
reactor bank and n is the number of busbars in the electric 
power system. 


 
F2: Active power losses 


 
02 ≥−= lg PPF                (2) 


 
where: F2  is the total transmission active losses of the 


power system in MW; Pg is the total active power generated 
in MW and Pl  is the total load of the system in MW. 
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F3: Average voltage deviation 
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where: F3 is the per unit (pu) average voltage difference; Vi is 
the actual voltage at busbar i (pu) and Vi* is the desired 
voltage at busbar i (pu). 


 
F4: Maximum voltage deviation 
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where F4 is the maximum voltage deviation from the desired 
value (pu); nℜ∈V is the voltage vector (unknown) and 


nℜ∈∗V  is the desired voltage vector. 
 


In summary, the optimization problem to be solved is the 
following: 


 
[ ]4321min FFFF=F         (5) 


 
where 
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is known as objective vector, 
subject to mFF 11 ≤ and the load flow equations [9]: 
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where: Vk is the voltage magnitude at node k; Yki is the 


admitance matrix entry corresponding to nodes k and i; δk is 
the voltage phase angle at node k; θki is the phase admitance 
matrix entry corresponding to nodes k and i; Pk  is the active 
power injected at node k; Qk  is the reactive power injected at 
node k. 


To represent the amount of reactive compensation to be 
allocated at each busbar i, an unknown vector B, known as 
decision vector [7], is used to indicate the size of each 
reactive bank in the power system, i.e.: 
 


[ ] miin BBBBBB ≤ℜ∈= , , 21B     (7) 


 
The set of solutions of a multi-objective optimization 


problem consists of all decision vectors B for which the 
corresponding objective vectors F can not be improved in any 
dimension without degradation in another. This set of 
decision vectors are known as Pareto Optimal, represented as 
P. The corresponding set of objective vectors F calculated 
using equations (1) to (4) conform a set known as Optimal 
Pareto Front, denoted PF [7]. 


Because the true Pareto Optimal Set (termed Ptrue), with its 
corresponding PFtrue, are not completely known in practice 
without extensive calculation (computationally not feasible in 
most situations), it would be normally enough for practical 
purposes to find a known Pareto Optimal Set, termed Pknown, 
with its corresponding Pareto Front PFknown, close enough to 
the true optimal solution [5]. 


 


III. PROPOSED METHOD 
A new approach based on the Strength Pareto Evolutionary 


Algorithm was developed for this work. This method, closely 
related to Genetic Algorithms [10], is based on generating a 
stored External Population composed by the best known 
individuals B of a general evolutionary population. This 
external group of solutions conforms Pknown, available at each 
moment of the computation, i.e., the best known 
approximation to Ptrue. The original SPEA evaluates an 
individual’s fitness depending on the number of decision 
vectors it dominates in an evolutionary population, i.e., 
decision vectors that are not better in any objective function 
Fi, but with a worse objective function Fi for at least one 
value of i.  


SPEA preserves population diversity using Pareto 
dominance relationship and incorporating a clustering 
procedure in order to reduce the nondominated set without 
destroying its characteristics. In general, cluster analysis 
partitions a collection of m elements into g groups of 
relatively homogeneous elements, where g < m, selecting a 
representative individual for each of the g clusters. That way, 
a fixed number of g individuals may be maintained in the 
external population preserving the main characteristics of the 
Pareto Front [7]. 


An important issue with SPEA is its converge property, 
assured by Theorem 4 proved in [5], a characteristic not 
always present in other MOEAs. Consequently, the algorithm 
implemented for this work is based on the original SPEA [7], 
but differs from it in the following aspects: 


 
• Heuristic Initialization. A special heuristic method is used 


to generate the initial population in order to obtain 
individuals electrically well compensated. The proposed 
heuristic is based on encouraging compensation at busbars 
with large number of branches and voltage profile far 
from the desired value. This is done by using a method 
summarized as follows: 
a. Choose a total amount of compensation Btot. 
b. For each busbar i of the system, calculate a factor Ki 
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using the following expression: 
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where il is the number of branches connected to node i. 
Ki = 0 indicates that no reactive compensation is 
heuristically assigned to busbar i. 


c. Normalize Ki using: 
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d. Compensate each busbar i with Bi calculated as 
follows: 


 


totii BKB ′=  
 


• Local Optimization. A special heuristic technique is 
implemented to improve individuals based on determining 
an adequate search direction using the power flow 
mismatch expression [4]: 
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From (8) and neglecting 3J  as well as the non-diagonal 


elements of { }
ij


J 44 =J , the following expression is 


derived: 
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where iQ∆ is the amount of reactive compensation to be 
added at busbar i.  


 
• Stop criterion. Computation is halted when no new 


nondominated solution is found to dominate an individual 
of the external population for a given number Nstop of 
successive generations. 


 
• Two External Populations. If only one external population 


is used, it is possible:  
 


a. to save all found Pareto solutions, but this population 
may become too large and the evolutionary population 
looses genetic importance in the search process; or 


 


b. to loose found solutions using clustering to maintain a 
given number g of external solutions (original SPEA 
approach). 


 


In this new proposal, two external populations are stored, 
one with all found nondominated solutions and another 


with a maximum number g of nondominated individuals, 
fixed by clustering, that participates in the ordinary 
evolutionary process. That way, the external population 
used in the evolutionary process does not diminish the 
influence of the evolutionary population and no optimal 
solution is lost. Note that this second external population 
may be stored on disk, because it does not participate in 
the evolutionary process. 


 
• Freezing. Inspired in Simulated Annealing technique, 


probabilities (of mutation Pm, crossover Pc and for using 
the local optimization Plo) change with the number of 
generations and fitness value, freezing at the end of the 
computation to improve convergence [11].  


 
The proposed method may be summarized as follows: 
 


1. Generate an initial population Pop using the heuristic 
method previously exposed and create two empty 
external nondominated sets Pknown and SPknown (stored 
external population). 


 


2. Copy nondominated members of Pop to Pknown and 
SPknown. 


 


3. Remove individuals within SPknown which are covered 
(dominated) by any member of SPknown. 


 


4. Remove solutions within Pknown which are covered by 
any member of SPknown. 


 


5. If the number of externally nondominated solutions in 
Pknown exceeds a given maximum g, clustering is applied 
in order to reduce the external population to a size g. 


 


6. Calculate the fitness of each individual in Pop as well as 
in Pknown using standard SPEA fitness assignment 
procedure. 


 


7. Select individual from Pop + Pknown (multiset union) 
until the mating pool is filled. In this study, roulette 
wheel selection is used. 


 


8. Apply Plo, Pc and Pm to determine whether and 
individual is locally optimized or selected for crossover 
and mutation, in which case, standard genetic operators 
are applied. 


 


9. Go to step 2 if stop criterion is not verified. 
 


IV. EXPERIMENTAL ENVIRONMENT 
 


As a study case, the IEEE 118 Bus Power Flow Test Case 
has been selected [12]. In order to stress the original system, 
its active and reactive loads were incremented by 40%, 
turning the power network in an adequate candidate for 
reactive power compensation. 


 


For comparison purposes, the Pareto set generated by the 
proposed method has been compared to Pareto sets obtained 
using four different methods: 
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1· Compensation schemes elaborated by a team of 
specialized engineers using standard computational 
programs (Specialist). 


 


2· Original SPEA implementation, with random initial 
population [7] (SPEA). 


 


3· Original SPEA implementation with heuristic 
initialization (SPEA+). 


 


4· A special SPEA with heuristic initialization and the 
mutation genetic operator replaced by the previous 
exposed local optimization (SPEAlo). 


 
For the experimental results presented in the following 


section, it has been assumed that βα = , i.e., capacitor and 
reactor banks have the same cost per MVAr. At the same 
time, Nstop = 100 was experimentally chosen. 


To evaluate the experimental results using all five methods, 
an appropriate test suite metrics is used [5], because no single 
metric can entirely capture total MOEA performance, 
effectiveness and efficiency. The test suit comprises the 
following metrics: 


 
1) Overall Nondominated Vector Generation (N) 
 


cknownPFN
∆


=  
 


where 
c


⋅ denotes cardinality. 


This metric indicates the number of solutions in PFknown. 
A good PFknown set is expected to have a large number of 
individuals, in order to offer a wide variety of options to 
the engineer. 


 
2) Overall Nondominated Vector Generation Ratio  


(ONVGR) 
 


ctruePF
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It denotes the ratio between the number of solutions in 
PFknown to the number of solutions in PFtrue. Since the 
objective is to obtain a PFknown set as similar as possible to 
PFtrue, a value near to 1 is desired. 


 
3) Error Ratio (E) 
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This ratio reports the proportion of objective vectors in 
PFknown that are not members of PFtrue. Therefore; an 
Error Ratio E close to 1 indicates a poor correspondence 
between PFknown and PFtrue, i.e., E = 0 is desired. 
 


 


4) Generational Distance (G)  
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where id is the Euclidean distance (in objective space) 


between each objective vector F in PFknown and its nearest 
member in PFtrue. A large value of G indicates PFknown is 
far from PFtrue, being G = 0 the ideal situation. 


 
5) Maximum Pareto Front Error (ME)  
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It indicates the maximum error band that, when 
considered with respect to PFknown, encompasses every 
vector in PFtrue. Ideally, ME = 0 is desired. 


 
Since most of these metrics reflect the likeness between the 


true Pareto Front Optimal set PFtrue and a computed Pareto 
Front set PFknown, a good approximation of PFtrue is built by 
gathering all nondominated individuals from all five sets. In 
other words, for the following results, PFtrue is approximated 
by the best known solutions of all our experiments. 


V. EXPERIMENTAL RESULTS 
Tables I and II present experimental results using the 


IEEE-118 study case, showing the figures obtained by all five 
methods. For the methods used to compare the proposed 
approach, the best results obtained by a single run have been 
selected, having the SPEA implementations reached a 
stagnant population, i.e., no new solutions are obtained with 
new generations for Nstop = 100 generations. On the other 
hand, the proposed method has been stopped using a 
maximum number of generation criterion, since it continues 
generating new solutions reaching more than 2000 stored 
solutions (SPknown). This is an important advantage since it 
gives the user a wider variety of alternative solutions.  


 
TABLE I 


EXPERIMENTAL RESULTS: 60 GENERATION RUN OF THE PROPOSED METHOD 


Metrics Specia-
list SPEA SPEA+ SPEAlo Proposed 


Method 
N 170 100 150 172 181 


ONVGR 0.4315 0.2538 0.3807 0.4365 0.4594 


E 0.2353 0.9500 0.9533 0.2558 0.2431 


G 0.5702 0.7325 0.6060 0.5814 0.5431 


ME 0.0852 0.1040 0.2332 0.0324 0.0554 
 
Table I presents experimental results running only 60 


generation of our proposed approach while the other methods 
run until convergence. Table II presents figures when the 
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proposed method run for 200 generations. In both tables, best 
figures are indicated by a shadowed cell. 


 
TABLE II 


EXPERIMENTAL RESULTS: 200 GENERATION RUN OF THE PROPOSED METHOD 


Metrics Specia-
list SPEA SPEA+ SPEAlo Proposed 


Method 
N 170 100 150 172 222 


ONVGR 0.4208 0.2475 0.3713 0.4257 0.5495 


E 0.3235 0.9800 0.9867 0.4128 0.1486 


G 0.6138 0.7635 0.6221 0.6022 0.5315 


ME 0.0852 0.0948 0.2294 0.0462 0.0342 
 
For the first two metrics N and ONVGR, it is clear that the 


proposed method has the best performace, since it generates 
the widest variety of solutions. This fact is even more evident 
when the stored external population is considered. 


In Table I, the compensation set elaborated by the 
specialists has the smallest Error Ratio E, closely followed by 
the proposed method, what gives an idea of the good job 
being done by the engineers; however, with a greater number 
of generations, the proposed method improves sensitively its 
performance, reducing in nearly 40% its error ratio, 
outperforming other methods, as shown in Table II. 


The values obtained for the Generational Distance G show 
that the proposed method has the best results in both tables, 
offering a PFknown set closer to PFtrue.  


Table I indicates that the proposed method occupies the 
second place in the Maximum Pareto Front Error (ME) 
ranking for a lower number of generations, beaten by the 
SPEAlo implementation. However, with a larger number of 
generations, the proposed method have the smallest ME value 
(see Table II).  


A final fact to be emphasized is that the proposed method 
improves its performance for most metrics with a larger 
number of generations, while the other methods have 
converged before whole exploration of search space, what is 
known as premature convergence. 


 
 


VI. CONCLUDING REMARKS 
In this paper, Reactive Compensation Problem is first 


treated as a Multi-objective Optimization Problem with 4 
conflicting objective functions: (i) investment in reactive 
compensation devices, (ii) active power losses, (iii) average 
voltage deviation and (iv) maximum voltage deviation. 


To solve the problem, a new approach based on SPEA is 
proposed. This new approach introduces several proposals as: 
(i)  heuristic initialization, (ii) a local optimization technique, 
(iii) a stop criterion, (iv) two external populations and (v) a 
freezing feature. 


For comparison purposes, the solution set obtained in a 
single run of the proposed method is compared to four sets of 
solutions calculated as the best of several runs using other 


methods or as the best set of solutions calculated by a team of 
specialists.  


Experimental results using the proposed approach 
demonstrated several advantages when using the proposed 
method, such as a set of solutions closer to the True Pareto 
Set outperforming other methods in every studied figure of 
merits, and a wider variety of options. This last feature is of 
special importance, since a richer set of alternatives are 
offered to the network planners. In order to select sub-sets of 
solutions which best fit the interests of the user, an adaptive 
constrain philosophy is suggested. That way, the network 
engineer may restrict the constraints to reduce the number of 
solutions after having a good idea of the whole Pareto 
solutions, searching forward only in the redefined domain. 
This process may continue iteratively until a good solution 
with an acceptable compromise among objective functions is 
found. 


As future work, new specialized genetic operators are being 
developed to locally improve reactive compensation of a given 
individual. At the same time, other objective functions (such 
as voltage stability margin) are going to be considered. 
Finally, parallel asynchronous computation using a network 
of computers are considered for larger networks with more 
objective functions. 
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