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Abstract. Particle swarm optimization (PSO) is a metaheuristic in-
spired on the flight of a flock of birds seeking food, which has been
widely used for a variety of optimization tasks [1, 2]. However, its use
in multimodal optimization (i.e., single-objective optimization problems
having multiple optima) has been relatively scarce.


In this chapter, we will review the most representative PSO-based ap-
proaches that have been proposed to deal with multimodal optimization
problems. Such approaches include the simple introduction of powerful
mutation operators, schemes to maintain diversity that were originally
introduced in the genetic algorithms literature (e.g., niching [3, 4]), the
exploitation of local topologies, the use of species, and clustering, among
others.


Our review also includes hybrid methods in which PSO is combined with
another approach to deal with multimodal optimization problems. Ad-
ditionally, we also present a study in which the performance of different
PSO-based approaches is assessed in several multimodal optimization
problems. Finally, a case study consisting on the search of solutions for
systems of nonlinear equations is also provided.


1 Introduction


Particle swarm optimization (PSO) is a bio-inspired metaheuristic that was pro-
posed by James Kennedy and Russell Eberhart in 1995 [5]. PSO performs a
population-based search, using particles to represent potential solutions within
the search space. Each particle is characterized by its position, velocity, and a
record of its past performance. Particles are influenced by their leaders, which
are the best performers either from the entire swarm or their neighborhood.
At each flight cycle, the objective function is evaluated for each particle, with
respect to its current position, and that information is used to measure the qual-
ity of the particle and to determine the leader in the sub-swarms and the entire
population.
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Although, usually, the development of optimization algorithms considers only
the search of a single optimum of a given function, this is not always the case.
It is possible that the function to be optimized has multiple global optima or
one global optimum with many local optima in the search space. Such functions
are called multimodal and have been widely studied in the genetic algorithms
literature [3, 4, 6].


The PSO algorithm is a relatively recent optimization algorithm, which is
quite simple, since it only consists of two rules for obtaining a new solution from
a previous one. In spite of its simplicity, PSO has been found to exhibit a fast
convergence to the optimum (or its vicinity) in a wide variety of optimization
problems, which has significantly increased its popularity in the last few years
[2]. However, until now, relatively few researchers have explored the potential
of PSO for multimodal optimization, although its simplicity makes PSO a good
candidate for dealing with such problems. The purpose of this chapter is precisely
to review the most representative research done in this regard.


The remainder of this chapter is organized as follows. Section 2 describes the
main topologies commonly adopted with PSO. Some PSO variants commonly
adopted in the specialized literature are briefly described in Section 3. Section 4
introduces multimodal optimization, as well as the main approaches that have
been proposed to deal with this sort of problem. Section 5 contains the test
problems adopted for a small comparative study that is described and discussed
in Section 6. A case study consisting of finding solutions to a system of nonlinear
equations is presented in Section 7. Finally, our conclusions and some possible
paths for future research are presented in Sections 8 and 9, respectively.


2 PSO Topologies


In the original PSO algorithm introduced by Kennedy and Eberhart [5] the
position and velocity of a particle is updated using equations (1) and (2)


vt+1 = vt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt) (1)


xt+1 = xt + vt+1 (2)


where C1, and C2 are the “learning” constants, R1 and R2 are randomly gener-
ated numbers (from a uniform distribution) in the interval [0, 1], g is the position
of the global best particle (i.e., the particle with the best value in the entire
swarm), and p is the position with the best value recorded by the particle so
far. The computation of g involves an inspection of the values of all the other
particles in the swarm. In other words, any particle has access to the information
of any other particle in the swarm. The global best (or gbest) model refers to the
case in which all the particles are “connected” with each other and can transfer
information among them, and it is essentially the original model of the PSO
algorithm. A graphical representation of the gbest model is shown in Figure 1.


The gbest model is not the only model that has been proposed for PSO [7,
8]. Another model that has been widely used is the local best (or lbest) model,







Fig. 1. Graphical representation of the gbest model


in which a particle is connected only with k of its neighbors and can only com-
municate with them. The number of neighbors of each particle is usually k = 2.
In this case, the topology of the swarm is represented as a connected ring and
its graphical representation is shown in Figure 2.


Fig. 2. Graphical representation of the lbest model


Another model that has been commonly adopted in the PSO literature is
the von Neumann model, in which a particle can communicate with four of
its neighbors using a rectangular lattice topology. A graphical representation
of the von Neumann model is shown in Figure 3. The von Neumann model is







commonly adopted together with the gbest or lbest models in algorithms that
use sub-swarms and a main swarm. Typically, the main swarm is arranged with
the von Neumann model and the sub-swarms use either the gbest or the lbest


model.


Fig. 3. Graphical representation of the von Neumann model


3 PSO variants


Other modifications have been added to the PSO algorithm, aiming to improve
its convergence. The most common variations correspond to modifications on
the computation of the velocity. Equation (1) shows the original method for
computing the velocity of a particle. Eberhart and Shi [9] introduced the so-
called Inertia Weight model in which the velocity of a particle at iteration t is
multiplied by a constant parameter ω, called Inertia Weight, before computing
the velocity for iteration t + 1, as shown in equation (3).


vt+1 = ω · vt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt) (3)


The parameter ω helps to balance between exploitation and exploration.
Although the parameter ω is maintained constant in this model, Eberhart and
Shi suggested in [10] that a linearly decreasing inertia weight may improve the
convergence of the PSO algorithm. An initial ωi and final ωf values for the inertia
are set, and the value of the inertia weight ωt for the iteration t is computed
using equation (4).


ωt = ωi −
(ωf − ωi) · t


T
(4)


where T is the total number of iterations and t = 0, . . . , T . Another modification
to the computation of the velocity is found in [11], where Clerc and Kennedy







presented the so-called Constriction Factor model. In the Constriction Factor
model not only the velocity at iteration t is multiplied by a constant, but the
new computed velocity is also affected, as shown in equation (5).


vt+1 = χ · [vt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt)] (5)


The constriction factor constant χ is computed using equation (6).


χ =
2κ


|2 − φ −
√


φ2 − 4φ|
(6)


where φ = C1 + C2, and κ is an arbitrary constant in the range [0, 1]. The value
of φ is constrained: φ > 4.


The computation of the velocity of a particle involves the position of the
global best particle, called social component and the position with the best value
recorded is called cognition component. If one of these terms is omitted, the two
resulting models are called cognition only and social only, respectively. In any of
them, only one component is used for the velocity update equation, as shown in
equation (7) for the cognition only model and in equation (8) for the social only
model.


vt+1 = vt + R · C · (p − xt) (7)


vt+1 = vt + R · C · (g − xt) (8)


Both, the cognition and the social models have been used in combination
with the Inertia Weight and the Constriction Factor models.


4 Multimodal Optimization using PSO


The different models for updating the position and velocity of a particle, and
the different topologies mentioned before can be considered as the basis for
PSO-based multimodal approaches. In all the PSO-based multimodal approaches
analyzed here, one of the three models indicated before (i.e., Inertia Weight,
Decreasing Inertia Weight or Constriction Factor) is used to update the position
and velocity of a particle, regardless of the particular approach adopted to deal
with a multimodal problem. In methods that implement several sub-swarms and
a main swarm, it is common to use two different topologies: one for the sub-
swarms and another for the main swarm.


Next, we will review the most representative approaches that have been
adopted to extend PSO so that it can deal with multimodal optimization prob-
lems.







4.1 Use of Mutation


Probably the easiest approach to adapt PSO to deal with multimodal optimiza-
tion problems is to add a mutation operator, such as those adopted with genetic
algorithms. Esquivel and Coello Coello [12] studied the use of nonuniform mu-
tation in PSO in the context of multimodal optimization. The nonuniform mu-
tation operator that they adopted was originally proposed in [13] for real-coded
genetic algorithms, and it operates as follows. If we have the chromosome of an
individual represented as a vector of real numbers Ct = (c1, c2, . . . , cn) at the
iteration t and ck is the gene to mutate, then the mutated value c′k is computed
as follows:


c′k =


{


ck + ∆(t, UB − ck) if P < 0.5
ck − ∆(t, ck − LB) otherwise


(9)


where P is a randomly generated number in the interval [0, 1] with a uniform
distribution, LB and UB are the lower and upper bounds for the coordinate
ck, respectively, and the function ∆(t, z) returns a value in the range [0, z]. The
probability that ∆(t, z) returns a value close to zero must increase as t increases.
The function proposed in [13] for that sake is:


∆(t, z) = z ·
(


1 − R(1− t
T


)b
)


(10)


where R is a randomly generated number in the range [0, 1] using a uniform
distribution, T is the total number of iterations, and b is a user-defined parameter
that determines the degree of dependency in the total number of iterations (in
[13], a value b = 5 is suggested). The algorithm proposed by Esquivel and Coello
Coello uses in its underlying PSO, the Inertia Weight model and mutates a
coordinate of the position of a particle based on the index value of the current
iteration and a mutation probability Pm. The algorithm using the gbest model
is outlined in Figure 4. A simple modification of the algorithm allows it to be
used with the lbest model as well.


The mutation operator introduced in the PSO algorithm tries to prevent that
the particles remain trapped in a local minimum.


4.2 Niching in PSO


Niching is a method originally developed for genetic algorithms which is designed
to block convergence of the entire population towards a single solution (other-
wise, the entire population of an evolutionary algorithm eventually converges to
a single solution because of stochastic noise [14]). Niching is one of the earliest
methods developed to deal with multimodality using evolutionary algorithms [3,
4].


A variety of niching algorithms exist (see for example [15]). However, rela-
tively few researchers have proposed PSO-based niching approaches. The most
representative are briefly discussed next.







swarm initialization;1


for i=1 to number of particles do2


for j=1 to number of dimensions do3


Initialize xij with a rnd(xmax, xmin) value;4


Initialize vij with zero value;5


copy xij to pij ;6


end7


end8


search the best global leader and record its position in g;9


swarm flight through the search space;10


repeat11


for i=1 to number of particles do12


for j=1 to number of dimensions do13


Update vij using pij and xij ;14


Prevent explosion of vij ;15


Update xij ;16


if loop number < T · Pm then17


Mutate xij ;18


end19


end20


Evaluate fitness(xi);21


if fitness(pi) < fitness(xi) then22


Update pi;23


end24


end25


until loop number < T ;26


Fig. 4. PSO with a nonuniform mutation operator using the gbest model







NichePSO The NichePSO algorithm was proposed in [16]. This approach uses
the Guaranteed Convergence Particle Swarm Optimizer from van den Bergh and
Engelbrecht [17] together with the gbest model, aiming to prevent premature
convergence of the particles. Additionally, the cognition only model is used to
encourage the local search of the particles. The method used to identify niches in
the NichePSO algorithm is based on keeping track of the changes in the fitness
value of the particles. If a particle does not show any change within a certain
number of iterations, a niche is created, containing the particle and its closest
topological neighbor. The Euclidean distance is used to determine the closeness
of the particles, so that the closest topological neighbor to the particle selected
is the particle within the minimum distance to it. A niche radius is computed
for each sub-swarm. This radius is the maximum distance between the particles
in the sub-swarm and is described in equation (11).


rj = max{||Sxj,g
− Sxj,i


||} (11)


This radius is used for adding particles to a sub-swarm and to merge two
sub-swarms. If a particle has a distance less than rj to the initial particle in
a sub-swarm, then the particle is absorbed in the sub-swarm. If the distance
between the initial particles of two sub-swarm is less than the sum of its radius,
then the sub-swarms are merged. This condition is described in equation (12).


||Sxj1,g
− Sxj2,g


|| < (rj1 + rj2) (12)


If a sub-swarm has converged to an optimum it is possible that its radius rj


has a value of zero. In this case, it is difficult to determine the merge of two sub-
swarms. A threshold value µ is given and if the distance between initial particles
of sub-swarms with radius close to zero is less than µ, then the sub-swarms
are merged. This is expressed in equation (13). The algorithm of NichePSO is
outlined in Figure 5.


||Sxj1,g
− Sxj2,g


|| < µ (13)


The NichePSO algorithm does not require knowing ahead of time the number
of optima of the function. Also, it does not require setting up a fixed radius for
the niches. However, it depends on a minimum threshold to determine when a
particle does not show changes and a new niche can be created. It also depends
on a minimum distance to determine when two sub-swarms that are close to
converging to an optimum can be merged.


Use of sub-swarms Another niching method is the creation of a fixed number
of sub-swarms in the same search space and prevent the exploration of a same
area by two or more sub-swarms. An example of this sort of method is found
in the work of Zhang et al. [18] in which the Hill-Valley function [19] is used







Initialize main particle swarm;1


Train main swarm particles using the cognition only model;2


Update fitness of each main swarm particle;3


foreach sub-swarm do4


Train sub-swarm particles using one iteration of the GCPSO algorithm;5


Update each particle’s fitness;6


Update swarm radius;7


end8


If possible, merge sub-swarms;9


Allow sub-swarms to absorb any particles from the main swarm that moved into10


it;
Search main swarm for any particle that meets the partition criteria;11


If any is found, then create a new sub-swarm with this particle and its closest12


neighbor;


Fig. 5. The nichePSO algorithm


to determine if a particle belongs to a niche. If a particle does not belong to a
niche, it is penalized. This prevents the exploration of more than one sub-swarm
in the same area. This simple penalty rule is expressed in equation (14).


eval(xi) =


{


f(xi) if hill-valley(xi, xbest) = 1
f(xi) − p(xi) otherwise


(14)


where p(x) is a penalty function [20]. The penalty function can be static (i.e.,
the same penalty value is always used) with a large value for the penalty factor.


The Hill-Valley algorithm tries to determine if two points are in the same
valley of a function. A set of interior points are computed following a line between
the points that are being tested. The best fitness value is set as the optimal fitness
for comparison purposes, with respect to the fitness values of the interior points.
In case of searching for a minimum, the lowest fitness value of the points being
tested is set as the minimal for comparison purposes. If all the interior points
have a fitness value lower than the minimal value, then the points being tested
are in the same niche. The Hill-Valley algorithm is shown in Figure 6.


The niching algorithm of Zhang et al. [18] consists of sequentially creating a
given number N of sub-swarms. Each sub-swarm explores the search space until
a certain criterion is fulfilled. In this case, the sub-swarm explores for a certain
number of iterations. The algorithm of sequential niching is shown in Figure 7.


In the sequential PSO niching algorithm of Zhang et al. [18] is necessary to
set the number of sub-swarms to be used. If there is no prior knowledge of the
number of optima of the function, it is necessary to experiment with the number
of niches in the algorithm. It is also required to set the number of interior points
for the Hill-Valley algorithm, but unlike NichePSO, this value does not depend
on threshold parameters.







minfit = min(fitness(ip), fitness(iq));1


for j=0 to samples length do2


Calculate point iinterior on the line between the points iq and ip;3


if minfit > fitness(iinterior) then4


return 1;5


end6


end7


return 0;8


Fig. 6. The Hill-Valley algorithm


repeat1


Run a new sub-swarm;2


N = N + 1;3


for k = 1 to N − 1 do4


if hill valley(xi, xk) == 0 then5


Change the fitness of xi;6


else7


Keep the original fitness;8


end9


end10


Train the sub-swarm until a convergence criterion is met;11


until N is greater than a given value or we reached a maximum number of12


iterations ;


Fig. 7. The ASNPSO algorithm







The problem of choosing the number of niches and how to determine if a
particle belongs to a niche is addressed by Bird and Li [21]. In that work the
number of niches and their radii is adaptively computed.


To initialize the radius value, Bird and Li [21] first compute the distance
between each possible pair of particles and set the initial radius to the average
of the minimum distances between particles as shown in equation (15).


r =


∑n


i=1 di


n
(15)


where


di = min{||pi − pj || |j 6= i} (16)


Then, to create a niche, each particle is tested versus all the rest of the
particles in the swarm. This information is stored in an array s that keeps track
of how many steps the particles are close to each other. If this distance is less
than the initial radius value for at least two particles’ steps, then a niche is
created.


The algorithm for the creation of niches is divided in two parts: first, a
graph is built, representing the particles that are close to each other within a
distance less than the radius, for more than two particles’ steps. The algorithm
for creating the graph is shown in Figure 8.


Upon creating the graph, each particle is verified and it is grouped in a niche
with the particles having a distance less than the initial radius. All particles
that already belong to a niche are marked as visited in order to optimize the
algorithm. The algorithm to create the niches is shown in Figure 9.


The particles that belong to a niche are updated using the Constriction Factor
equations, adopting the gbest model in each niche. The particles that do not
belong to a niche form a main swarm that uses a von Neumann topology and are
updated using the Constriction Factor model. At each iteration of the algorithm,
the niches are recalculated, which affects the performance of the algorithm.


4.3 Clustering techniques in PSO


Clustering into a PSO algorithm was first introduced by Kennedy [22]. The
method of “stereotyping” adopted by Kennedy, consists of using the k-means
algorithm to partition the main swarm into k sub-swarms. The k-means algo-
rithm is shown in Figure 10. In each sub-swarm, the position of the global best
is replaced by the position of the centroid of the sub-swarm.


In his work, Kennedy uses the Constriction Factor model for the PSO al-
gorithm and explores the effects of exchanging the global best g, and the best
recorded position p of a particle by the centroid of the sub-swarm in both the
gbest and the lbest models.







Determine r using equation (15);1


Create an undirected graph G containing a node for each particle, but no edges;2


for i = 1 to n− 1 do3


for j = i + 1 to n do4


if ||pi − pj || < r then5


Increment sij ;6


if sij < 4 then7


sij ← 4;8


end9


if sij >= 2 then10


Create an edge in G from pi to pj ;11


end12


else13


Decrement sij ;14


if sij < 0 then15


sij ← 0;16


end17


end18


end19


end20


Fig. 8. Procedure to create the niches graph


Create a set variable visited← ∅;1


Create a set variable reachable;2


for i=1 to n do3


if pi 6∈ visited and di < r then4


reachable← {pi, pj ∈ P |pj∀j reachable from pi ∈ G};5


Create a new niche s← {pj};6


for p ∈ reachable and p 6∈ visited do7


visited← visited ∪ {p};8


s← s ∪ {p};9


end10


end11


end12


Fig. 9. Creating the niches from the graph G


Initialize k centroids;1


repeat2


Compute the distance of each point to the k clusters;3


Assign each point to the nearest cluster;4


Recompute the centroid of each cluster;5


until stop criteria is met ;6


Fig. 10. k-means algorithm







A more recent work by Passaro and Starita [23] tries to improve the previous
clustering approach by introducing several modifications. First, the number k of
sub-swarms is estimated by testing different values of k and by using a Bayesian
information criterion to decide which value of k is optimal [24]. The authors
also limit the number of particles in each sub-swarm to correspond to the mean
of the number of particles in each sub-swarm after the initial partition. If a
cluster exceeds the mean of the number of particles, the particles with the worst
fitness values are removed and added to the main swarm. The particles in the
main swarm are updated separately using the lbest model with a von Neumann
topology. The algorithm for identifying a niche is shown in Figure 11.


Cluster particle’s pbest with the k-means algorithm;1


Compute the average number of particles per cluster, Navg;2


Set Nu = 0;3


foreach Cluster Cj do4


if Nj > Navg then5


remove the Nj −Navg particles from Cj ;6


add Nj −Navg to Nu;7


end8


Adapt the neighborhood structure for the particles in Cj ;9


end10


Reinitialize the Nu un-niched particles;11


Fig. 11. Algorithm for the identification of niches


The algorithm of Passaro and Starita also recalculates the niches at intervals
of c iterations. The procedure for indentifying niches is used to form again the
sub-swarms and the main swarm with the lbest model. The algorithm is shown
in Figure 12.


Although the optimal number of niches is computed, it is necessary to setup
a maximum value of niches to carry out this calculation. It is also needed to
determine the number of iterations c before recalculating the niches.


4.4 PSO with Species


The use of species for dealing with multimodal optimization problems, within
a genetic algorithms context, is introduced in Li et al. [25]. In this method,
individuals with high fitness values are selected as “seeds” to form clusters of
individuals called “species”, around the seeds. The procedure to select the seeds
and form species consists of the following steps:


1. The best individual of a population is selected as a seed.
2. All the individuals with a distance less than a parameter value r from the


seed are considered to belong to the same species.







Initialize particles with random positions and velocities;1


Set particles’ pbest to their current positions;2


Calculate particles’ fitness;3


for t = 0 to T − 1 do4


if t mod c = 0 then5


Execute the procedure Identify Niches;6


end7


Update particles’ velocities;8


Update particles’ positions;9


Recalculate particles’ fitness;10


Update particles’ and neighborhood best positions;11


end12


Fig. 12. The kPSO algorithm


3. The above procedure is repeated by selecting the next seed from the particles
that do not belong to a species until all the particles are part of one.


The seeds selected in a generation are reintroduced in the next generation
by comparing the fitness values of the new individuals within the species. If
the individual with the worst fitness value in the species has a worse fitness
value than the seed, then the seed replaces the worst individual of the species.
Otherwise, the seed replaces the worst individual in the population even if the
seed has a worse fitness value than the individual being replaced.


The concept of species was introduced into PSO by Li [26], with some
changes. First, the species’ seeds are not conserved nor reintroduced into the
swarm. Also, the position of the seed of a species replaces the position of the
global best for each particle in the species. The algorithm for the creation of the
species is shown in Figure 13.


After the creation of the species, all particles are updated using the Con-
striction Factor equations. The algorithm for the species-based PSO approach is
shown in Figure 14.


In the Species Particle Swarm Optimization algorithm, it is not necessary
to set the number of sub-swarms that will be created before starting to iterate,
since such number depends on the radius parameter, which is a value that needs
to be set by the user.


4.5 Other Methods for Multimodal Optimization


The niching and species methods are not the only approaches that have been used
with the PSO algorithm, since several other techniques have been proposed in the
specialized literature as well. For example, a cooperative PSO was presented by
van den Bergh and Engelbrecht [27]. This approach follows the idea from Potter
and de Jong [28] who proposed that the population of an evolutionary algorithm
is divided into sub-populations that cooperate unlike the niche methods in which







S = ∅;1


while the end of Lsort has not been reached do2


found← FALSE;3


forall p ∈ S do4


if d(s, p) ≤ Rs then5


found← TRUE;6


break;7


end8


end9


if Not found then10


S ← S ∪ {s}11


end12


end13


Fig. 13. The algorithm for determining the species’ seeds


Generate the initial population;1


repeat2


Evaluate all particles in the population;3


Sort particles in descending order of their fitness value;4


Determine the species’ seeds for the current population;5


Assign each species’ seed identified as the g particle to all individuals6


identified in the same species;
Update the velocity and position of all the particles;7


until Termination condition ;8


Fig. 14. The species-based PSO







the sub-populations compete. Initially, in the Cooperative PSO algorithm, the
main swarm is divided into several sub-swarms, each of which searches in only one
dimension of decision variable space. Each sub-swarm cooperates by searching
one coordinate of the solution. To evaluate the fitness function of a particle in a
sub-swarm, an auxiliary vector is used. This vector has as its coordinates to the
position of the particle with the best fitness value of each sub-swarm. In order
to evaluate a particle in the jth sub-swarm the jth coordinate of the auxiliary
vector is replaced with the position of the particle, and the fitness value of the
particle is set to the fitness of the auxiliary vector. If some of the variables
of the fitness function are correlated, it is preferred that the search space of
a sub-swarm includes the correlated variables. This can be done easily with
the partition model of the Cooperative PSO, but the information of correlated
variables is not always available. An approach to try to group correlated variables
is to partition the search space arbitrarily into k subspaces, with k < D and D
the dimension of the search space, as to create k sub-swarms that search into
each sub-space, separately. The Cooperative PSO algorithm has a drawback: it
can be trapped in pseudo-minima [27]. In order to overcome this problem, a
phase is added to the Cooperative PSO algorithm, in which all the sub-swarms
are considered as a single main swarm and the Constriction Factor model is used
to update the position and velocity of the particles. This is called the Hybrid
Cooperative PSO and its algorithm is shown in Figure 15.


The number of sub-swarms and the dimension of the subspace in which they
search are randomly set and may not be the best possible for the fitness function
being optimized.


Other method that implements in part a strategy similar to the Cooperative
PSO is the Comprehensive Learning PSO developed by Liang et al. [29]. This
algorithm uses a social only model in which only the social component of the
velocity update equation is used together with the Inertia Weight model. Thus,
to compute the velocity of a particle, equation (17) is used.


vt+1,d = ω · vt,d + C · Rd · (pg,f(d) − xd) (17)


where the subindex d corresponds to the dimension, and pg,f(d) is an exemplar
computed for the particle. Exemplars are computed using an idea similar to the
one introduced by van den Bergh and Engelbrecht [27] and replace the position
of the global best particle. To compute an exemplar, a coordinate of the pg,f(d)


position is selected according to the following method:


1. A random number rand is computed for each coordinate d. If rand >= Pci


(Pci is a probability for the particle i), then the value of the dth coordinate
of the best recorded position of the particle i is copied to the dth coordinate
of the exemplar.


2. Otherwise, if rand < Pci, then two particles are randomly selected from the
swarm, so that they are different from particle i. Additionally, a tournament-
like selection is done with the two particles selected. Also the dth coordinate







b(j, z) = (g1, . . . , gj−1, z, gj+1, . . . , gk);1


K1 = n mod K;2


K2 = K − (n mod K);3


Initialize K1⌈n/K⌉-dimensional PSOs: Pj , j ∈ [1..K1];4


Initialize K2⌊n/K⌋-dimensional PSOs: Pj , j ∈ [(K1 + 1)..K];5


Initialize an n-dimensional PSO: Q;6


repeat7


foreach swarm i ∈ [1..K] do8


foreach particle j ∈ [1..s] do9


if f(b(i, xij)) < f(b(i, pij)) then10


pij = xij ;11


end12


if f(b(i, pij)) < f(b(i, gij)) then13


gij = pij ;14


end15


end16


Perform updates on Pj ;17


end18


Select random k ∼ U(1, s/2) such that pk 6= g;19


xk = b(1, g1);20


foreach particle j ∈ [1..s] do21


if f(xj) < f(pj) then22


pj = xj ;23


end24


if f(pj) < f(g) then25


g = pj ;26


end27


end28


Perform updates in Q;29


foreach swarm j ∈ [1..K] do30


Select random k ∼ U(1, s/2) such that pjk 6= gj ;31


xjk = gj ;32


end33


until stopping condition is true ;34


Fig. 15. Pseudocode for the CPSO-Hk algorithm







of the best recorded position of the particle with a better fitness value is
copied to the dth coordinate of the exemplar.


3. If the condition rand < Pci is never true for any coordinate d, then a random
number k is computed with k ∈ 1, . . . , D (D is the number of decision
variables), and the procedure of step 2 is repeated for the coordinate k.


To compute the value of the probability Pci for the particle i, the authors
use an empirical relation. For example, to compute the probability values Pci in
the range [0.05, 0.5], equation (18) is used.


Pci = 0.05 + 0.45 · e


(


10(i−1)
ps−1


)


− 1


e10 − 1
(18)


where ps is the number of particles in the swarm. The procedure for computing
an exemplar is shown in Figure 16.


for d=1 to D do1


if rand < Pci then2


f1d = ⌈rand1d · ps⌉;3


f2d = ⌈rand2d · ps⌉;4


if fitness(pf1d
) > fitness(pf2d


) then5


fd = f1d;6


else7


fd = f2d;8


end9


else10


fd = i;11


end12


end13


Fig. 16. Selection of the exemplar dimension for particle i


The Comprehensive Learning PSO algorithm also keeps track of the changes
in the fitness of the particles. If the particle does not show changes in its best
recorded position after m iterations, then a new exemplar is computed for the
particle. The value for m is arbitrary and the authors use m = 7, which was
empirically obtained. The algorithm also uses a policy of not updating the fitness
value nor the best recorded position if the particle is out of the allowable search
space. It also updates the global best of the swarm each time that a particle is
updated. This is similar to the evaluation in the case of a lbest topology. The
algorithm of the Comprehensive Learning PSO is shown in Figure 17.


The Comprehensive Learning PSO algorithm requires several parameters: the
probability Pci of computing an exemplar, the refreshing gap m to re-compute
an exemplar if the best position of a particle does not present changes (this







Initialize swarm;1


for k = 1 to max gen do2


ω = ω0 − (ω0 − ω1) · k/max gen;3


for i = 1 to ps do4


if flagi >= m then5


Select an exemplar for particle i;6


flagi = 0;7


end8


Update velocity and position of the particles;9


if xi ∈ [Xmin, Xmax] then10


Update fitness xi;11


if fitness(xi) > fitness(pi) then12


pi = xi;13


flagi = 0;14


if fitness(xi) > fitness(g) then15


g = xi;16


end17


else18


flagi = flagi + 1;19


end20


end21


end22


end23


Fig. 17. The CLPSO algorithm







value is based on the Decreasing Inertia PSO). Additionally, an initial ωi and
a final ωf must also be set by the user. In spite of the number of parameters
to set and its relative complexity, Comprehensive Learning PSO has obtained
better results than many other PSO-based methods in a variety of multimodal
optimization problems.


4.6 Hybrid Methods


The PSO algorithm has also been hybridized with other algorithms in an at-
tempt to improve its performance in multimodal optimization problems. That
is the case of the hybrid of PSO and Differential Evolution (DE) introduced by
Pant et al. [30]. This algorithm works in two phases. First, at each iteration, a
mutant of each particle is computed by adopting the same procedure from the
DE algorithm. Then, the crossover operator from DE is applied. If the new par-
ticle created with the DE procedure has a better fitness value than the particle
being compared, then the position of the particle is replaced by the position of
the newly generated particle. If the fitness of the new particle is worse, then
the particle is removed and a new particle is generated. The fitness value of the
particle with the updated position is compared with the fitness value of the par-
ticle in the previous position. If the new particle has a better fitness value, then
the position of the particle is updated to the new computed position using the
equations of the PSO algorithm. If the fitness value is worse, then the position
of the particle remains unchanged. The algorithm of the hybrid of DE and PSO
is shown in Figure 18.


A similar hybrid is presented in the work of Shelokar et al. [31], in which a
hybrid of PSO and ant colony optimization (ACO) is presented. In this hybrid,
a colony of ants is created within the swarm of particles. Each ant is related to
a particle, and after a particle is updated, its related ant is also updated, by
following a simple pheromone scheme. If the fitness value of the ant is better
than the fitness value of the particle, then the position of the particle is replaced
with the position of the ant. The algorithm of this hybrid is shown in Figure 19
where Zi


t is computed according to equation (19).


zi
t = N(g, σ) (19)


where N(g, σ) is a normal distribution with mean g and standard deviation σ.
The value of σ is decreased at each iteration by multiplying it by a constant d
with values in the range [0.25, 997]. If the value of σ is less than a lower bound
σm, then the value of σ is set to σ = σm and remains constant for the rest of
the iterations.


5 Test Functions


In order to have a better idea of the differences in performance of some of the ap-
proaches previously discussed, we decided to perform a small comparative study.







Initialize swarm;1


for i = 1 to N do2


Select r1, r2, r3 ∈ N ;3


for j = 1 to D do4


Select jrand ∈ D;5


if rand() < Cr or j = jrand then6


Uji,g+1 = xr1,g + F · (xr2,g − xr3,g);7


end8


if f(Uji,g+1) < f(xji,g) then9


xji,g+1 = Uji,g+1;10


else11


Compute txji using PSO equations;12


if f(txji) < f(xji,g) then13


xji,g+1 = txji;14


else15


xji,g+1 = xji,g ;16


end17


end18


end19


end20


Fig. 18. Hybrid of PSO and DE


Initialize swarm;1


Initialize ants;2


repeat3


Update particles’ position and velocity;4


Evaluate the fitness function of each particle;5


Generate P solutions zi
t using equation (19);6


for i = 1 to ps do7


if f(zi
t) < f(xi) then8


xi = zi
t;9


end10


Update pi of particles;11


end12


Update g best;13


until t = T ;14


Fig. 19. Hybrid of PSO and ACO







For that sake, we used a set of five test functions commonly adopted in the mul-
timodal optimization literature. The selected problems are: Rastrigin’s function
[32, 33], Griewank’s function [34], Ackley’s function [35, 36], Schwefel’s function
[37], and Shubert’s function. Equations (20) to (24) show the test functions in
the same order as indicated above.


f1(x) = nA +


n
∑


i=1


x2
i − A cos (ωxi) (20)


f2(x) =
1


4000


n
∑


i=1


x2
i −


n
∏


i=1


cos


(


xi√
i


)


(21)


f3(x) = −20e
−0.2


√


1
30


∑


n


i=1
x2


i − e
1
30


∑


n


i=1
cos (2πxi) + 20 + e (22)


f4(x) = 418.9829n +


n
∑


i=1


xi sin (
√


|xi|) (23)


f5(x) =


n
∏


i=1


5
∑


j=1


j cos [(j + 1)xi + j] (24)


Except for Shubert’s test problem, which has multiple global optima, the
rest of the test functions adopted have only one global optimum, but contain
several local optima. Shubert’s test problem has several global optima distributed
uniformly throughout the search space. In Table 1, we show a summary of the
features of the test functions adopted, including their search range, the number
of optima in the search range and the position of their global optima.


Table 1. Summary of the features of the test functions adopted


Test Function Optimum Optimum fitness value Search range


Rastrigin [0, . . . , 0] 0 [−5.12,−5.12]D


Griewank [0, . . . , 0] 0 [−600.0, 600.0]D


Ackley [0, . . . , 0] 0 [−15.0, 30.0]D


Schwefel [1, . . . , 1] 0 [−500.0, 500.0]D


Shubert 18 (in two dimensions) -186.7309 [−10.0, 10.0]2


6 Experiments and Results


The algorithms applied to the test functions are the following: PSO with muta-
tion [12], species PSO [25], comprehensive learning PSO [29], and the hybrid of
PSO and ACO [31].


Next, we describe the setup for each algorithm. It is important to note that
the values adopted for the parameters of each approach follow those proposed
by their authors.







For the PSO with mutation we used: swarm size = 40 particles, learning
constant values C1 = C2 = 1.3, inertia weight ω = 0.3, mutation probability
Pm = 0.9.


The PSO with species used: swarm size = 40 particles, learning constants
values C1 = C2 = 2.05, radius value between 1/10 and 1/20 of the allowable
variables range.


For the Comprehensive Learning PSO we used: swarm size = 40 particles,
initial and final inertia values ωi = 0.9, and ωf = 0.4, learning constant values
C1 = C2 = 1.49455, refreshing gap m = 7.


Finally, for the hybrid of PSO and ACO we used: swarm size = 40 particles,
learning constant values C1 = C2 = 2.0, initial and final inertia values ωi = 0.7,
ωf = 0.4, d = 0.5, σm = 10−4.


In order to allow a fair comparison, all the algorithms performed 5,000 iter-
ations. The convergence plots for all the test functions are shown in Figures 20,
21, 22, 23 and 24. Table 2 shows the mean of the best fitness values obtained by
the algorithms after 5000 iterations for the test functions adopted.


Table 2. Mean of the best fitness value after 5000 iterations.


CLPSO APSO SPSO MPSO


Rastrigin 1.5 188.56 175.44 436.33


Griewank 1.68 838.41 15.75 0.97


Ackley 1.96e-07 19.36 10.71 3.59


Schwefel 13.29 1.28e+13 6.81e+9 6.21e+4


Shubert -186.56 -185.87 -79.94 136.88


From the plots shown in Figures 20 to 24, and from the summary shown in
Table 2, we can observe that the Comprehensive Learning PSO algorithm has
the best convergence and it is consistent in all the test functions adopted. The
Species PSO algorithm depends strongly on the selection of the radius, but it
tends to stabilize faster than the others. The PSO with mutation has a lower
rate of convergence but it shows good results in almost all the test functions
tested, which seems to indicate that the simple introduction of a good mutation
operator may be enough if the cost of evaluating the objective function is not
significant. The hybrid of PSO and ACO had the worst results both in terms
of convergence rate and accuracy, but it shows good results and better stability
than any other algorithm in Shubert’s test function.


In Figure 24 we show the convergence graphs for Shubert’s test function.
Although it is analyzed only in two dimensions, this test function has 18 global
optima and, as we can observe from Figure 24, for almost all the algorithms, the
value of the reported optimum shows oscillations. In the case of the PSO with
mutation the reported optimum value tends to diverge.
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Fig. 20. Diagram of convergence for the four algorithms applied to Rastrigin’s function.
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Fig. 21. Diagram of convergence for the four algorithms applied to Ackley’s function.
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Fig. 22. Diagram of convergence for the four algorithms applied to Schwefel’s function.
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Fig. 23. Diagram of convergence for the four algorithms applied to Griewank’s func-
tion.







-200


-150


-100


-50


 0


 50


 100


 150


 200


 250


 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000


CLPSO
APSO
SPSO
MPSO


Fig. 24. Diagram of convergence for the four algorithms applied to Shubert’s function.


7 Search of Solutions of a System of Nonlinear Equations


The study of dynamical systems is of great importance in almost all fields of
knowledge. A dynamical system is commonly modeled using a system of ordinary
differential equations such as the one represented in equation (25).


ẋ = f(x) (25)


with x ∈ Rn. The first step in the analysis of a dynamical system is to find a
fixed point of the system. A fixed point is a point in which all the derivatives
are equal to zero, that is, a point x′ such that


0 = f(x′) (26)


To find a fixed point we need to find a solution of the system of equations
f(x) that most of the time is nonlinear.


An example of the physical interpretation of this sort of system is the elec-
trical power system of three nodes [38, 39] shown in Figure 25.


The corresponding dynamic system is modeled with equations (27) to (30).


δ̇m = ω (27)


ω̇ =
1


M
(Pm − Dmω + V EmYm sin(δ − δm − θm) +







Fig. 25. Diagram of a power system of three nodes


E2
mYm sin θm) (28)


δ̇ =
1


Kqw


(−Kqv2V
2 − KqvV + Q − Q0 − Q1) (29)


V̇ =
1


TKqwKpv


[−Kqw(P0 + P1 − P ) + (KpwKqv − KqwKpv)V +


Kpw(Q0 + Q1 + Q) + KpwKqv2V
2] (30)


where


P = −V E′


0Y
′


0 sin(δ + θ′0) − V EmYm sin(δ − δm + θm)


+V 2(Y ′


0 sin θ′0 + Ym sin θm) (31)


Q = V E′


0Y
′


0 cos(δ + θ′0) + V EmYm cos(δ − δm + θm)


−V 2(Y ′


0 cos θ′0 + Ym cos θm) (32)


Only four variables are considered: δm, ω, δ, and V . All the other symbols are
set to constant values as shown in Table 3. We need to find a fixed point in the
search space defined by the range values for the variables shown in Table 4.


For this example, we used the Comprehensive Learning PSO with a swarm
size of 10 particles, initial and final inertia values ωi = 0.9, ωf = 0.4, learning
constant values C1 = C2 = 1.49455, refreshing gap m = 7 and a total of 1, 000
iterations. The fitness function is |f(x)| with f being the system of equations (27)
to (30) and x = (δm, ω, δ, V ). After applying Comprehensive Learning PSO, a
solution is found in the point (0.047, 0.0, 0.310, 1.35) with an error of 10−4 that
is an acceptable error value for this application.


The PSO algorithm has several advantages when adopted for searching so-
lutions for systems of nonlinear equations: PSO does not require of a “good”
initial point to perform the search, and the search space can be bounded by
lower and upper values for each decision variable. Additionally, no continuity or







Table 3. Constant values for the symbols in the system of nonlinear equations


symbol value symbol value symbol value


Kpw 0.4 Kpv 0.3 Kqw -0.03


Kqv2 2.1 T 8.5 Kqv -2.8


P0 0.6 P1 0.0 Q0 1.3


E′


0 2.5 Pm 1.0 Em 1.0


M 0.3 Ym 5.0 Y ′


0 8.0


θ′


0 12.0 Q1 10.0 θm -5.0


Dm 0.05


Table 4. Values of the search ranges for the decision variables


variable range


δm [0, 1]


ω [−1, 1]


δ [0, 1]


V [0, 2]


differentiability of the objective function is required. What can be considered as
the main disadvantage of PSO in this sort of application is its relatively poor
accuracy, which is caused by the coarse granularity of the search performed by
the algorithm. This can, of course, be improved either by running the PSO al-
gorithm for a larger number of iterations (although at a higher computational
cost) or by post-processing the solution produced by the PSO algorithm with a
traditional numerical optimization technique.


8 Conclusions


In this chapter, we have shown a review of the most representative PSO-based
methods available for multimodal optimization. As we saw, most of these meth-
ods were either adapted or inspired by research reported in the genetic algorithms
literature. There are, however, other methods that are not directly derived from
such literature, because they rely on hybridizations between PSO and another
metaheuristic (e.g., differential evolution or ant colony optimization), with the
clear aim of benefitting from the advantages of both types of approaches.


A particular case is the clustering method originally developed by Kennedy [22]
and further modified by Bird and Li [21], since this sort of approach was specif-
ically designed for a PSO algorithm.


It is worth mentioning that all the methods analyzed here have been devel-
oped using as a basis the known models for updating the position and velocity of
the PSO algorithm, namely the Inertia Weight and the Constriction Factor. To
the authors’ best knowledge, there are no models currently available for updat-
ing the position and velocity of a particle, that had been specifically developed







for dealing with multimodal optimization problems. This is also true for the
topologies of the swarm, since the authors are not aware of any new topologies
that had been developed specifically for multimodal problems. It is worth not-
ing, however, that in the method for computing the niche parameters for Bird
and Li’s algorithm [21], a graph based on the closeness of the particles is used to
determine if a particle belongs to a niche. Nevertheless, once the sub-swarms are
built they use a gbest topology in each sub-swarm and a von Neumann topology
with the particles that do not belong to a sub-swarm, but are part of the main
swarm. A particular case is the Comprehensive Learning PSO algorithm. Al-
though in this algorithm the Inertia Weight is used together with the social only


model, the position of the best particle in the swarm is replaced with a computed
exemplar for each particle, which is an ad-hoc method specifically developed for
this approach.


In general, all the methods studied show advantages over the use of a basic
PSO algorithm, but they also introduce new parameters that need to be set by
the user. In most cases, the parameters were empirically tuned after perform-
ing a series of experiments [29]. The current research in the area includes the
development of methods for adaptively computing the parameters required for
dealing with multimodal optimization problems (e.g., [21]).


We have also conducted a small comparative study in which we analyzed the
performance of several of the algorithms discussed in this chapter. This study
showed that Comprehensive Learning PSO had the best overall results both in
terms of quality of the final solutions and of consistency in reaching such results.


Finally, we presented an application of PSO in a case study in which the
problem is multimodal: the search of solutions to a set of nonlinear equations.
The results in this case were very encouraging and showed some of the advantages
of adopting PSO with respect to traditional numerical optimization techniques
(e.g., the use of bounded decision variables, and the use of randomly generated
solutions to initiate the search).


9 Future work


There are several areas that remain open for those interested in working in this
area. First, the development of new PSO-based methods for multimodal opti-
mization still has a lot to offer. For example, the development of new approaches
that have less (or no) parameters that have to be fine-tuned by the user and that
remain effective in a variety of test problems is an interesting venue for future
research.


There are approaches, such as those based on clustering methods, that do
not use any information from the fitness values of the particles. Such information
could be used, for example, to improve the computation of the centroids of the
clusters.


Finally, the development of additional hybrid methods is also an interesting
path for future research, that can give us more insights regarding the behavior
and potential advantages and disadvantages of different metaheuristics.
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