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Abstract— Many real-world optimization problems are
multiobjective.  This paper proposes an Adaptive Ge-
netic/Memetic Algorithm (AGMA) with a multiobjective
approach applied to a flow shop scheduling Problem (FSP).
AGMA is firstly a genetic algorithm (GA) which proposes an
adaptive selection between mutation operators. Moreover,
AGMA proposes an original hybrid approach, the search
alternates adaptively between a Genetic Algorithm and a
Memetic Algorithm (MA). We test AGMA on multiobjec-
tive FSP (MOFSP). We use different performance indicators
to compare with classical algorithms and with our previous
work on adaptive mechanism for Genetic Algorithm applied
to FSP.

I. INTRODUCTION

A large part of real-world optimization problems are of
multiobjective nature. In trying to solve Multiobjective
Optimization Problems (MOPSs), many methods scalarize
the objective vector into a single objective. Since several
years, interest concerning MOPs area with Pareto approach
always grows. Many of these studies uses Evolutionary
Algorithms to solve MOPs [CVLO02] [Deb01] [ZDT+01].

The efficiency of multiobjective genetic algorithms is
characterized by several important mechanisms, such as
genetic operators (i.e. mutation and crossover), selection,
diversification and hybridization.

In our previous works [TRMDOQ1], we compare several
classical selection and diversification strategies in order to
select the best ones. Then we show the interest of hy-
bridization with local search. This study was applied on a
MOFSP.

Then, in [BST02] we give some guidelines to set auto-
matically some of the numerous GA parameters. We pro-
pose an adaptive mutation selection method, and a dy-
namic niche size computation for sharing diversification
[Gol89]. We also propose a hybridization by memetic al-
gorithm. These mechanisms were tested successfully on
MOFSP.

In this paper, we present AGMA, which is applied to
MOFSP. AGMA proposes an new adaptive selection be-
tween mutation operators, which try to face drawbacks of
our previous approach . Moreover, AGMA proposes an
original hybrid approach in which the search alternates
adaptively between GA and MA.

We use different performance indicators to compare
AGMA with classical algorithms [TRMDO01] and our pre-
vious work on adaptive mechanisms for GA [BST02].

This paper is organized as follows:

In section II, we define MOP and we present MOFSP.

In section III, we present an adaptive mutation selection
operator, that performs different mutation operators, the
previous results obtained by each operator help in deter-
mining the mutation operator to apply. In section IV, we
present GA hybridization by a memetic search, and a co-
operative method between these two complementary meth-
ods. Then we present our results obtained for MOFSP in
section V. These results are compared with multiobjective
performance indicators. In the last section, we will discuss
on AGMA effectiveness and perspectives of this work.

II. MULTI-OBJECTIVE FSP
A. Multiobjective Optimization Problem

Firstly, we have to describe and define MOPs in a gen-
eral case. We assume that a solution to such a problem
can be described by a decision vector (z1, T2, ..., L) in the
decision space X. A cost function f : X — Y evaluates
the quality of each solution by assigning it in an objec-
tive vector (y1,y2, ..., yp) in the objective space Y (Fig. 1).
So, multiobjective optimization consists in founding the so-
lutions in the decision space minimizing or maximizing p
objectives.
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Fig. 1. Example of MOP

For the following definitions, we consider the minimiza-
tion of p objectives. For maximization problems, defini-
tions are similar. In the case of a single objective opti-
mization, comparison between two solutions ' and z? is
immediate. If y' < y2 then z! is better than 2. For mul-
tiobjective optimization, comparing two solutions z! and
2?2 is more complex. Here, we only have a partial order
relation, known as Pareto dominance concept:

Definition 1: A solution z* dominate a solution 27 if and
only if:

Vk € [L.p], fr(z)) < fe(az?)
3k € [L.p), fi(a®) < fula?)



In MOP, we are looking for non-dominated Pareto solu-
tions:

Definition 2: A solution is Pareto optimal if it is not
dominated by any other solution of the feasible set.

The set of optimal solutions in the decision space X is
denoted as Pareto set, and its image in the objective space
is the Pareto front. In fig. 2, the circle solutions represent
a non-dominated front for two objectives.
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Fig. 2. Example of non-dominated solutions

B. Flow-shop Scheduling Problem

The FSP is one of the numerous scheduling problems.
Flow-shop problem, has been widely studied in the litera-
ture. The proposed methods for its resolution vary between
exact methods, as the branch & bound algorithm, specific
heuristics and meta-heuristics. However, the majority of
works on flow-shop problem studies the problem in its sin-
gle criterion form and aims mainly to minimize makespan
i.e. the total completion time, the date when the last job
is terminated on the last machine. Several bi-objective ap-
proaches exist in the literature. Sayin et al. proposed a
branch and bound strategy to solve the two-machine flow-
shop scheduling problem, minimizing makespan and sum
of completion time [SK99]. Sivrikaya-Serifoglu et al. pro-
posed a comparison of branch & bound approaches for min-
imizing makespan and weighted combination of the average
flowtime, applied to the two-machine flow-shop problem
[SU98]. Rajendran proposed a specific heuristic to mini-
mize makespan and total flowtime [Raj95]. Nagar et al.
proposed a survey of the existing multicriteria approaches
of scheduling problems [NHH95].

FSP can be presented as a set of N jobs Ji,J2,...,JN
to be scheduled on M machines. Machines are critical re-
sources: one machine cannot be assigned to two jobs simul-
taneously. Each job J; is composed of M consecutive tasks
ti1,-..,tin, where t;; represents the j% task of the job J;
requiring the machine m;. To each task ¢;; is associated a
processing time p;;. Each job J; must be achieved before
the due date d;. In our study, we are interested in per-
mutation FSP where jobs must be scheduled in the same
order on all the machines (Fig. 3).
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Fig. 3. Example of permutation Flow-Shop scheduling

In our study, we minimize two objectives: Ciqz, the
makespan (Total completion time), and T', the total tar-
diness. Each task ¢;; being scheduled at the time s;;, the
two objectives can be computed as follow:

Craz = Mam{siM +piM|i S [].N]}

N
T = Z [maz(0, sip + piv — d;)]

i=1

In the Graham & al. [GLLK79] notation, this problem
can be defined as: F/perm,d;/(Cmaz,T)

Crar minimization has been proved to be NP-hard in
[LKBT77]. The total tardiness objective T, has been stud-
ied only a few times for M machines [Kim95], but total
tardiness minimization for one machine has been proved
NP-hard [DL90].

The evaluation of the performance of our algorithm has
been realized on some Taillard benchmarks for the FSP
[Tai93], extended to the bi-objective case [TRMDO01] (the
bi-objective benchmarks and the results obtained are avai-
lable on the web at http://www.lifl.fr /~basseur).

To find a good Pareto set for multiobjective problems,
evolutionary algorithms seem to be well suited. The next
section presents different mechanisms to improve the effec-
tiveness of GA search.

III. AN ADAPTIVE MUTATION SELECTION
A. Previous work

In [BSTO02], an adaptive mechanism of mutation opera-
tors was presented. The purpose is to change the proba-
bility selection of each operator according to its efficiency.
To do that, each mutation M; applied to the individual I
was associated with a progress value (I, is the individual
I modified by the mutation M;):

1 if I is dominated by I
MM(Ip,) =< 0 if I dominates Iy,
1 otherwise
At the end of each GA generation, a Progress value is
assigned to each operator:

> I0(Imy)
Progress = =——~
7 #M,

where #M; is the number of applications of the mutation
M; on the population. The new selection probabilities are
computed proportionally to these values.



B. A ranking approach

The previous approach of progress computation com-
pares two solutions with their dominance relation. How-
ever, a comparison only between I and Iy, is not sufficient.
Firstly, the fact that I and I, do not dominate each other
is not enough to evaluate the quality of the mutation (Fig.
4). Secondly, if a generated solution dominates the initial
solution, we can not measure with precision the progress
realized.
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Fig. 4. Progress evaluation based on dominance relation between

solutions

These problems can be tackled in the case of evolution-
ary algorithms using selection by ranking (in our case, we
use NSGA ranking [SD94])). The progress value can be

replaced by:
k
Ry

where Ry, is the rank of the solution after mutation, Ry is
the rank of the solution before mutation, and & is how much
we encourage the progress made by mutation operators.
For our application, we set k to 2.
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Fig. 5. Example of mutation applications

The interest of the improvement realized by mutation on
different solutions is not the same for each solution in the
population. The progress realized on good solutions are
most important for the front progression (Fig. 5). So we
introduce an elitist factor in our last progress indicator:

Rr,. \*
M) = Cr + ( Ry )

i M

Then, the glob;;ml progress of a mutation M; is defined as
follows:

Progress(M;) = 7%HéIMi )
In,

C. Application to the Flow-Shop Problem

In our application on FSP, we consider four mutation
operators. The first operator is an exchange between two
jobs (fig. 6). The second one, the insertion operator, con-
sist in a circular permutation between two random points
(fig. 7). The third operator randomly re-arranges a se-
quence between two points (fig. 8). The last operator,
2-opt operator, reverses the sequence of jobs between two
random points (fig. 9).

Fig. 6. exchange mutation operator

Fig. 7. insertion mutation operator

Fig. 8. random mutation operator

Fig. 9. 2-opt mutation operator

According to experiments, the random operator seems ef-
fective for short problems (because of their small complex-
ity), and the exchange and permutation operators perform



better on great problems. The 2-opt operator performs
worsly than the other operators. Fig. 10 and 11 show the
evolution of the selection probabilities of these operators
in function of the number of GA generations done. These
evolutions are dependent to the problem treated.
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Fig. 10.  Mutation selection probabilities:
ta_31bi (50 jobs*5 machines)

example on instance
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Fig. 11. Mutation selection probabilities:
ta_61bi (100 jobs*5 machines)

example on instance

IV. ADAPTIVE MEMETIC SEARCH

In single objective optimization, it is well known that
GA must be hybridized by local search algorithm to give
good results. In fact, GA convergence is too slow to be re-
ally effective without any hybrid approach. In [TRMDO1],
we show that for FSP, local search improves the results
obtained by the GA. In [BST02], we test hybridization by
memetic algorithm. We run several generations of cross-
over+local search on the non-dominated set of solutions
obtained by the GA. Algorithm 1 describes the Genetic
Algorithm hybridized by Memetic Algorithm (GA+MA):

Crossover, selection and diversification operators are de-
scribed in [BST02]. This hybridization method gives good
results. To improve this method we propose to define dy-
namically transitions between GA and MA. Our idea is to
assign a progress value P during the meta-heuristic run.
Let Ppos be the value of the modification rate done on the
Pareto front POx. If this value goes bellow a threshold a,
the MA is launched on the current GA population. When
the MA is over, the Pareto front is updated, and the GA
is re-run with the previous population (Algorithm 2):

Algorithm 1 GA+MA algorithm
Create an initial population
while GA run time not reached do
Make a GA generation with adaptive mutation
end while
- Here we have a Pareto set PO -
while MA run time not reached do
Apply crossover on randomly selected solutions of PO
to create a set of new solutions.
Compute the non-dominated set PO’ on these solu-
tions
while New solutions found do
Create the neighborhood N of each solution of PO’
Let PO’ be the non-dominated set of N |J PO’
end while
end while

Algorithm 2 AGMA algorithm
Create an initial population
while run time not reached do
Make a GA generation with adaptive mutation
Update POx an Ppo,
if P < o then
Make a generation of MA on the population (Algo-
rithm 1)
Update POx an Ppp.
end if
Update selection probability of each mutation opera-
tor
end while

In AGMA algorithm, we can apply the memetic search
on the Pareto solutions or on the current population of the
GA. Experiments show that the search on the population
gives best results. In fact, it allows us to have a better
exploration of the search space. Fig. 12 shows the evolu-
tion of the ratio Memetic search/Genetic search during one
AGMA run.
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Fig. 12. Example of AGMA evolution - ta-51bi instance (50 jobs*20
machines)

V. COMPUTATIONAL RESULTS

For each problem, we run AGMA for 200 MA hybridiza-
tion. The time needed by AGMA varies between 1 minute



(problems with 20 jobs and 5 machines) and 3 hours (prob-
lems with 50 jobs and 20 machines), and is quite similar to
the running time needed by AG+MA. Run time are mea-
sured on a 1,6 GHz machine.

Table I describes the best results obtained for each ob-
jective:
e Problem is the instance treated.
o UB is the upper bound (best solutions ever found) ob-
tained for the Makespan in single-objective studies.
o C7 and T are the best Caq, and T obtained in [BST02].
e Cy and T, are the best Carqr, and T obtained with
AGMA.
o Dev is the deviation between AGMA and the best value
obtained in single objective optimization regarding UB.

TABLE 1
PERFORMANCE EVALUATION (BEST RESULTS IN BOLD)

Problem UB Ch Cs Dev T Ty
ta0lbi 1278 1278 1278 0% 452 452
ta_02bi 1359 1359 1359 0% 491 469
ta_11bi 1582 1586 1582 0% 1224 1224
ta_12bi 1659 1672 1659 0% 1275 1275
ta_21bi 2297 2308 2297 0% 1097 1031
ta3lbi 2724 2729 2724 0% 3364 3231
ta_4lbi 2991 3063 3025 1.14% 4636 4706
ta_51bi 3855 3933 3904 1.27% 7667 7214

We obtain the optimal value for Csq, objective on all
instances except ta-41 and ta_51. In [BST02], only two op-
timums has been reached. These results give us an idea
on the progress made, but only on the extremities of the
front. To compare two fronts, we have to look at the to-
tality of them. In the two-dimensional case we can make
this comparison graphically (Fig. 13 and 14). We can ob-
serve the progress made for the population diversity, and
the progress made in the quality of the solutions, especially
for large problems (Fig. 14).
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Fig. 13. Example of progress brought by the new mechanisms:

ta_11bi instance (20 jobs*10 machines)
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These observations show there is a progress made, but we
can not quantify this progress. Proper comparison of two
multi-objective optimization algorithms is a complex issue
and need the use some performance indicators to quantify
these progress for two set of runs.

A. Quality assessment of Pareto set approrimation

Several different solutions have been proposed in recent
years. Solutions quality can be assessed in different ways.
Some approaches compare the obtained front with the op-
timal Pareto front [VLO0O]. Others approaches evaluate a
front with a reference point [Jas00]. Some performance
measures do not use any reference point or front to evalu-
ate an algorithm [ZT99] [KCOO00].

Here, we use contribution metric [MTRO0] to evaluate
the proportion of Pareto solutions given by each front, and
S metric, as suggested in [KC02], to evaluate the dominated
area.

A.1 Contribution

The contribution of a set of solutions PO, relatively to a
set of solutions P(Os is the ratio of non-dominated solutions
produced by PO; in PO*, the set of Pareto solutions of
PO, U PO..

e Let PO be the set of solutions in PO, N PO».
o Let Wy (resp. W2) be the set of solutions in POy (resp.
PO,) that dominate some solutions of PO; (resp. POy).
e Let Ly (resp. L) be the set of solutions in PO; (resp.
PO») that are dominated by some solutions of PO (resp.
POy).
o Let Ny (resp. N») be the other solutions of POy (resp.
LEOU & ([ | + VA |
1PO"]

Let us remark that ||PO*|| = ||PO||+||W1||+|| N1 ||+||Wa||+
||N2]| and Cont(PO;1/PO2) + Cont(PO,/PO;) = 1.

For example, we evaluate the contribution of the two sets
of solutions PO; and POy on Fig. 15: solutions of PO,
(resp. PO-) are represented by circles (resp. crosses). We
obtain Cont(PO;, POs) = 0.7 and Cont(PO2, PO;) = 0.3.

Cont(PO1/POs) =



c=4

o N2=1

Y1

Fig. 15. Example of contribution

Previous study shows that [BSTO02] outperforms
[TRMDO1]. So, to compute AGMA assessment, we com-
pare AGMA to [BST02]. Table II presents the average
value of the contribution (Cont(AGMA/AG+MA)) ob-
tained on 10 runs.

TABLE II
QUALITY ASSESSMENT (CONTRIBUTION METRIC)

problem Cont(AGMA/AG+MA)

ta_01bi 0.657
ta_02bi 0.739
ta_11bi 0.751
ta_12bi 0.732
ta_21bi 0.754
ta_31bi 0.690
ta_41bi 0.920
ta_51bi 0.984

Results obtained for contribution metric show that
AGMA outperforms AG+MA. Average contributions ob-
tained on each instance is always up to 0.5 (i.e. average
contribution of AGMA is better than average contribution
of AG+MA on each instance). Contributions obtained for
the two last instances show that AG+MA is almost totally
dominated by AGMA.

A.2 S metric

A definition of the S metric is given in [Zit99]. Let A be
a non-dominated set of solutions. S metric calculates the
hyper-volume of the multi-dimensional region enclosed by
A and a reference point Z,.; (Fig. 16).
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Fig. 16. Example of S value for two sets of solutions PO; and PO3

Let PO; and PO, be two sets of solutions. To eval-
uate quality of PO; against PO, we compute the ratio
(S(PO1) — S(PO3))/S(PO3). For our evaluation, the ref-
erence point is the worst value on each objective among all
the Pareto solutions found by the runs.

Table III presents the average value of the S metric ob-
tained on 10 runs and the average improvement realized by
AGMA. This table confirms that AGMA strongly outper-
forms AG+MA on ta_41bi and ta_51bi. Results are better
on all instances especially on ta_02bi, ta_21bi, ta_41bi and
ta_51bi instances.

TABLE III
QUALITY ASSESSMENT (S METRIC)

problem S(AGMA) S(AG+MA) Improvement
ta_01bi 4778.1 4707.8 1.49%
ta_02bi 6437.9 5873.5 9.61%
ta_11bi 322121.5 304436.7 5.81%
ta_12bi 180378.2 172749.7 4.42%
ta_21bi 506460.0 442050.9 14.57%
ta_31bi 146462.6 141386.0 3.59%
ta_41bi  1249924.3 1041016.6 20.07%
ta_blbi  2954461.3 2451656.3 20.51%

B. A parallel implementation

Previous tests showed that AGMA performs well on FSP.
To improve our results, we implement a parallel version of
AGMA. The parallel model is presented in Fig. 17.
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Fig. 17. Parallel model: example with 5 machines

We test this parallel version on 8 1.1GHz/Power4 ma-
chines. We launch AGMA on each machine until 1000 hy-
bridization are realized. Time needed by runs never exceed
10 hours.

The set of Pareto solutions obtained for each instance
with the parallel version of AGMA are given in annexe.
These table represent the best non-dominated solutions ob-
tained during parallel AGMA run. Let us remark that ex-
cept on ta_41bi and ta_51bi instances, fronts obtained on



each parallel run are the same. In respect to these results,
we can expect that the front obtained on the six smaller
instances are optimal.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an Adaptive Ge-
netic/Memetic Algorithm with:
¢ A new mutation performance indicator to use different
genetic operators simultaneously in an adaptive manner,

o Adaptive hybridization combining Pareto GA with a
MA.

This approach has been tested and evaluated successfully
on a FSP.

Perspective of this work is a more general study of land-
scape (convexity, continuity,...) of MOP for adaptive de-
sign of efficient hybrid evolutionary algorithms. Moreover,
we can use specific hybrid techniques, to replace the local
search realized during the MA. The goal is to speed up the
search for larger problems, with up to 500 machines.
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ANNEXE

Ta01.bi (20 jobs*5 machines)

T CMax | T C_Max
554 1278 | 453 1297
515 1296 | 452 1339

Ta02_bi (20 jobs*5 machines)

T CMax| T CMax| T CMax
896 1359 | 754 1363 | 603 1367
892 1361 631 1366 | 469 1368




Tallobi (20 jobs*10 machines)

Tad1.bi (50 jobs*10 machines)

T C_Max T C_Max T C_Max
3613 1582 | 2255 1637 1612 1702
3065 1583 | 2213 1645 1607 1704
3064 1589 | 2147 1646 1595 1705
2820 1590 | 2143 1649 1546 1706
2814 1592 | 2081 1650 1509 1715
2765 1593 | 2068 1654 1501 1716
2670 1594 | 2024 1659 1415 1722
2626 1606 1903 1667 1395 1726
2614 1610 1749 1674 1391 1731
2460 1611 1745 1675 1323 1735
2351 1617 | 1744 1690 1238 1752
2341 1621 1683 1693 1229 1755
2327 1630 1667 1698 1226 1761
2258 1636 1651 1700 1224 1773

Tal2_bi (20 jobs*10 machines)

T C_Max T C_Max T C_Max
3438 1659 | 2016 1694 1564 1743
2699 1660 1850 1696 1557 1744
2694 1668 1842 1700 1528 1745
2500 1669 | 1771 1708 | 1488 1750
2477 1671 1765 1710 1453 1756
2348 1672 1717 1719 1413 1760
2200 1677 | 1656 1721 1399 1763
2174 1683 1635 1723 1360 1776
2160 1684 1613 1724 1341 1778
2072 1685 1597 1725 1275 1795
2037 1687

Ta21_bi (20 jobs*20 machines)

T C_Max T C_Max T C_Max
3762 2297 | 2202 2336 1563 2408
3598 2298 | 2172 2355 1548 2411
3561 2299 | 2136 2358 1507 2418
3089 2300 | 2132 2359 1495 2419
3063 2307 | 2071 2362 1441 2420
3019 2308 | 2052 2363 1438 2425
2924 2310 2007 2364 1346 2427
2918 2311 1922 2367 1273 2450
2807 2312 1829 2377 1243 2454
2618 2315 1824 2381 1158 2468
2449 2316 1682 2383 1062 2476
2422 2330 | 1618 2393 | 1057 2497
2415 2334 1607 2407 1031 2509
2349 2335

Ta31.bi (50 jobs*5 machines)

T C_Max T C_Max T C_Max
4461 2724 | 3496 2745 | 3275 2752
3801 2729 | 3455 2746 | 3238 2807
3783 2743 | 3438 2751 3231 2840
3779 2744

T C_Max T C_Max T C_Max
7999 3025 | 5929 3065 | 5019 3126
7792 3028 | 5903 3066 | 5004 3127
7752 3030 | 5800 3067 | 4988 3130
7677 3032 | 5788 3070 | 4975 3137
7301 3033 | 5776 3072 | 4934 3138
7119 3036 | 5757 3073 | 4818 3140
7019 3040 | 5737 3074 | 4779 3145
6808 3042 | 5604 3075 | 4757 3150
6569 3045 | 5475 3079 | 4736 3152
6503 3046 | 5459 3084 | 4687 3153
6450 3047 | 5436 3086 | 4662 3159
6446 3049 | 5362 3088 | 4625 3163
6276 3050 | 5301 3097 | 4533 3164
6132 3051 5282 3098 | 4524 3167
6126 3055 | 5256 3099 | 4504 3168
6112 3057 | 5190 3100 | 4475 3176
6036 3061 5164 3101 4422 3191
6014 3062 | 5050 3116 | 4420 3209
5961 3063 | 5035 3124 | 4392 3210
5956 3064 | 5023 3125 | 4359 3245

Ta51.bi (50 jobs*20 machines)

T C_Max T CMax | T C_Max
13720 3899 10349 3966 | 8028 4072
13514 3900 10209 3968 | 7915 4084
13455 3901 10122 3971 7853 4089
13142 3902 10103 3972 | 7852 4093
12550 3903 10069 3973 | 7846 4096
12339 3906 10008 3975 | 7777 4097
12250 3909 9792 3976 | 7737 4102
12021 3911 9624 3978 | 7687 4105
11906 3913 9410 3984 | 7604 4109
11794 3915 9370 3994 | 7575 4113
11780 3920 9220 3995 | 7530 4116
11748 3921 9029 3998 | 7506 4123
11733 3922 8947 4001 7482 4127
11641 3926 8944 4002 7470 4136
11562 3928 8917 4009 | 7461 4137
11438 3930 8904 4012 | 7436 4142
11054 3932 8886 4014 | 7410 4145
11010 3937 8802 4017 | 7402 4149
10995 3940 8788 4020 | 7390 4165
10947 3941 8617 4022 | 7389 4166
10902 3947 8478 4025 | 7378 4169
10663 3948 8393 4038 | 7334 4173
10658 3953 8355 4048 | 7307 4182
10632 3954 8330 4050 | 7275 4186
10569 3955 8316 4051 7265 4199
10565 3957 8235 4054 | 7244 4200
10481 3958 8198 4058 | 7213 4213
10431 3962 8160 4068 | 7211 4245
10356 3963 8125 4070 | 7210 4248
10353 3964 8117 4071 7204 4268




