
 

MIM 2002, Milwaukee, WI, USA 

Proceedings of MIM 2002: 
5th International Conference on Managing Innovations in Manufacturing (MIM) 

Milwaukee, Wisconsin, USA 
September 9-11, 2002 

 
 
 

MULTIPLE DISPATCHING RULE BASED HEURISTIC FOR MULTI-OBJECTIVE 
SCHEDULING OF JOB SHOPS USING TABU SEARCH 

 
 

Adil Baykasoğlu1, Lale Özbakır2, Türkay Dereli1 
1University of Gaziantep, Department of Industrial Engineering, 27310, Gaziantep, TURKEY 

2Erciyes University, Department of Industrial Engineering, Kayseri, TURKEY 
{baykasoglu,dereli}@gantep.edu.tr, lozbakir@erciyes.edu.tr 

 
 
ABSTRACT 
In this paper, a multiple dispatching rule based meta-heuristic solution approach for Job Shop Scheduling Problems 
(JSSP) is presented. The proposed algorithm makes use of Giffler & Thompson’s heuristic in deducting feasible 
schedules and Multiple Objective Tabu Search (MOTS) in generating optimal schedules. Several example problems 
are solved from the literature to present the effectiveness of the proposed algorithm. The results obtained from the 
computational study have shown that the proposed algorithm can be used as a new alternative solution technique for 
finding good solutions to this complex problem. 
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1. INTRODUCTION 
Production scheduling, which is a part of the planning and control of individual production units, lies at the very 
heart of the performance of manufacturing organizations  (Stoop et al, 1996). Job shop scheduling problem (JSSP) is 
a branch of production scheduling, which is among the hardest combinatorial optimization problems (Sonmez and 
Baykasoglu, 1998). Not only it is hard, but even among the members of the latter class, it appears to belong to the 
more difficult ones (Van Laarhoven et al, 1992).  
 
The problem definition for JSSP is as follows; there is a set J={J1,...,Jn} of n jobs that must be processed on a group 
M={1,...,m} of m machines. Each job Ji, consists of a sequence of operations, O1j, O2j,...,Onj. Each operation Oij, 
must be processed without interruption on machine mij ∈ {1,...,m} with a processing time pij. The operations O1j, 
O2j,..., Onj must be processed one after another in the given order and each machine can process at most one 
operation at a time(Mastrolilli and Gambardella, 2000).  
 
Many different approaches have been applied to JSSP, including: dispatching rules (Giffler and Thompson, 1960, 
Blackstone et al, 1982), mathematical programming (Sonmez and Baykasoglu, 1998, Pinedo, 1995), artificial 
intelligence techniques (Kusiak and Chen, 1988), simulation methods (Baykasoglu et al, 1998), heuristics (Kusaiak, 
1990) etc. Ben-Daya (1994) provides a good classification of the techniques applied to job shop scheduling. It has 
been recognized that scheduling optimization using mathematical programming is very difficult, because of 
prohibitive computational time. It becomes more difficult to achieve an optimal result when the variety of parameters 
and constraints is increased (Maturana et al, 1997). Due to this fact, meta-heuristics (simulated annealing, genetic 
algorithms, tabu search etc.) and dispatching rule-based heuristics have gained significant research attention for 
solving JSSP problems. Many researchers from all around the world applied meta-heuristics to scheduling problems. 
Maturana et al (1997) employed genetic algorithms for solving JSSP. Cheng et al (1996) gave a good review of the 
genetic algorithms for job shop scheduling.  Al-Fawzan and Al-Sultan (1996) applied tabu search to the JSSP. Van 
Laarhoven et al (1992) used simulated annealing for JSSP. Dorndorf and Pesch (1995) developed a dispatching rule-
based genetic algorithm for JSSP. Many other example applications can easily be found from the literature. 
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However, it must be mentioned here that most of the approaches developed in the literature considered only the 
single objective case, although in JSSP multiple-objective solutions are more frequently required.     
 
In parallel to the trend in the literature, in this paper, we proposed a hybrid-dispatching rule based multiple objective 
tabu search algorithm to solve JSSP. The proposed algorithm makes use of Giffler & Thompson’s heuristic in 
deducting feasible schedules and Multiple Objective Tabu Search (MOTS) in generating optimal schedules. The 
proposed algorithm is the first attempt in applying the MOTS developed by (Baykasoglu et al, 1999) to JSSP. 
Several example problems are solved from the literature to present the effectiveness of the proposed algorithm. The 
results obtained from the computational study have shown that the proposed algorithm can be used as a new 
alternative solution technique for finding good solutions. 
 
 
2. IMPLEMENTING MOTS FOR SOLVING FJSSP 
2.1. A Review of the Classical Tabu Search Algorithm 
Tabu search is a heuristic problem independent optimization method. It was first suggested by Glover (1992) and 
since then has become increasingly used. The basic idea of the method, described by Glover (1992), is to explore the 
search space of all feasible solutions by a sequence of moves. A move from one solution to another is the best 
available. However, to escape from locally optimal but not globally optimal solutions and to prevent cycling, some 
moves, at one particular iteration, are classified as forbidden or tabu. Tabu moves are based on the short-term and 
long-term history of the sequence of moves. A simple implementation, for example, might classify a move as tabu if 
the reverse move has been made recently or frequently. Sometimes, when it is deemed favorable, a tabu move can be 
overridden. Such aspiration criteria might include the case that, by forgetting that a move is tabu, leads to a solution 
which is the best obtained so far.  
 
Suppose that, f is a real valued objective function on a search space S and it is required to find a h∈S such that f(h) 
has maximal value. For NP-complete problems, this requirement needs to be relaxed to finding a h∈S such that f(h) 
is close to the maximal value. This is because any known algorithm to determine the maximal solution requires time, 
which is exponential in the problem size. Sub-optimal problems may be solved by halting when a certain threshold 
for an acceptable solution has been found or when a certain number of iterations have been completed.  
 
A characterization of the search space S for which tabu search can be applied is that there is a set of k moves 
Q={q1,q2,....,qk} and the application of the moves to a feasible solution s∈S leads to k usually distinct, solutions 
Q(s)={q1(m),q2(m),.. ..,qk(m)}. The subset N(s) ⊆Q(s) of feasible solutions is known as the neighborhood of s. 
 
The method commences with a (generally random) solution s0∈S and determines a sequence of solutions s0, s1, s2 
,....,sn∈S. At each iteration, sj+1 is selected from the neighborhood N(sj). The process of selection is first to determine 
the tabu set T(sj)∈N(sj) of neighbors of sj and the aspirant set A(sj)∈T(sj) of tabu neighbors. Then sj+1 is the neighbor 
of si which is either an aspirant or not tabu and for which f(sj+1) is maximal; that is f(sj+1) ≥ f(s*)∀ s*∈(N(sj)-T(sj)) 
∪A(sj). The classical TS algorithm can be summarized as follows: 
 
Procedure Tabu_Search 
Start 
k=1; 
Generate initial solution s; 
Repeat 

Identify N(s) ⊆ S (Neighborhood set); 
Identify T(s) ⊆ N(s) (Tabu set); 
Identify A(s) ⊆T(s) (Aspirant set); 
Choose s*∈(N(s)-T(s)) ∪A(s), for which f(s*) is maximal; 
s=s*; 
k=k+1; 

Until Stop_Criterion 
End 
 
Note that, it is possible to avoid convergence at a local maximum, that f(sj+1)<f(sj). The conditions for a neighbor to 
be tabu or an aspirant will be problem specific. For example, a move may be tabu if it could lead to a solution, which 
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has already been considered in the last m iterations for which has been repeated many times before. A tabu move 
satisfies the aspiration criteria if, for example, the value of f(s*) with s*∈T(sj) satisfies f(s*)>f(si) ∀i, 0≤ i≤ j. The 
main stages of TS algorithms are; initial solution, generation of neighbors, selection, aspiration, and updating. In 
any implementation these stages must be devised properly. 
 
2.1 The Multiple Objective Tabu Search (MOTS) 
The idea of applying tabu search to multiple-objective optimization comes from its solution structure, in working 
with more than one solution (neighborhood solutions) at a time. To enable the TS algorithm to work with more than 
one objective, selection and updating stages of classical TS are redefined. Other stages are similar to the classical TS 
algorithm. In contrast to classical TS algorithm, MOTS algorithm has two more lists in addition to tabu list. The first 
one is the Pareto list, which collects selected non-dominated solutions found by the algorithm. The second one is the 
Candidate list, which collects all other non-dominated solutions, which are not selected as Pareto optimal solutions 
in the current iteration. These solutions may become seed solutions if they maintain their non-dominated status in 
later iterations. The candidate list plays also an important role, it gives the opportunity to diversify the search. 
Detailed explanations about the MOTS can be found in Baykasoglu et al (1999). In the following sub-section the 
important stages of the MOTS for solving multiple-objective JSSP are explained. 
 
2.2 Steps of MOTS in Solving JSSP 
2.2.1 Initial solution and solution representation 
In the present approach a solution is represented as a string, which is composed of a set of dispatching rules. In the 
string each number represents a dispatching rule for an operation starting from the first operation. In the present 
algorithm 10 different dispatching rules are used. The list of these rules is given in Table 1. As an example, consider 
a JSSP with 3 parts and these parts having in total 11 operations to be processed. In this case we will have a string 

with 11 numbers of entry (p1, p2, p3,…….., p11) (i.e., ∑
=

=
parts

i
ioperationsstringsolutioninentries

#

1

#___# ). The 

mapping for a candidate solution in the neighborhood will be as follow:  
 

1 2 3 4 5 6 7 8 9 10 11 
1 8 5 4 3 2 9 7 2 3 1 

 
SPT         EDD         LPT 

An entry pi shows one rule of the set of previously specified dispatching rules. The entry in the ith position says that 
a conflict in the ith iteration of the Giffler and Thompson algorithm should be resolved using the dispatching rule pi. 
In other words, an operation from the conflict set has to be selected by rule pi; ties are broken by a random choice. 
 
The Giffler and Thompson algorithm for the deduction a feasible schedule from a given solution string (p1, p2, 
p3,…….., pn)  works as follows: 
Notation: PSt = a partial schedule containing t scheduled operations. 

St = the set of schedulable operations at iteration t, corresponding to a given PSt. 
σi = the earliest time at which operation i∈St could be started. 
φi = the earliest time at which operation i∈St could be completed. 
Ct = the set of conflicting operations in iteration t. 

 
Procedure: Deduce a string for dispatching rule based encoding 
Step 1: Let t =1 and begin with PSt as the null partial schedule and St include all operations with no predecessors. 
Step 2: Determine { }iSit t

φφ ∈= min* and the machine m* on which φi
* could be realized. If more than one such 

machine exists, tie is broken by a random choice. 
Step 3: Form conflicting set Ct which includes all operations i∈St with σi ≤ φi

* that requires machine m*. Select one 
operation from Ct by dispatching rule pt and add this operation PSt as early as possible, thus creating new partial 
schedule PSt+1. If more than one operation exists according to the dispatching rule pt, tie is broken by a random 
choice. 
Step 4: Update PSt+1 by removing the selected operation from St and adding the direct successor of the operation to 
St. Increment t by one. 
Step 5: Return to step 2 until a complete schedule is generated. 

Operation index 
Rule string 
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Table 1: Dispatching Rules 
1 SPT Shortest Process time 6 PDR (Process /Remaining) Time 
2 EDD Earliest Due Date 7 ERD Earliest Release Date 
3 LPT Longest Process Time 8 MS Minimum Slack 
4 MWR Most Work Remaining Time 9 LNS Largest Number of Successors 
5 LWR Least Work Remaining Time 10 WSPT Weighted Shortest Process Time 

 
An initial feasible solution is generated randomly by assigning a dispatching rule to each position of the string. 
 
2.2.2 Generation of neighborhood solutions 
m number of neighborhood solutions are generated by changing the contents of k positions in each of the neighbor 
solution string. Positions in each string are selected randomly. Within the MOTS logic (Baykasoglu et al, 1999), the 
neighbor solutions must not be dominated by the seed string. Let us consider the string defined in section 2.2.1 as the 
seed string. If we set m=3, k=4 then the solution that is shown below can be obtained. In the string the selected 
locations are shaded. Next to the strings the performance values are given. In this case there are two objectives (e.g. 
makespan and total tardiness). The performance values are obtained by deducting the feasible schedules for each 
string using the Giffler and Thompson algorithm.
                                                                                                                         Makespan    T. Tardiness 

Seed String 1 8 5 4 3 2 9 7 2 3 1  500 520 
 

 1 7 5 4 3 1 9 7 2 2 6  420 600 
Neighbor Strings 1 8 1 1 3 2 9 2 9 3 1  610 450 
 2 8 5 4 8 2 9 4 2 5 1  400 580 

 
2.2.3 Selection 
In MOTS algorithm, the neighbor solutions (strings), which are the Pareto-optimal strings, are determined by 
following the rules defined in Baykasoglu et al (1999). One of the Pareto-optimal-neighbor is randomly selected as 
the seed string. Other Pareto-optimal-neighbors (if any) are stored in candidate list, the selected string is put into the 
Pareto list. Solutions in the candidate list may later become seed solutions. Solutions in the candidate list play also a 
very important role in diversifying the search in later iterations Baykasoglu et al (1999). 
 
2.2.4 Updating 
The initial feasible solution vector (string) is recorded as the seed string and put into the Pareto list. In each iteration, 
one of randomly selected Pareto–optimal neighbor is recorded as the current seed string. These seeds are also stored 
in Pareto list. After each addition, the Pareto list is checked if the last Pareto-optimal solution dominates any other 
solutions in Pareto list that have been added previously. If there are solution(s) in Pareto list, which are dominated 
by the last Pareto-optimal solution, then these solution(s) are eliminated from the Pareto list. Other Pareto optimal 
neighbors, which are not selected as seed solution are stored in candidate list with the same control of domination. 
The details of the updating process can also be found in Baykasoglu et al (1999). 
 
2.2.4 Tabu list 
The position indexes of k locations of the seed string are stored in the tabu list. The tabu list is circular and can hold 
up to w elements; when it is full a new pair of indexes replace the head of the list. 
 
2.2.5 Aspiration Criteria 
Any string resulting from a move that is not dominated by the solutions in candidate and Pareto lists is accepted, 
even if the move is tabu. 
 
2.2.6 Termination 
If a previously determined number of iterations (n-iter) is reached, or if the candidate list is empty the MOTS 
algorithm terminates. 
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3. EXAMPLE APPLICATIONS 
The proposed algorithm is programmed in C. The algorithm is tested on a Pentium III-MMX model PC at 450 MHz 
(128 MB RAM). In the present study 3 different objective functions are used, namely Total tardiness, Makespan and 
Load balance. In this section, the execution of the program is presented by using different case study problems.  
 
3.1. Case Study 1 
The first case study problem is taken from a web site (www.ms.ic.ac.ok/jeb/pub/jobshop1.txt) where different JSSP 
test problems with the optimal makespan values are available. The problem data is given below. 
 
Number of parts: 6, Number of machines: 6 
Machine route for the 1st part: 3 1 2 4 6 5       Due date:  26    Machine route for the 4th part: 2 1 3 4 5 6       Due date:  35 
Machine route for the 2nd part: 2 3 5 6 1 4      Due date:  47    Machine route for the 5th part: 3 2 5 6 1 4       Due date:  25 
Machine route for the 3rd part: 3 4 6 1 2 5       Due date:  34   Machine route for the 6th part: 2 4 6 1 5 3       Due date:  30 
 
Processing time data 

 P1 P2 P3 P4 P5 P6 
M1 3 10 9 5 3 10 
M2 6 8 1 5 3 3 
M3 1 5 5 5 9 1 
M4 7 4 4 3 1 3 
M5 6 10 7 8 5 4 
M6 3 10 8 9 4 9 

 
The optimal makespan for this problem is known and it is equal to 55. The proposed MOTS algorithm found 45 
Pareto optimal solutions including the one with optimal makespan around 5 seconds of computational time. The 
solutions within the set of Pareto optimal solutions with the best objective function values for each objective are 
shown in Table 2. 

Table 2: The best values for each objective function in the Pareto-optimal set 
Makespan         : 55  
Total Tardiness : 115 
Load Balance   : 0.144 

Makespan         :71 
Total Tardiness : 75 
Load Balance    : 0.092 

Makespan         :79 
Total Tardiness : 148 
Load Balance   : 0.065 

 
3.2. Case Study 2 
The second case study problem is also taken from a web site (www.ms.ic.ac.ok/jeb/pub/jobshop1.txt). The problem 
data is given below. 
 
Number of parts: 10, Number of machines: 5 
Machine route for the 1st part:  2 1 5 4 3    Due date:  258   Machine route for the 6th part: 2 3 5 1 4    Due date:  330 
Machine route for the 2nd part: 1 4 5 3 2    Due date:  186   Machine route for the 7th part: 4 5 2 3 1    Due date:  413 
Machine route for the 3rd part: 4 5 2 3 1     Due date:  232  Machine route for the 8th part: 3 1 2 4 5    Due date:  246 
Machine route for the 4th part: 2 1 5 3 4     Due date:  354  Machine route for the 9th part: 4 2 5 1 3    Due date:  233 
Machine route for the 5th part: 1 4 3 2 5     Due date:  237  Machine route for the 10th part: 5 4 3 2 1  Due date:  370 
 
Processing time data 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
M1 53 21 12 55 83 92 93 60 44 96 

M2 21 71 42 77 19 54 87 41 49 75 
M3 34 26 31 66 64 43 87 38 98 43 
M4 55 52 39 77 34 62 69 24 17 79 
M5 95 16 98 79 37 79 77 83 25 77 

 
The optimal makespan for this problem is known and it is equal to 666. The proposed MOTS algorithm found 21 
Pareto optimal solutions including the one with optimal makespan around 5 seconds of computational time. The 
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solutions within the set of Pareto optimal solutions with the best objective function values for each objective are 
shown in Table 2. 

Table 2: The best values for each objective function in the Pareto-optimal set 
Makespan         : 666  
Total Tardiness : 2977 
Load Balance   : 0.067 

Makespan         :857 
Total Tardiness : 2507 
Load Balance    : 0.111 

Makespan         :808 
Total Tardiness : 3298 
Load Balance   : 0.028 

 
The extensive computational study is still under progress. However the preliminary results are encouraging. In many 
cases MOTS algorithm is able to find good solutions.  
 
4. CONCLUSION 
In this research, a dispatching rule based multiple objective tabu search algorithm is developed to find Pareto-
optimal solutions in JSSP. The proposed algorithm is tested with several test problems. The results have shown that 
the proposed algorithm is able to find competitive solutions. In order to test the behavior of the proposed algorithm 
an extensive computational study is under progress. The preliminary results have shown that the proposed algorithm 
can be considered an alternative algorithm for multiple objective job shop scheduling problems.   
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